GENOMIC PCR SIMULATION WITH HARDWARE-ACCELERATED
APPROXIMATE SEQUENCE MATCHING

Matej Lexa
Masaryk University Brno
Faculty of Informatics
Botanicka 68, Brno 60200, Czech R
Email:lexa@fi.muni.cz

ABSTRACT

We report the latest details on improvements made or
planned for the VPCR simulation software currently
accessible on the Internet (installed on servers in Padova
and Brno). We describe the inner workings of the
dynamic amplification simulation model, concentrating
mostly on the time- and sensitivity-critical step of
sequence matching. Replacement of BLAST by the
more sensitive and faster PRIMEX similarity search
program resulted in a marked improvement of PCR
product predictions. Further speed improvements were
acheived using hardware acceleration of approximate
sequence matching. We report our theorethical compu-
tation time estimates and results of the first tests using
the Arabidopis and human genome sequences as PCR
templates.
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INTRODUCTION

Amplification of DNA by various flavors of the Poly-
merase Chain Reaction (PCR) is now a well-established
practice in molecular biology. It has found interest-
ing applications outside mainstream biological research
(e.g. in medicine, detective work or food testing for ge-
netically modified organisms) for its ability to amplify
short regions of even small traces of DNA to quantities
that can be inspected and used by other molecular
methods. In PCR and RAPD reactions that use genomic
templates, oligonucleotide primers anneal to target po-
sitions on a genomic sequence. This annealing is in-
fluenced most by the sequences involved, temperature
and salt concentration. While certain primers may be
highly specific for a given region of the studied genomic
DNA and the outcome of the corresponding reaction
easily predictable, other set-ups will have less certain
outcomes. This is also the case of multiplex PCR,

Proceedings 21st European Conference on Modelling and Simulation
Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007

ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

Tomas Martinek, Patrik Beck, Otto Fu¢ik  Giorgio Valle, Ivano Zara
Brno University of Technology
Faculty of Information Technology
Bozetéchova 2, Brno 61266, Czech R
Email:martinto, beck, fucik@fit.vutbr.cz Email:valle, zarivan @cribi.unipd.it

CRIBI Biotechological Centre
University of Padova
U. Bassi 58, Padova 35133, Italy

RAPD or any reactions using untested primers. Com-
puter programs capable of predicting the outcome of
such reactions could save users from running hopeless
experiments. Such programs have been around for some
time now (Rubin and Levy, 1996). As their precision
and speed increases, they could become useful practical
tools in PCR and RAPD design, primer evaluation,
microarray design or teaching.

PCR SIMULATION PROGRAMS

The simplest program predicting amplification products
from genomic templates (usually not recognized as
such) is the UNIX grep command. Given a primer
sequence p and a complete genomic sequence stored
in a textfile file, one can simply issue the command

egrep p. + rev(comp(p))|comp(p). + rev(p) file

where rev() and comp() stand for the reversed and
complementary sequences respectively. However, this
simplicity comes with a price. Exact matching is a
bad estimator of primer binding, which is why it will
predict only a fraction of the possible amplification
products. If one assumes a 20bp primer and allows
single mismatches for binding to still occur, there will
be 61 = 3*20+1 functional variants for each primer,
i.e. 3721 different combinations for two of them. Of
these combinations, only one would be predicted by
precise matching. This would (on average and assuming
a random sequence) result in an underestimation of the
number of possible PCR products by about 99.97%. In
other words, majority of products would go unnoticed.
This estimate is, of course, grossly invalid for well-
designed primers that have no one-mismatch neigbours
in the genome, for which the grep method actually
works. A program by (Lexa et al., 2001) is one of
the early attempts to handle less-behaved primers. The
use of BLAST for approximate matching improved
the primer annealing predictions, which in turn re-
sulted in better predictions of the resulting amplification
products. Shortly after VPCR 1.0 had been announced
a number of other groups that pursued similar ideas
published their software tools (Bikandi et al., 2004)



(Boutros and Okey, 2004). These tools were often
superior to the BLAST-based version of VPCR. Our
goal was to eliminate several errors and inefficiencies in
VPCR 1.0 and design a PCR simulation tool that would
offer physically and chemically sound predictions at
interactive speeds.

The development of VPCR 2.0 has a goal of acheiving
very fast simulations for the largest genomes. While
others were proposing to use grid computing to rapidly
simulate PCR amplification (Anonymous, 2003), we
implemented an efficient algorithm that supports PCR
simulations on a single computer, even with the largest
genomes (Lexa and Valle, 2003). Another important
improvement was the introduction of a PCR simulation
step. This allowed us to predict amplification yield
for a given product. Finally, we are in the process of
building hardware-accelerated string matching methods
for VPCR. The latest details of this undertaking are re-
ported in this paper. To name features that are desirable,
but not available at the moment, the program still lacks
the ability to handle nested and overlapping primers, or
to consider the effects of DNA secondary structures on
amplification rates.

In future, we envisage fully implementing procedures
to handle these more complicated situations, as well as
fully utilize the benefits of hardware acceleration, so
that a single PCR reaction can be predicted at current
or better quality in a fraction of a second on a single
properly equipped personal computer.

PCR SIMULATION WITH VPCR 2.0

Simulation of PCR reactions in VPCR 2.0 is done in
three main stages. The user is prompted for primer
sequences and asked to choose a genome to use as a
template in the simulation. In the first stage (sequence
matching), we identify positions in the genome that are
likely to be annealing sites for the given primers. In
the second stage these positions are evaluated as to the
melting temperature of the potential template-primer
dimers. In the third stage (simulation), the melting
temperature data is used to simulate individual PCR
cycles, considering the dynamic equillibria between free
and bound primers.

Approximate Sequence Matching Using PRIMEX

The search for candidate matches seems to be crucial
for the whole PCR simulation. It must be sensitive
enough to extract all the relevant candidate sequences.
At the same time it should be relatively fast, because
with large genomes it tends to be the time-limiting step
in the simulation. Using BLAST in our first algorithms
to predict PCR products (VPCR 1.0) (Lexa et al., 2001),
we realized several shortfalls of the program for these
purposes and searching for matches always used several
orders more computation time than the simulation of

the PCR reaction itself. Evaluating BLAST and other
available software that could possibly carry out the job
resulted in a decision to write a new program that would
be better suited for our purpose. We called the new
program PRIMEX (PRImer Match EXtractor)(Lexa and
Valle, 2003).

In PRIMEX, fast approximate searches in large se-
quences are acheived by a hierarchical approach to
searching, including a filtering step at the intermediate
level. The program splits the query sequence into non
overlapping words. For instance, if the word size is
10, then a 22-base query sequence will be split into
two non-overlapping words. The search for nearly per-
fect word matches (typically with no more than one
mismatch per word) of a pre-defined length can be
extremely fast if appropriate data structures are used.
We use a simple and straightforward array-based lookup
table. In addition, we constructed the program to run in
server mode to prevent loading the whole genome and
creating the lookup table repeatedly before every query.
For faster start-ups, the lookup table may be saved to
disk or loaded from disk into the memory as needed.
The mechanism of translating lookup table entries into
candidate matches and further into satisfactory query
matches represents the central algorithm lying at the
very heart of PRIMEX. After the first filtering step,
we obtain a set of candidate sequences, each of which
matches at least one word extracted from the query.
If the number of mismatches allowed per word is
ml, it can be shown that this approach will identify
all sequences that differ by less than n*(mi+1) nu-
cleotides from the query, where n is the number of
non-overlapping words extracted from the query.

This equation shows it is important to choose the right
word-size and search depth (ml) for each oligonu-
cleotide query to acheive a desired specificity. The
searches become much slower with every increase of
ml. We empirically determined word lengths of 8-10 as
good values for evaluating PCR primers with PRIMEX.
Using these values we obtained a good compromise be-
tween sensitivity and speed. In combination with m/=0
or mI=1 we can fully identify approximate oligonu-
cleotide matches with 3-6 mismatches. Higher sensitiv-
ity is probably not needed, since melting temperature of
oligonucleotides with too many mismatches would fall
outside the range of temperatures relevant to a typical
PCR reaction. Shorter word sizes than 8 could provide
better sensitivity for queries shorter than 20, but in our
experience they also make the program much slower,
because of a high number of candidates that have to be
evaluated further downstream. This may not be the case
for the hardware-accelerated matching reported below,
allowing for higher sensitivity and shorter primers when
using FPGA support.



Melting Temperature Estimates

The previous stage selects a set of candidate annealing
sites satisfying a maximal number of mismatches or a
minimal Needleman-Wunsch score. However, the pa-
rameter relevant for PCR simulation is the binding en-
ergy which can be expressed as the melting temperature,
not the number of mismatches or the score. The score-
based filtering is important though, because the energy
calculations are much slower and can only be done
in reasonable time on a limited subset of sequences.
We calculate melting temperature using the nearest-
neighbour method of (SantalLucia, 1998).

Fig. 1.  Comparison of VPCR 2.0 simulation results with PCR
data from (Lexa et al., 2001). The four reactions shown from let
to right are primer sets ARRS5, ARR7, ARRI2 and ARRI13 against
the Arabidopsis thaliana genome.

Dynamic Simulation of PCR Cycles

Once melting temperatures are known, we can simulate
the PCR reaction in time, estimating the binding of
primers to template, following the amplification yield
of each amplifiable primer pair through the complete
set of PCR cycles. The present simulation model is
relatively simple. It assumes 50% binding of primers
at melting temperature and a sigmoidal response to
temperature changes. Salt concentrations are fixed at
50mM for monovalent ions and 1.5mM for divalent
ions, future releases of the program will allow the user
to manipulate these values as well. The simulation also
tracks the concentration of free nucleotides and the
polymerase. If nucleotides are exhausted by too much
priming, calculations stop in that cycle; if amplification
is limited by the available polymerase, this is reported
in the output.

Example PCR simulation results compared to experi-
mental data can be seen on Fig 1.

NEEDLEMAN-WUNSCH HARDWARE ACCEL-
ERATION

The abovementioned approach to PCR simulation pro-
duces promising results, however further increase in

speed is desireable for batch analysis of multiple reac-
tions. Faster calculations may also allow shorter word-
lengths needed to evaluate short primers. At present,
most of the simulation computation time is spent
comparing queries with candidate sequences using the
Needleman-Wunsch algorithm inside PRIMEX. Conse-
quently, we chose this step as an appropriate point for
further acceleration.

The Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) represents a specific application of
dynamic programming (DP) to solving the approxi-
mate string-matching (AM) task and was first used in
molecular biology to align DNA sequences. Briefly, the
algorithm splits the task of AM into elementary steps,
which search for a locally-optimal extension of partially
aligned subsequences. The computations are typically
carried out in a DP matrix, which, upon being filled at
completion of all the elementary steps, defines the best
alignment(s) and their scores.

An example of comparing sequences "GTA" and
"GCT" using Needleman-Wunsch algorithm can be
seen in Figures 2a and 2b. The value of each item d
in the DP matrix is computed from the three nearest
neighbours a, b and ¢ using the following formula:

a ’Lf Ulz‘/j
o a+sub if U;#V;
d = min b+ ins

c+ del

Variables sub, ins and del represent substitution, in-
sertion and deletion penalties that can be adjusted for
different comparison requirements. For example, if the
presence of redundant characters is less acceptable than
difference in characters, the insertion penalty can be set
higher than the penalty for substitution.

Typical software implementation needs n? computa-
tion steps and thus the algorithm time complexity
is quadratic. However, several calculation steps of
Needleman-Wunsch algorithm can be processed inde-
pendently and in parallel fashion. In terms of the AM
matrix, this means that the anti-diagonal values can be
calculated concurrently, see Figure 2c.

This property is effectively used for algorithm accel-
eration using dedicated hardware (Hoang and Lopresti,
1992) (Lavenier, 1998) (Yu et al., 2003) (Court and
Herbordt, 2004). Typical hardware architecture is based
on a systolic array of Processing Elements (PE) (see
Figure 2c¢). Every PE in the array calculates one column
of AM matrix and sends the computed values to the next
PE each clock cycle. Anti-diagonal values are calculated
in parallel and thus the overall time complexity is
reduced from quadratic to linear.

SYSTEM ARCHITECTURE

The system architecture for acceleration of PRIMEX is
composed of two basic parts: (1) PRIMEX application
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Fig. 2. a) Evaluation of one table cell. The data from a, b and
¢ are used to compute content of the cell d. b) The entire table is
evaluated for two strings "GTA” and "GTC”. c) The data dependence
for parallel processing optimization. All cells highlighted by the wide
line can be computed at the same time.
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Fig. 3. System Architecture

software and (2) an FPGA-based hardware accelerator
connected to the PCI system bus. For effective use of
the acceleration hardware, the software application is
split into two threads. The first thread follows the basic
algorithm of PRIMEX to the point where it generates a
list of candidates for sequence similarity with the query.
It sends the list to the hardware. The second thread
waits for the results from the hardware and continues
the execution of PRIMEX to the end. The rest of the
PRIMEX algorithm has been described already and it
does not change in the accelerated version.

Communication between software and the hardware
accelerator is mediated by an operating system driver
(see 3). The driver processes the requests for string
comparisons, prepares the data for the hardware and
manages the execution of all necessary operations. The
strings to be compared are kept in RAM. For higher
efficiency, the data is gradually transferred from RAM
to the acceleration card via DMA operations controlled
directly by the FPGA. In the same manner, calculation
results are automatically moved to the host RAM mem-
ory. The driver only prepares a list of requests in the
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Fig. 4. FPGA Chip Architecture

form of memory pointers and forwards this list to the
accelerator.

Hardware Architecture

The block diagram of FPGA architecture is shown on
Figure 4. It is composed of a PCI bridge component
providing communication via the PCI interface; In-
put/output buffers for storage of incoming and outgoing
data; and multiple instances of systolic arrays, which
perform the string comparisons. The process of string
comparison operates as follows:

1) The input strings are downloaded using DMA oper-
ation from host RAM memory via PCI bus into the
FPGA internal input buffers.

2) The appropriate systolic arrays read the data from
input buffers and perform the score computations.

3) The resulting scores are forwarded into the output
buffer and then via DMA operation transferred back
from the FPGA chip into the host RAM memory.

4) After a number of transfers is finished, the FPGA
adaptor generates an interrupt to signalize the soft-
ware driver, that computed scores are available for
further processing. Alternatively, the software driver
can pool the operation status register placed in the
FPGA chip.

All DMA transfers between RAM and the FPGA chip
are controlled via the DMA controller, which is part of
the PCI bridge.

Individual systolic arrays always contain the correct
number of processing elements to be able to process
even the longest strings in the request. If we assume
that the software is able to sustain a continuous flow
of data to the systolic arrays, then the acceleration
rate of PRIMEX calculations depends mostly on the
number of systolic arrays placed on the FPGA chip.
The maximum number of systolic arrays is constrained
by two conditions: (1) limited computational resources



on the chip and (2) limited input/output bandwidth of
the chip, allowing only a certain number of systolic
arrays to be supplied by data without interruption.
The method, which is able to verify both of these
conditions and automatically map the systolic array
to programmable chips was subject of our previous
research (Martinek et al., 2006). From the results of
a practical implementation (see Table I) the number
of systolic arrays is limited by input/output throughput
of the system. By derivation, it is possible to obtain
common formula for the maximal number of systolic
arrays:

Bin Bour )
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ey
where L1 and L2 are lengths of input strings, C'hyiqtn
is width of input characters in bits, Syy;qe, is width of
score in bits, f is FPGA accelerator clock frequency
and Bry and Boyr are input and output throughputs
of the communication bus, respectively. Based on the
maximal number of systolic arrays Ng 4, it is possible
to realize the input task with @) queries in time:
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Alternatively, the performance of hardware accelerator
can be expressed in billions of updates per second
(BUps), where one update represents computation of
one item of the Needleman-Wunsch matrix:
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RESULTS

The described system was implemented on a Pentium
4 3.2GHz computer with 2MB cache, 2GB RAM
supplemented with acceleration card COMBO6X (see
Figure 5) developed in the scope of the Programmable
Hardware project and provided by the CESNET associ-
ation (Liberouter, 2004). This card was initially devel-
oped for the purposes of network application accelera-
tion, but with respect to the amount of computational
power and connectivity to the PCI bus, it can be also
utilized for purposes of bioinformatic algorithm accel-
eration. COMBOG6X card contains the powerful FPGA
gate array with Virtex II Pro (xc2vp50) technology,
static synchronous SSRAM memories with capacity
8MB, additional associative CAM memory and four
gigabit Ethernet interfaces. The card communicates with
the host system via the PCI 64/66MHz interface.

We used the formulas above to calculate the predicted
speed-up of the Needleman-Wunsch algorithm used
within the PRIMEX program (please, see section III.A
for detailed description) on our FPGA hardware. The

Fig. 5. COMBO6X Acceleration Card

TABLE I
EVALUATION OF PRIMEX USING COMBO6X AND COMBOGE
ACCELERATION CARD

[ Card Type | COMBO6X | COMBOGE |
Host interface PCI 64/66 PCI-XP x4
FPGA chip xcv2p50 xcv2p70
Bus throughput [Gbps] 4 10/10
Number of systolic arrays 8 22
FPGA resource utilization [%] 58.3 91.2
Number of queries 100k 100k
SW comput. time (software) 32s 32s
SW comput. time (hardware) 5.43 ms 1.88 ms
SW comput. speed up 589 1700
PRIMEX comput. time (software) 34s 34s
PRIMEX comput. time (hardware) 255 ms 240 ms)
PRIMEX comput. speed up 13 14

parameters needed for the estimation were set to max-
imal query length of 40 DNA bases evaluated against
100000 candidate sequences, allowing for 20Achieved
results are listed in Table I. With respect to limited in-
put/output throughput of PCI bus, FPGA chip contains
8 systolic arrays with 40 processing elements. The time
for comparison of all strings with Needleman-Wunsch
algorithm consumes 5.43 ms. In comparison with pure
software implementation, the speed-up is approximately
589. Overall PRIMEX computation implemented in
software using the same data takes an average of 3.4 s
(the exact time and speed-up depends on the query in
a nontrivial manner). Using the hardware accelerator, it
is possible to reduce the computation time to 0.25 s and
speed up the whole application 14 times. The PRIMEX
algorithm contains a sorting step which at present is
fully implemented in software and prevents us taking
full advantage of hardware acceleration. Future work
should optimize the two steps to achieve higher speed-
ups.

The bottleneck of the system is limited capacity of com-
munication bus. If the input/output throughput increases
the number of systolic arrays placed in FPGA chip will



increase as well as the accelerator performance. In the
second column of Table I are shown possible results
for COMBOGE card with PCI Express x4 interface.
Please note, that listed values are estimated because,
the card is currently in the development stage and thus
the PRIMEX method can not be verified directly.

CONCLUSIONS AND FUTURE WORK

We have described a system for simulating complex
PCR reactions with genomic templates on a single com-
puter that can achieve interactive speeds and realistic
predictions. Much of the computation speed is due to
the use of a unique filtration method provided by the
PRIMEX software combined with the possibility to ac-
celerate the bottleneck operation of sequence alignment
using FPGA chips. Future work will concentrate on im-
proving the prediction power of the method by includ-
ing DNA secondary structure evaluation and possibility
for correct treatment of overlapping PCR products. The
possibility of hardware acceleration could be extended
to other time-demanding parts of the simulation, such
as the PCR cycle simualtion itself.
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