
FEDERATING A PARALLEL TRAFFIC SIMULATION

USING HLA

Narain Ramluchumun

Nasser Kalantery

Stephen Winter

School of Informatics

University of Westminster,

115 New Cavendish Street,

London, United Kingdom, W1W 6UW

Email: {n.ramluchumun, kalantn, wintersc }@wmin.ac.uk

KEYWORDS

performance, parallel traffic simulators,
federates, HLA, RTI.

ABSTRACT

An outline of parallel road traffic simulation
based on the High Level Architecture (HLA) is
presented. The methodology used to achieve
parallelisation includes domain decomposition
where the road network model is partitioned
into sub-models and these sub-models are
simulated on different cluster nodes. The
domain decomposition concept is used for the
parallelisation strategy where the road network
is partitioned into parts and these parts are
simulated on different computers. All
federates simulating the different parts of the
network communicate through the Runtime
Infrastructure (RTI). The RTI services are
used to realise simulation time advance and
event synchronisation, and to the transfer of
data across the network partitions. This paper
discusses the implementation issues and also
reports elements of the performance analysis.

INTRODUCTION

This paper focuses on the implementation
issues and performance analysis of parallel
traffic simulation in HLA environment. The
primary aim of this aspect of the research work
was to develop an efficient implementation of
parallel traffic simulation using a cluster
computing technology. Until now most of the
HLA applications have been generated in a
sequential manner (Ramluchumun 2002;
Schulze et al. 1999; Horst et al. 1998; Schulze

et al. 2000) and very few have been
parallelised in the HLA environment (Bodoh
and Wieland 2003; Riley et al. 2004; Wu et al.
2001). The main objective of this analysis was
to investigate the suitability and efficiency of
HLA in cluster environment for parallel traffic
simulation.

HLA offers several management services
(Defence Modelling and Simulation Office
1998; Kuhl et al. 1999) but only a few of these
services have been used in this current study to
demonstrate parallel traffic simulation and to
analyse its performance. The federation
management services were used to initialise
the execution of the traffic federation. The
execution of such federation included reading
the federation object description file,
contacting other federates in the simulation
and creating the basic two-way
communications path between all the federates
running on the different cluster nodes.

Declaration management services were used to
define object and interaction classes and to set
up communication between the federates using
publish and subscribe paradigm. The federates
were also allowed, using object management
services, to declare object instances, update
attributes, send interactions, receive updates to
attributes, and receive interactions produced by
other federates.

Finally, the time management services were
used to control the advancement of the traffic
simulation time within each federate and to
prevent the federate from receiving messages
in the past i.e. time stamp less than the
federate’s current simulation time.

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

PERFORMANCE ISSUES

The performance of the parallel traffic
execution is determined by a complex
interplay of several factors (Fujimoto 1998;
Gourgoulis et al. 2004; Igbe et al. 2003). In
this project, two factors are described which
have considerable impact on performance.
The first one is the Lookahead which is a
concept used to improve performance in
parallel and distributed simulations. A
lookahead T for a federate means it will only
generate messages at least T units of
simulation time into the future (Fujimoto
1998). A larger lookahead allows more
parallelism but can affect the overall
performance of the simulation execution. In
the traffic simulation application the lookahead
value is chosen to be the size of one time step.

Another important issue is when federates
need to be aware of shared information i.e.
beyond their own sub-model. For instance,
during the federation execution, when cars are
at a junction some federates need to determine
the next destination of the cars. The federates
should therefore be aware of the entire
topology of the road network and
subsequently, the next destination is computed
based on some pre-defined algorithm. In the
traffic simulation application, the next
destination is computed using a random
function. Also, when cars have to cross
partition boundaries they are moved to
transient buffers commonly known as Lane
Cut Points (LCPs) (Igbe et al. 2003).
Eventually, at the end of the simulation step
they are moved to the appropriate destination
lane. The number of LCPs in a road network
does affect the overall performance of the
parallel simulation.

Execution time

The execution time in this context, is the wall
clock time taken for the parallel traffic
simulation to run to completion. During this
time, different federates are initialised on
different cluster nodes. The partitioned road
network is mapped to the respective federates
which is simulated for a number of timesteps
before the simulation results from the different
nodes are collected and merged. The
execution is measured for a reasonable number
of timesteps to minimise errors with regards to
communication delays. It is computed by
recording the start and end time before
executing the main simulation loop using
functions from the time library.

Speedup

The speedup provides an indication of the
effective number of processors utilised for
executing a program (Buyya 1999). In this
study, speedup was used to estimate the
parallel traffic simulation performance with
respect to the sequential version with
increasing number of processors.

The speedup is defined here as the execution
time taken by the sequential simulation divided
by the execution time of the parallel
simulation, which is executed on N processors.
The value of N is varied in a set of experiment
to determine the efficiency of the
parallelisation approach and the system used.

Efficiency

In this parallel traffic application, efficiency is
used as a measure of the effectiveness of the
hardware and software being used (Buyya
1999).

 Speedup

Efficiency =
 Number of processors

 sequential execution time
Speedup =
 execution time with N processors

As shown above, the efficiency is defined as
the speedup gained divided by the number of
processors used in the parallel traffic
simulation execution. A set of experiments
with varying number of processors has been
designed to determine the efficiency of the
traffic system following the above-described
approach.

THE PARALLEL TRAFFIC
SIMULATION

A number of experiments were set up to
evaluate the performance of the parallel traffic
simulator prototype. The parallel simulation
ran on a system of 32 Dell PowerEdge 1400SC
computers which runs Linux RedHat 7.2
operating system (Gourgoulis et al. 2004).
Each computer had a Pentium III 1Ghz CPU

and 512MB of memory. The master node, on
the other hand, was a Dell 1500SC with two
1133 MHz processors and 2GB of RAM. The
32 computers were connected to a Cisco
switch at 100Mbps using Ethernet technology
whereas the master node was connected at
1000Mbps to the Cisco switch.

At initialisation stage, each partition of the
road network was mapped onto a Dell system
and thus the entire road network was simulated
as a single system. In a first set of experiment,
a road network with four partitions was
simulated. At this stage, only 4 nodes of the
cluster were used as one partition was mapped
to each node.

The same experiment was repeated for
different number of nodes in order to
determine the speedup as the number of nodes
increases. These observations were used to
compute the efficiency of the parallelisation
approach used to execute the traffic simulation
on a cluster of workstations. The figures
should also give an indication of the suitability
of the hardware used for this purpose.

A second set of experiments were designed to
determine the effect of increasing the load on
the execution time. The load on each
processor was varied by varying the number of
vehicles in the simulation execution. The

execution time was measured for every set of
experiments to determine any speedup in
increasing the number of vehicles. The aim of
this experiment was to investigate the
suitability of HLA and cluster technology to
simulate large urban areas where there were
thousands of cars.

Further experiments had been carried out to
determine the cause of poor performance of the
parallel simulator executing in HLA
environment. Two different HLA time
management mechanisms (Fujimoto 1998;
Kuhl et al. 1999), more specifically Time
Advance Request (TAR) and Next Event
Request (NER), were further investigated.

ANALYSIS OF EXPERIMENTAL
RESULTS

Several sets of experiments were carried out on
up to 16 nodes of the cluster and the results are
discussed in the following sections.

Execution time against Number of Cars
(Load)

This experiment was designed to measure the
performance of the parallel simulator in terms
of execution time.

Figure 1: 15 x 16 road network with 16 partitions

The load (number of cars) on the network
depicted in Figure 1 was varied and the run
time on different number of cluster nodes were
measured. The execution time against the load
is illustrated in Figure 2 and the derived
speedup is shown in Figure 3.

Figure 2: Execution time against Number of
Cars using TAR in HLA

Figure 2 shows similar behaviour for the
different number of nodes execution i.e. the
execution time increased linearly as the
number of cars was increased. Also, as
expected, the execution time decreased as the
number of nodes was increased. However,
there was not much decline in the execution
time for 8 and 16 nodes run. As the number of
nodes was increased beyond 4, there seemed to
be communication overhead resulting in
smaller speedup.

Figure 3: Speedup against Number of Cars
in HLA

The speedup was also affected by the number
of transient messages in the buffers, i.e., the
cars moving across the boundary. This
number increased as the number of cars were

increased, i.e., more cars moved across the
boundaries. The number of transient buffers
increased as the number of network partitions
was increased. As shown in Figure 3, different
number of nodes execution reached the steady
state at different point. This may be caused by
the number of cars in the transient buffers
which decreased with increasing number of
nodes, therefore resulting in wider transitional
states.

HLA: Execution time against Number of
Cars

0

5

10

15

20

25

30

35

40

45

0 50000 100000 150000 200000

Number of Cars

Ex
ec

ut
io

n
tim

e
(s

)

 16 Nodes

8 Nodes

4 Nodes

2 Nodes

1 Node

HLA: Speedup vs Number of Cars

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50000 100000

Number of Cars

Sp
ee

du
p

16 Nodes

8 Nodes

4 Nodes

2 Nodes

It is to be noted that in order to plot the
Speedup against Number of Cars graph only
values up to 90000 cars had be used. This
allowed a better analysis of the part of the
graph where the speedup was and also, after
90000 cars the speedup seemed to remain
constant.

Efficiency of the Parallel Simulation

The following experimental data was derived
to investigate the efficiency of increasing the
number of cluster nodes to reduce execution
time. Based on the experiments carried out in
the previous section, only three set of data
were used to plot a graph of Efficiency against
Number of Nodes. Six thousand seven
hundred and twenty, 67200 and 134400 cars
were investigated to determine how the
simulation performs with small and large
number of cars.

HLA : Efficiency against Number of
Nodes

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Number of Nodes

Ef
fic

ie
nc

y Efficiency 67200

Efficiency 134400

Efficiency 6720

Figure 4: Efficiency against Number of
Nodes

As shown in Figure 4, there is a considerable
decline in the efficiency as the number of
federates was increased up to 16. For instance,
the observed efficiency was approximately
99% for 2 federates execution, 80% for 4
federates execution, 53% for 8 federates

execution and then decreased further as the
number of cluster nodes were increased.

Also, better results were observed for a larger
load, i.e., road networks with greater number
of cars. This decline in performance may be
due to communication overhead. It was found
that as the number of cluster nodes increased,
the computation time decreased and at the
same time, the communication and
synchronisation overhead increased. Further
experiments that were carried out to
investigate the communication overhead are
described in the following sections.

Idle time against Number of Nodes

This experiment was carried out to determine
the federates’ idle times with increasing
number of nodes. During the simulation time,
regulating federates alternated state between
the granted state and the advancing state.

The granted state is the state during which the
simulation is performing computations at some
logical times.

The advancing state is when the federate has
issued a time advance request to the RTI and is
waiting for a grant.

When the federate is granted permission to
advance its logical time, it resumes the granted
state. During the time it is waiting for the
grant, the federate may receive and process
any time-stepped interactions delivered by the
RTI from other federates.

Figure 5 depicts the advancing state for
different number of federate execution with
varying load.

Figure 5: Federate idle time against
Number of Nodes

The idle time is a measure of the time a
federate has to wait until it is granted
permission to move to the next time step. As
the number of federates and load increased,
federates were spending more time in
advancing state, i.e., waiting for permission to
be granted to advance their logical time to the
next step than, in the granted state where they
performed the real simulation computation.

One reason for increasing advancing state may
be because of the simulation was load
imbalanced which, therefore, meant that
federates finishing their simulation earlier
would have to wait until all federates were
done. This situation arose as the vehicles were
moving from one region to another and after a
period of time, some regions might have had
more vehicles compared to others. If, for a
major part of the simulation time, the
maximum workload was significantly greater
than the average workload then, the simulation
was considered to be load imbalanced. Further
experiments will be carried out in the near
future to test this hypothesis.

CONCLUSION AND FUTURE WORK

This paper focuses on the feasibility of parallel
traffic simulation in cluster environment. The
implementation issues have been discussed
and a performance analysis of the results
presented. The performance graphs show that
reasonable speedup has been achieved but, as
the number of cluster nodes was increased, the
gain in speedup decreased. A breaking point
seems to be reached after eight nodes
execution since the communication overhead
increased considerably thereafter. Further
experiments need to be carried out to
investigate the barrier synchronisation and
global check methods adapted in
communication algorithm for the parallel
simulators.

Idle (Advancing) time against Number of
Nodes

0
2
4
6
8

0 10 20

Number of Nodes

Id
le

 ti
m

e
(s

) Advancing
67200

Advancing
134400

Advancing
6720

Partitioning strategies and load balancing
algorithms will also be investigated to optimise
the performance of the parallel traffic
simulator. Since the overall performance of
the federation is determined by the slowest
federate, the next phase of the research work
will therefore focus on how redistributing the
loads of heavily loaded federates affects the
performance of the federation. These results
will then be compared to traffic simulators
based on other parallel mechanisms like
Parallel Virtual Machines (PVM) or Message
Passing Interface (MPI) for communication on
clusters.

REFERENCES

Bodoh David J., Wieland F. 2003.
“Performance Experiments with the High
Level Architecture and the Total Airport and
Airspace Model (TAAM).” Seventeenth
Workshop on Parallel and Distributed
Simulation (PADS'03), June 10 - 13, 2003 San
Diego, California.

Buyya R., 1999. “High Performance Cluster
Computing: Architectures and Systems Vol
1.” Prentice Hall 1999, ISBN0-13-013-784-7

Defence Modelling and Simulation Office
(DMSO). 1998. “The High Level Architecture
(HLA) Homepage.”:
https://www.dmso.mil/public/transition/hla
1998.(Feb 2002)

Fujimoto R. M. 1998. “Time management in
the high level architecture.” Simulation,
1998,71(6):388-400

Gourgoulis A., Terstyansky G., Kacsuk P.,
Winter S. C. 2004. "Creating Scalable Traffic
Simulation on Clusters," pdp, Vol. 00, no. , p.
60, 12th 2004.

Horst M., Roberts D. W., Esslinger D. I.,
Marks J. R., Johnson, T. B. 1998. “Building
an HLA Radar Federation from Legacy
Simulations.” 1998 Spring Simulation
Interoperability Workshop, 98S-SIW-213

Igbe D., Kalantery N., Ijaha S., Winter S. C.
2003. “An Open Interface for Parallelization
of Traffic Simulation.”. DS-RT, Vol. 00, no. ,
p. 158, Seventh 2003.

Kuhl F., Weatherly R., Dahman J. 1999.
“Creating Computer Simulation Systems. An
Introduction to High Level Architecture”
Prentice Hall 1999, ISBN 0-13-022511-8.

Ramluchumun N., S. Ijaha, S.C. Winter, N.
Kalantery. 2002. “An Open Framework for
Traffic Simulation Tools using the High Level
Architecture (HLA)” 2002 Conference AI,
Simulation and Planning In High Autonomy
Systems- AIS Lisbon 2002. SCS ISBN: 1-
56555-242-3.

Riley G., Ammar M., Fujimoto R., Park A.,
Perumalla K. and Xu D. 2004. “A Federated
Approach to Distributed Network Simulation”
ACM Transactions on Modelling and
Computer Simulation (TOMACS), Vol. 14(2),
April 2004.

Schulze T., Straßburger S., Klein U. 1999.
“Migration of HLA into Civil Domains:
Solutions and Prototypes for Transportation
Applications.” SIMULATION, Vol. 73, No. 5,
pp 296-303, November 1999.

Schulze T., Straßburger S., Klein U. 2000.
“HLA-Federate Reproduction Procedures in
Public Transportation Federations.” In
Proceedings of the 2000 Summer Computer
Simulation Conference, Vancouver, Canada.

Wu H., R. Fujimoto, and M. Ammar. 2001.
“Experiences Parallelizing a Commercial
Network Simulator.” Proceedings of Winter
Simulation Conference, December 2001
p1353-1360.

AUTHOR BIOGRAPHIES

Narain RAMLUCHUMUN is a PhD student
in the Centre for Parallel Computing (CPC) at
the University of Westminster, UK. His work
is focussed on Parallel and Distributed
Software Engineering using the High Level
Architecture and Cluster Technology.

Dr Nasser KALANTERY has recently passed
away and this work is dedicated to him. Dr
Kalantery was a Reader in Parallel and
Distributed Simulation at the School of
Informatics, University of Westminster, UK.
His research work was on High Performance
Networked Computation via Logical Time and
Structured Shared Memory, and Parallel
Discrete Event Simulation.

Professor Stephen WINTER is the Dean of
School of Informatics at the University of
Westminster, London, UK. His research
interests are in the technology and applications
of parallel and distributed computing.

http://csdl.computer.org/comp/proceedings/pads/2003/1970/00/1970toc.htm
http://csdl.computer.org/comp/proceedings/pads/2003/1970/00/1970toc.htm
http://csdl.computer.org/comp/proceedings/pads/2003/1970/00/1970toc.htm
https://www.dmso.mil/public/transition/hla%201998
https://www.dmso.mil/public/transition/hla%201998

	FEDERATING A PARALLEL TRAFFIC SIMULATION
	USING HLA
	Speedup
	Efficiency
	
	
	AUTHOR BIOGRAPHIES

