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ABSTRACT 

Mechanical alloying (MA) is used to produce new 

materials which cannot be obtained by other production 

processes. Simplified two powders A und B are 

mechanically joined to a new powder C which has new 

material properties. A particle based mathematical 

model for MA is developed for improving the 

mechanistic understanding of MA in a high energy ball 

mill. The model focuses on treatments from special 

milling devices and an investigation of breakage and 

fusion for ceramic materials. It was implemented by 

using parallel Monte Carlo methods for a large number 

of individual particles. To compare the simulation 

results with experimental data the system SiC and Al2O3 

was investigated. 

The aim of this paper is to improve the mechanistic 

understanding of MA in a high energy ball mill. 

Particularly the phenomena observed by milling of 

ceramic powders are investigated. 

 

SIMULATION CONCEPTS  

Multi-Scale Approach 

The number of particles in a ball mill typically is in a 

dimension of 10
12

 and the number of milling balls is in 

the order of 10
3
. Clearly, to rigorously simulate the 

whole milling process, i.e. the powder particles together 

with the milling balls is impossible, because even to 

simulate hundreds of moving balls can take a very long 

time [16]. Therefore, a multi-scale approach is chosen in 

this work. In this approach the ball movements are 

simulated separately from the alloying behavior of the 

particles. 

A high performance multi-body simulator of the ball 

mill which deals with the milling balls has been 

described in [3,19] (Figure 1). In this simulator the 

influence of the powder on the ball collisions is 

included by a phenomenological ball collision law. 

Based on this law the simulator can be used to compute 

the ball collision energy distribution in the milling 

process with a realistic number of balls. This 

distribution in turn is the input for the powder model 

described below. 

 
Figure 1: High energy ball mill simulation made by a 

high performance multi-body simulator [19] 

Distribution Versus Particle Based Simulation  

Particles characterized by the volume or mass 

distribution U(x) where x is the particle size are used in 

distribution based simulation [7,18]. The continuous 

time evolution of the distribution during the simulated 

MA is described by breakage and fusion functions. This 

leads to an integro-differential equation for U(x) which 

must be solved numerically. To increase the number of 

different powder materials or to include further particle 

attributes like geometry or granularity parameters, this 

function has to be of a higher dimension, U(x,y,z,..). 

Such a high dimensional function is impossible to 

handle directly in a numerical simulation.  

To avoid these drawbacks, a new particle based method 

is proposed in this paper. This method simulates a 

representative population of single particles in a high 

energy ball mill and analyses it with statistical methods. 

Each particle is basically characterized by its particle 

size and chemical composition. However, these 

attributes can be easily increased in number so that 

nearly every number and type of attributes can be 

handled.  

A Monte Carlo method is chosen to represent the 

breakage and fusion events stochastically. Herein the 

fracturing and fusion probabilities which are specified 

in the distribution based simulation are interpreted as 

fracturing and fusion probabilities of single particles. 
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Basic Algorithm 

The simulation algorithm starts with the creation of 

particles which will be fractured and fused during the 

simulated MA process. Initially, these particles are 

stored in a list along with the associated attributes 

(Figure 2). All parts of the algorithm then take place in 

an iterative loop, until a termination condition is 

reached. For example, the simulation can end if a given 

stopping time is reached or the resulting distributions 

reach a stationary state. 

Each step in the loop can be interpreted as a time period. 

The length of this period depends on the number of 

simulated particles, because more particles in a mill 

imply that more particles will be involved in the milling 

process per unit of time. 

 

 
 

Figure 2: Particle list: fragments of a particle will be 

added to the particle list, whereas fusion particles will 

be removed from the list and their mass totalized to a 

single particle. 

For breakage, one of the particles has to be chosen 

randomly. Depending on the particle parameters, a 

breakage probability will be calculated. This function is 

called the selection function. A random number is 

generated to decide if the chosen particle really breaks. 

If so, the breakage function – again by using random 

numbers – determines which fragments will be 

produced. Those fragments are new particles which 

have to be included in the simulation like other 

particles. 

 
 

Figure 3: Distribution of simulated particles classified 

by material composition. White: all particles; Light 

grey: Particles close to the composition of raw Material 

A; Dark grey: Particles close to the composition of raw 

Material B; Black: Particles close to desired alloy 

composition. 

For fusion, several particles have to be chosen. Now, the 

decision for or against fusion will be made by a welding 

function which will be compared with a random 

number. The chosen particles will be removed from the 

list and their volumes and compositions will be 

attributed to a single particle. 

To update the powder statistics, each particle will be 

added to a histogram, which sorts the particles by size 

and their material components. In this diagram the 

particles can also be classified as particles of (almost) 

the composition of the raw materials or particles which 

are close to the desired alloy composition. A result is 

shown in Figure 3 

 

MODELLING CONCEPTS 

Phenomenological versus Physical Modeling 

Phenomenological functions which are difficult to 

interpret are often defined to model the breakage and 

fusion processes in a high energy ball mill [10]. One 

reason for this black box approach is that it is 

surprisingly difficult to establish correlations between 

milling treatments in different devices [12]. The 

mathematical model developed in the following can use 

more physical information represented by the ball 

collision energy distribution taken from the simulated 

mill. This distribution is transformed to a particle stress 

distribution for the powder particles between the 

colliding balls. Only the relation between powder 

particle stress and breakage probability is modeled in a 

phenomenological way. Nevertheless – like in other 

established models – some common assumptions and 

abstractions are still required: 

 each contact will be handled like a ball-powder-ball 

contact, i.e. ball-wall contacts are not distinguished; 

 all particles which are involved in the alloying 

process are on the surface of the balls or the mill; 

 all particles are spherical, i.e. their size already 

determines their shape; 

 the material concentration in a particle is 

homogeneous, i.e. the detailed morphology of single 

particles is not considered; 

 the pressure in the powder between the ball surfaces 

is in the order of magnitude of the pressure on the 

surface. 

 

Stress Probability Distribution 

The stress probability distribution for colliding balls 

characterizes the treatment of the particles in a mill. The 

development of the stress probability for a specific mill 

is based on the relative ball to ball impact velocity [3] 

(Figure 4) for specific milling conditions and the 

classical Hertz theory of impact. It will be determined 

which pressures in a particle will be reached during the 

grinding process.  

 



 

 

 
 

Figure 4: Stress between the grinding balls determined 

by the Hertz Pressure equations [19] 

 

The first step is to approximate the average force, F, 

between the contact bodies from the relative impact 

velocity v, [3] with 
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where mb is the mass of the balls and  the contact time. 

This time period  can be calculated with [19] 
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where Reff and Eeff for a centric impact are defined as 
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Rb is the radius of the balls in the mill, E is Young's 

modulus and v is Poisson's number. In the next step, the 

contact radius (see Figure 4), rh, and the maximum 

pressure, Pmax, between the surfaces can be calculated 

by 
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Described by Hertz’s theory, only the centre of the 

contact area has the maximum pressure, which drops to 

zero at the border of the contact area. The pressure 

progression for a circular contact area can be given by 
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where r is the distance from the pressure centre (Figure 

4) 

A linear increase of the contact radius increases the area 

quadratically. Hence, particles are less often in the 

impact centre than in the border area where the pressure 

is lower. Thus even a high energy impact imposes only 

a small pressure on the peripherical particles in the 

contact area. This behavior again, is modeled 

stochastically. The resulting stress probability 

distribution R is shown in Figure 5 

 

 
 

Figure 5: The stress probability distribution R calculated 

by the Hertz Pressure equations [19] and the simulated 

relative impact velocity used in this investigation [3]. 

 

Selection Function 

The selection function, S(d) , determines the amount of 

particles which break in a period of time. This function 

has been introduced to describe the efficiency of 

grinding mills [10]. In this paragraph, the selection 

function will be built by the combination of the stress 

probability distribution and the Griffith-equation [11] 

a

K
Y Ic

c


   (7) 

Which determines a breakage stress, c, for a particle by 

using mainly the length of the worst crack, a. Also a 

geometrical factor, Y,  and a material constant , KIC, is 

required. It will be assumed that the length of the worst 

crack in a particle is proportional to the size of the 

particle. This leads to the Hall-Petch relationship [2; 7] 
1
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Figure 6: Selection function depending on particle size: 

Particles smaller than 107 m will not break, whereas 

particles bigger than 105 will be nearly always broken. 

In this relationship, km and k0 are material and size 

constants. The yield strength y is directly connected to 

the particle diameter d. With the stress probability 

distribution R (see Figure 5), it is now possible to 



 

 

calculate the probability that a special particle will 

break, because if the stress is higher than the yield 

strength y then it will break. This can be described by 

y (d)
S(d) R( )d




    (9) 

The result for each relevant particle size is shown in 

Figure 6. As expected, small particles do not break, but 

almost all big particles will break. 

 

Breakage Function 

The breakage function is the rate at which particles are 

selected by the selection function of the ground 

component become particles of another size. This 

section will be based on observations, because the 

theoretical understanding of breakage behaviors is still 

under examination [20].  

Some investigations were done about breaking of glass 

balls [21] in a size range from 38 μm to 1000 μm. One 

result of this investigation was that independent of the 

particle size the volume distribution can be linearly 

approximated in a wide range. With this in mind the 

following breakage function B was build: 
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for x > dmin and ke > 2, where dmin is the minimal particle 

size, ke a constant and x the considered particle size. 

However, it should be kept in mind that other types of 

experimentally determined functions can be substituted 

for B. 

 

Fusion Function 

Like for breakage, the process of fusion, especially the 

fusion of ceramic particles, is not yet well understood. 

However, the physically motivated particle stress 

distribution can again be separated from a 

phenomenological model for the relation between stress 

and fusion probability. Depending on the stress 

probability distribution R, a critical stress w can be 

defined, which has to be reached until particles 

agglutinate together. The fusion will be represented with 

the threshold constant W given by 
W
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     (11) 

The fusion constant W is comparable with the critical 

stress value w. A value of zero for the fusion constant 

W correlates to infinite critical stress and alloying will 

not occur.  

In the contact area thousands of particles are pressed 

together. Therefore in this simulation, nW particles will 

build a new one. This simple model also includes that 

smaller particles fuse together more often than big 

particles, because they are more numerous. 

 

RESULTS 

Simulation parameters 

By using the Monte Carlo simulation, the accuracy of 

the results often depends on the number of simulated 

objects i.e. the number of simulated particles. To 

estimate the repeat accuracy, about 10
4
 particles are 

simulated twice with identical start conditions. The 

results didn’t show significant differences. Therefore, it 

seemed as if this particle number is high enough. In the 

simulation, good results could be reached with 10
6
 to 

10
7
 particles.  

The simulation was carried out on 12 computers in 

parallel to minimize the simulation time. Therefore, the 

simulation time was only in the range of 5 to 10 minutes 

for 60 minutes of simulated milling of 10
7
 particles. 

 

Model Verification 

The first simulations are used to verify the model and 

their implementation. Figure 7 shows simulation results 

for a fictive starting particle population which should 

clarify the milling behaviors of breaking and fusing. For 

a more thorough verification of the simulation all 

parameters have been varied. For the sake of brevity this 

will be limited here to two parameters of interest. The 

critical stress constant W for fusion and the number of 

particles nW which will be alloyed together are 

considered. For those parameters, the value of the 

parameter, the average particle size and the associated 

standard deviation is compared. The average particle 

size in the steady state and the associated standard 

deviation are presented in the same plot, like in Figure 

7, where the centre line represents the average particle 

size and the distance to the external lines indicates the 

standard derivation. 

 
 

Figure 7: Illustrative example simulation with fictive 

starting distribution to visualise the simulation 

behaviour: a) Starting distribution of two different 

materials with different average particle sizes; b) 

reducing of the average particle size of each material by 

fusion and breakage; c) In this simulation after milling 

of 50 simulated minutes resulted in only a low value of 

desired particles. Another starting material weight ratio 

has to be chosen 

 

The critical stress constant W is varied between 0 and 1. 

The results are plotted against the number of resulting 

particles in the stationary state (Figure 7a) and against 

the size of these particles (Figure 8b). Clearly, the 

number of particles decreases because larger aggregates 

are formed for high fusion rates. Simultaneously, the 

mean particle size increases almost linearly while the 

distribution becomes broader. 

 



 

 

 
Figure 8: Effect on the steady state of increasing of the 

critical stress constant, W: a) Number of particles 

remaining in steady state; b) Corresponding mean 

particle size and standard derivation. 

 

Likewise, the number of particles nW which will be 

alloyed together is varied between 2 and 20. The steady 

state results are plotted against the number of particles 

(Figure 9a) and against the particle size (Figure 9b). It 

turns out that nW has a qualitatively similar effect as W. 

For a critical stress constant W of 0, fusions of particles 

do not occur. Because the particles would only break the 

average particle size is only limited by the minimal 

particle size dmin. The other extreme is the permanent 

fusion of many particles. This results in an interruption 

of the simulation, because all particles are joined 

together to one particle. 

 

 
 

Figure 9: Results by increasing of the number of 

particles nW which will be alloyed together: a) 

Decreasing of the number of particles to zero; b) A 

linear increasing of the mean particle size and the 

standard derivation until abort because of too little 

particles. 

 

Simulation Results Compared to Measured Data 

To verify the simulation results, they are compared to 

the measured data in Figure 10 [9]. The measured 

particle size distributions in a high energy ball mill are 

recorded for a grinding time of 0, 15, 30 and 60 

minutes. After an initial increase of the average particle 

size, a steady state was reached. After 30 minutes, the 

milled powders had reached the required distribution 

and consistence and after 60 minutes no differences to 

that state were detectable. 

For the simulation, the model parameters are chosen to 

minimize the differences between simulation and 

recorded data. The best fit to the data is achieved for a 

critical stress threshold W  = 1 and a number of alloyed 

particles nW = 2. 

 

 
 

Figure 10: Comparison of measured data with the 

simulation results 

 

DISCUSSION 

Particle based simulation 

The particle based simulation approach proved to be 

well suited for the MA process. The major advantage 

over distribution based methods is the flexibility to 

describe each particle by a high dimensional set of 

attributes. In this contribution only the size and 

composition have been used but other parameters like 

shape parameters (e.g. assuming ellipsoid shapes of the 

particles) or parameters describing the average size of 

crystallites in the particle are possible. By this means a 

description of particles up to a certain detail can be 

achieved.  

Another new idea in the simulation of MA is the multi-

scale approach which separates the mechanical multi 

body system of the milling balls from the powder 

process. Both processes are loosely coupled via the 

collision energy distribution (downwards) and the ball-

to-ball collision energy dissipation (upwards). Coupling 

both approaches the complete process can be modeled. 

In this investigation only the downward coupling was 

implemented by assuming the energy dissipation law. 

However, from experiences with a variation of the 

dissipation law it is known that the ‘upward’ influence 

will not be dramatic. 

The simulation effort for the particle approach turned 

out to be surprisingly low so that even on a single 

processor simulation runs can be performed with 

reasonable computing time. Moreover, the performance 

can be significantly increased by parallelization on a 

compute cluster. One problem of the particle approach 

is that at the tails of the particle distribution only a few 

particles a found as representatives. Consequently, the 

statistics for these very large and very small particles 

has a large uncertainty. However, as long as the focus of 

interest lies on the bulk of the particles (as in this 

investigation) this well known effect has little influence. 

 

Modeling assumptions 

In this work the share of first principles in the modeling 

of the MA process could be significantly increased due 

to the multi-scale approach. However, the assumed laws 

that govern the breakage and fusion events are still of a 

phenomenological nature. The benefit of the physically 

motivated multi-scale approach is that the influence of 

phenomenological assumptions on the model prediction 



 

 

could be reduced because the ball collision energy 

distribution already determines the breakage and fusion 

distributions to a certain extent.  

Clearly, different mathematical types of 

phenomenological breakage and fusion laws are still 

possible. However, some trial experiments showed that 

the precise shape of the phenomenological functions 

had only minor influence on the qualitative results as 

long as the principal characteristics (like monotonicity) 

is similar. The obtained fusion probability of W = 1 

must also be interpreted in this direction. Clearly, it 

cannot really be the case that two particles selected for 

fusion will always do it. However, even a ten times 

lower probability would support the hypothesis of low 

fusion energy. Moreover, the value of W cannot be 

precisely estimated by a stochastic particle method and 

a change in the phenomenological laws might also 

lower this value. 
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