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ABSTRACT 

A two-dimensional-in-space mathematical model of 
amperometric biosensors with selective and perforated  
membranes has been proposed and analyzed. The model 
involves the geometry of holes partially or fully filled 
with an enzyme. The model is based on a system of the 
reaction-diffusion equations containing a nonlinear term 
related to the Michaelis-Menten enzymatic reaction. 
Using numerical simulation of the biosensor action, the 
influence of the geometry of the holes as well as of the 
filling level of the enzyme in the holes on the biosensor 
response was investigated. The numerical simulation  
was carried out using the finite difference technique. 
The calculation demonstrated that the effect of the 
filling level on the biosensor response decreases with 
decrease of radius of the holes. 
 
INTRODUCTION 

Biosensors are sensing devices made up of a 
combination of a specific biological element, usually the 
enzyme, that recognizes a specific analyte and the 
transducer that translates the biorecognition event into 
an electrical signal (Turner et al. 1987; Scheller and 
Schubert 1992). The signal is proportional to the 
concentration of the target analyte-substrate. The 
amperometric biosensors measure the faradic current 
that arises on a working indicator electrode by direct 
electrochemical oxidation or reduction of the product of 
the biochemical reaction. The amperometric biosensors 
are known to be reliable, cheap and highly sensitive for 
environment, clinical and industrial purposes (Rogers 
1995; Wollenberger et al. 1997). 
A practical biosensor contains a multilayer enzyme 
membrane (Scheller and Schubert 1992; Baeumner 
2004). The electrode acting as a transducer of the 
biosensor is covered by a selective membrane, following 
a layer of immobilized enzyme and an outer membrane. 
To improve the efficiency of biosensors design and to 
optimize the biosensors configuration a model of the 
real biosensor should be build (Ferreira et al. 2003). The 
modelling of biosensors with perforated membrane has 
been performed by Schulmeister and Pfeiffer (1993). 
Very recently, an improved model taking into 

consideration the geometry of the membrane perforation 
has been proposed (Baronas et al. 2006). In this model, 
the holes in the perforated membrane were assumed 
fully filled with an enzyme. 
The task of this investigation was to build a model 
approaching the real amperometric biosensor where the 
holes in perforated membrane are partially filled with 
the enzyme. By changing input parameters the output 
results were numerically analyzed with a special 
emphasis to the influence of the geometry of the 
perforated membrane and of the external diffusion 
region to the biosensor response. The numerical 
simulation was carried out using the finite difference 
technique (Britz 1988; Samarskii 2001). 
 
PRINCIPAL STRUCTURE 

We assume that the thickness of the perforated  
membrane as well as of the selective membrane of a 
biosensor is much less than its length and width. The 
selective membrane is assumed of a uniform thickness. 
The holes in the perforated membrane were modelled by 
right cylinders of uniform diameter and spacing, forming 
a hexagonal pattern. Figure 1 presents the biosensor 
schematically.  
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Figure 1: A Principal Structure of a Biosensor. 
 
Due to the uniform distribution of the holes, the entire 
biosensor may be divided into equal hexagonal prisms 
with regular hexagonal bases (Baronas et al. 2006). For 
simplicity, it is reasonable to consider a circle whose 
area equals to that of the hexagon and to regard one of 
the cylinders as a unit cell of the biosensor. Due to the 
symmetry of the unit cell, we may consider only a half 
of the transverse section of the unit cell.  
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Figure 2 shows the profile of the unit of the biosensor, 
represented schematically in Figure 1. In Figure 2, �1  
represents the selective membrane, �2 corresponds to 
the enzyme region, �3 stands for to the external 
diffusion layer, a2 is the radius of the base of the unit 
cell, a1 is the radius of the holes, b1 stands for the 
thickness of the selective membrane, b4 - b2 is the 
thickness the perforated membrane, b5 - b4 is the 
thickness of the diffusion layer. We assume that the 
holes are partially filled with the enzyme, b3 stands for 
the filling level. 

 
Figure 2: The Profile of the Unit Cell. 

 
MATHEMATICAL MODEL 

The mathematical model of a biosensor with the 
selective and  perforated membranes (Figures 1 and 2) 
may be formulated in a two�dimensional domain 
consisting mainly of three regions: the selective 
membrane �1, the enzyme region �2 and the region �3 
of the external diffusion. In selective membrane only the 
mass transport by diffusion of the reaction product takes 
place. In the enzyme region we consider the mass 
transport by diffusion and the enzyme-catalysed reaction 

S + E � ES � E + P      

In this scheme the substrate (S) combines reversibly with 
an enzyme (E) to form a complex (ES) (Scheller and 
Schubert 1992). The complex then dissociates into a 
product (P) and the enzyme is regenerated. In the region 
�3 the mass transport by diffusion of the substrate as 
well as of the product takes place. 
Assuming the quasi steady state approximation, the 
concentration of the intermediate complex (ES) do not 
change and may be neglected when simulating the 
biochemical behaviour of biosensors (Turner et al. 1987; 
Scheller and Schubert 1992). The dynamics of the 
biosensor, presented schematically in Figures 1 and 2, 
can be described by the reaction-diffusion system (t > 0) 
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where � is the Laplace operator, Pi = Pi(r, z, t) is 
concentration of the reaction product, Sj = Sj(r, z, t) is 
the substrate concentration, Vmax - the maximal 
enzymatic rate, KM - the Michaelis constant, i = 1, 2, 3, j 
= 2, 3 (Baronas et al. 2006).   
Let i�  be a closed region, corresponding to the open 

region �i, and � – the upper boundary of 3� , i = 1, 2, 
3. The initial (t = 0) conditions are as follows: 
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where S0 is the concentration of the substrate present in 
the bulk solution. 
The product is an electro-active substance. The 
electrode potential is chosen to keep zero concentration 
of the product at the electrode surface (t > 0), 

],0[,0),0,( 21 artrP �� .           

On the boundary � the concentrations of both species 
are maintained constant ((t > 0), 

],0[,0),,(,),,( 253053 artbrPStbrS ��� . 

Non-leakage conditions were employed for the 
boundaries of the symmetry of the unit cell and of the 
perforated membrane. On the boundary between two 
adjusting regions having different diffusivities we 
defined the matching conditions requiring the 
concentration continuity for both species. 
The governing equations (1)-(3) together with the  
initial, boundary and matching conditions form together 
a boundary value problem. 
The anodic current is accepted as a response of 
amperometric  biosensors in physical experiments. The 
current depends upon the flux of the reaction product at 
the electrode surface, i.e. at the border z = 0. 
Consequently, the density i(t) (A/m2) of the current at 
time t can be obtained explicitly from Faraday’s and 
Fick’s laws using the flux of the product concentration 
P1 at the surface of the electrode, 
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where ne is a number of electrons involved in a charge 
transfer at the electrode surface and F is Faraday 
constant. We assume, that the considering system 
approaches a steady-state as t � �,  
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where I is the steady-state current. 



 

 

NUMERICAL SIMULATION 

Definite problems arise when solving analytically 
nonlinear partial differential equations in a domain of 
the complex geometry. Because of this the problem was 
solved numerically using the finite difference technique 
(Britz 1988; Samarskii 2001). To find a numerical 
solution of the problem we introduced a quasi-uniform 
discrete grid. Using alternating direction method a semi-
implicit linear finite difference scheme has been built as 
a result of the difference approximation. The resulting 
system of linear algebraic equations was solved rather 
efficiently because of the tridiagonality of the matrix of 
the system. 
In the digital simulation, the main problem was an 
overload of calculation due to permissible conditions:  
a1 << a2 and b2 << b4 (see Figure 2). To have an 
accurate and stable result it was required to use very 
small step size in z direction at the boundaries z = 0 and 
z = b5. Because of the concavity of angles at points (a1, 
b2) and (a1, b4) it was necessary to use very small step 
size in both space directions: r and z at the boundaries r 
= a1, z = b2 and z = b4. Due to the matching conditions 
between adjacent regions with different diffusivities, we 
used also small step size at the boundaries z = b1 and z = 
b3. We assumed, that farther from all these peculiar 
boundaries, step size may increase in both space 
directions: r and z. Consequently, in the direction r, an 
exponentially increasing step size was used to both sides 
from a1: to a2 and down to 0. In the direction z, an 
exponentially increasing step size was used form 0 to 
b1/2, from b5 down to (b4 + b5)/2, from bj down to (bj+ 
bj-1)/2 and from bj to (bj+ bj+1)/2, j = 1,2,3,4, where b0 = 
0. 
Usually, alternating direction method does not restrict 
time increment. However, the step size in the direction 
of time is restricted due to the nonlinear reaction term in 
equations (2), boundary conditions and the geometry of 
the domain. In order to achieve accurate and stable 
solution of the problem, at the beginning of the reaction-
diffusion process we employed the restriction condition, 
which is usually used for fully explicit schemes. Since 
the biosensor action obeys the steady-state assumption 
when t � �, it was reasonable to apply an increasing 
step size in the time direction. The final step size was in 
a few orders of magnitude higher than the fist one. 
The digital simulator has been programmed in JAVA 
language (Moreira et al. 2000). 
 
RESULTS AND DISCUSSION 

In practice, the upper boundary of the enzyme in the 
holes varies between the bottom and the top of the 
perforated membrane, i.e. b3 varies from b2 to b4.  
The steady state biosensor current is very sensitive to 
changes of the maximal enzymatic rate Vmax and 
substrate concentration S0 (Baronas et al. 2003; Baronas 
et al. 2004; Scheller and Schubert 1992). Changing 
values of these two parameters the steady state current 
varies even in orders of magnitude. Because of this, we 

calculate the biosensor response at different values of 
Vmax and S0. To evaluate the effect of holes filling with 
the enzyme on the biosensor response we normalize the 
steady-state current, 
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where I(
) is the steady-state biosensor current 
calculated at given level 
 of the enzyme filling. The 
filling level 
 can also be called as the relative volume of 
the enzyme in the holes. Figure 3 shows the results of 
calculation. 
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Figure 3: The normalized steady-state current IN versus 
the filling level 
 of the enzyme in holes at different 
values of the radius a1 of holes, a1 = 1.0 (1), 0.8 (2), 0.6 
(3), 0.4 (4), 0.2 (5) �m, S0 = 100 (a, b), 1 (c) �M, Vmax = 
100 (a, c), 1 (b) �M/s, a2 = 1, b1 = 2, b2 = 4, b4 = 14, b5 
= 16 �m, KM = 100 �M, D1 = 1, D2 = 300, D3 = 600 
�m2/s. 



 

 

One can see in Figure 3, the steady state biosensor is a 
monotonous increasing function of the level 
 of the 
enzyme filling. The behaviour of the biosensor response 
significantly depends on the radius a1 of the holes, the 
maximal enzymatic rate Vmax and substrate concentration 
S0. In  the cases of relatively small radius a1 of the holes  
of the perforated membrane (a1 � 0.2 a2) and high the 
maximal enzymatic rate (Vmax = 100 �M/s) the steady 
state biosensor current practically does not depend on 
the level 
 of holes filling with enzyme (Figures 3a and 
3c). Since in practice, it is difficult to ensure fully 
enzyme-filled holes, this feature of the biosensors can be 
applied in design of novel biosensors having response 
stable to changes in the level of holes filling. 
In the case of relatively large radius a1 of holes (a1 � 0.4 
a2) the biosensor response is very sensitive to changes of 
the holes filling. The response sensitivity to changes of 
 
also increases with decrease of the enzymatic activity 
Vmax (Figure 3b). The effect of the substrate 
concentration is rather low for a wide rages of maximal 
enzymatic rate Vmax.  
 
CONCLUSIONS 

The mathematical model of an operation of the 
amperometric biosensors with selective and perforated 
membranes can be used to investigate peculiarities of 
the biosensor response. The model can be applied for 
modelling the response of the biosensors when the holes 
in the perforated membrane are partially filled with an 
enzyme.  
The steady state biosensor current is a monotonous 
increasing function of the filling level 
 of the enzyme in 
holes (Figure 3).  
In the case of relatively small radius of holes and high 
enzymatic activity the biosensor response practically 
does not depend upon the level of filling the holes with 
the enzyme. Otherwise, the filling level should be taken 
into consideration when modelling the biosensor action 
accurately (Figure 3). 
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