
 

 

 PHASED DROWSY I-CACHE WITH ON-DEMAND WAKEUP 
PREDICTION POLICY FOR HIGH-PERFORMANCE LOW-ENERGY 

MICROPROCESSORS 
 

Zhou Hongwei, Zhang Chengyi and Zhang Minxuan  
College of Computer Science 

National University of Defense Technology 
Changsha, China, 410073 

E-mail: hongw.zhou@gmail.com, {chengyizhang, mxzhang}@nudt.edu.cn 
 
 
 

KEYWORDS 
Drowsy cache, Phased cache, Low energy, Instruction 
cache, On demand, Wakeup prediction. 
 
ABSTRACT 

In this paper, we propose a phased drowsy instruction 
cache with on-demand wakeup prediction policy (called 
“phased on-demand policy”) to reduce the leakage and 
dynamic energy with less performance overhead. As in 
prior non-phased on-demand policy, an extra stage for 
wakeup is inserted before the fetch stage in pipeline. 
The drowsy cache lines are woken up in wakeup stage 
and the wakeup latency is overlapped with the fetch 
latency. Unlike in non-phased on-demand policy, The 
tag and data array are accessed in two phases. The tag 
blocks are in active mode all the time and are accessed 
in wakeup stage. The data blocks are in drowsy mode 
except when they are accessed in fetch stage. The 
optimum trade-off point is tried to be reached between 
the increment of energy caused by always active tag 
array in wakeup stage and reduction of energy profitted 
from perfect way prediction. Experiments on 9 
SPCE2000 benchmarks show that, compared with prior 
non-phased on-demand policy, our proposed policy can 
save 75.4% of energy for I-Cache and improve the EDP 
of whole processor by 6.9%. The performance overhead 
is only 0.42% on average. 
 
INTRODUCTION 

Energy consumption has become the main restriction on 
microprocessor design because of the higher density 
and higher frequency. For modern microprocessors, the 
large capability caches are integrated in chip to improve 
the processors’ performance. For instance, 60% of the 
StrongARM and 30% of Alpha 21264 are devoted to 
cache and memory structures (Gowan et al. 1998; Manne 
et al. 1998). They comprise a large portion of chip area 
and produce large energy. Instruction cache (I-Cache) 
affects total energy consumption particularly due to 
their high access frequency. For example, ARM920T 
microprocessor dissipates 25% of its total power in the 
I-Cache (Segars S. 2001). The energy in I-Cache consists 
of leakage energy and dynamic energy. According the 
prediction from the International Technology Roadmap 
for Semiconductor (SIA, 2004), the leakage energy may 

constitute as much as 50% of total energy by the 70nm 
technology. To save the energy of I-Cache at most, the 
leakage energy and dynamic energy in I-Cache should 
be reduced at the same time. 
To reduce the leakage energy of I-Cache, the cache 
lines that are not been used recently will be put into a 
low-energy mode (called “drowsy” mode) and are re-
woken up when accessed again. Data is not lost when 
the cache line is in drowsy mode. This technique is 
called drowsy cache (Powell et al., 2000; Kaxiras et al. 
2001; Flautner et al. 2002;  Chengyi Zhang et al. 2006; 
Kim et al. 2004a; Kim et al. 2004b; Li et al. 2004). In the 
drowsy mode, the supply voltage is lower than that in 
normal mode (called “active” mode) and data can be 
retained. When the drowsy cache line is accessed, the 
supply voltage must be recovered first. There is a 
wakeup penalty to restore the voltage level from the 
drowsy mode into the active mode. A simple policy for 
drowsy cache is noaccess policy in which the per-line 
access history is used and all the unused lines are put 
into drowsy mode periodically (Flautner et al. 2002). 
The energy saved depends on the ratio of the number of 
the cache lines in drowsy mode to the number of all 
cache lines (called “turn-off ratio”). The higher turn-off 
ratio is, the more leakage energy is saved.  
To reduce the performance overhead caused by extra 
wakeup latency, the next cache line should be woken up 
before it is accessed. The performance overhead 
depends on how accurately the next cache line can be 
predicted and woken up. Zhang Chengyi etc. proposed a 
PDSR (periodically Drowsy Speculatively Recover) 
policy based on noaccess policy (Chengyi Zhang et al. 
2006). In PDSR, a pre-wakeup mechanism is used for 
pre-waking up all cache lines in next sequential set 
when current set is being accessed. Nam Sung Kim 
proposed a noaccess-JITA policy in which the way 
predictor is also used for predicting which way may be 
hit in next sequential set (Kim et al. 2004a). Only the 
predicted cache line needs to be pre-woken up to 
increase turn-off ratio. The accuracy of wakeup 
prediction in these two policies is restricted by taken 
branch instruction because branch information is not 
used for wakeup prediction in these policies.  
Sung Woo Chung etc. proposed a non-phased drowsy I-
Cache with on-demand wakeup prediction policy 
(called “non-phased on-demand policy”) in which an 

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)



 

 

extra wakeup stage is inserted between the branch 
prediction and the fetch stage in pipeline (Sung Woo 
Chung and Kevin Skadron. 2006). The branch predictor is 
also used as a wakeup predictor for more accurate 
wakeup prediction. Extra stage hides the wakeup 
penalty, not affecting branch prediction accuracy. Way 
predictor is used for reducing the lines being woken up. 
All cache lines except the next expected cache line are 
in drowsy mode. The tag array and data array are 
accessed in fetch stage. The non-phased on-demand 
policy is near optimal policy for I-Cache leakage 
reduction, but it has some disadvantages yet. 
In this paper, a phased drowsy instruction cache with 
on-demand wakeup prediction policy (called “phased 
on-demand policy”) is proposed. In our proposed policy, 
the tag array is in active mode all the time and the 
access to tag array is moved from fetch stage to wakeup 
stage and the access to data array is in fetch stage as 
before. The cache line is accessed in two phases. The 
result of tag comparison is acquired one cycle earlier 
than non-phased on-demand policy and only the data 
block in matching way is necessary to be accessed. Way 
predictor is unnecessary. No latency caused by incorrect 
way prediction is incurred.  
The rest of this paper is organized as follows. We first 
analyze the disadvantages in prior non-phased on-
demand policy. Then we propose an improved phased  
on-demand policy. Subsequently, we introduce the 
performance and energy evaluation model, simulation 
environment and analyze the simulation results. At last, 
we make the conclusion and give the future work.  
 
DISADVANTAGES IN PRIOR NON-PHASED ON-
DEMAND POLICY 

 
As shown in Figure 1, in non-phased on-demand policy, 
an extra wakeup stage for wakeup is inserted between 
the branch prediction and the fetch stage. Branch 
prediction information is also used for wakeup 
prediction. All cache lines are in the drowsy mode 
except the cache line being accessed. After the fetch-
address is generated, the cache line indexed by fetch-
address is woken up in wakeup stage. In fetch stage, the 
tag and data array of this woken cache line are both 
active and can be accessed within one cycle if wakeup 
prediction is correct.  
 

Wakeup

IFQ

PC

From branch-resolution stage

branch 

predictor

Address 

Generation

Wakeup stage Fetch stage

Next 
PC

Way
Pred

Tag

Data

I-Cache
Branch Recovery Addr

Branch 
Pred Addr

 
 

Figures 1: Front-end pipeline in Non-Phased on-
demand policy 

 
 

The non-phased on-demand policy is near optimal 
policy for reducing leakage energy of I-Cache, but two 
disadvantages exist and should be improved. One 
disadvantage is that a two-stage penalty is incurred by 
incorrect way prediction. This is the main reason for 
loss of performance.  
As shown in Figure 2a, if way prediction hits, the 
wakeup penalty is overlapped with fetch penalty. No 
bubble is generated in pipeline. As shown in Figure 2b, 
if way prediction misses, two bubbles are generated in 
pipeline. One extra cycle is needed first to wake up all 
other cache lines in current set being accessed. Another 
extra cycle is necessary to access these cache lines to 
acquire the desired data in matching way. The 
performance is degraded by incorrect way prediction 
and additional energy for increased execution time may 
discount the energy saved. 

(a) Way Prediction Hits in  Non-Phased Drowsy Instruction Cache 
with on-demand  wakeup prediction policy

Wakeup Fetch

t

Instruction n

Instruction n+1

Way Prediction Hits Decode

t+1

Wakeup Fetch

(b) Way Prediction Misses in Non-Phased Drowsy Instruction Cache 
with on-demand  wakeup prediction policy

Wakeup Fetch ReFetch

t

Instruction n

Instruction n+1

Way Misprediction Wakeup

t+2

Wakeup Fetch

t+3

Decode

bubble bubble

 
 

Figures 2: Pipeline comparison when Way Predictor 
hits and misses 

 
The other disadvantage is that the prior non-phased on-
demand policy is ideal for recovery of branch mis-
prediction. Assuming the penalty of branch mis-
prediction is two cycles in conventional drowsy I-Cache. 
As shown in Figure 3a, in ideal non-phased on-demand 
policy, the address generation, branch prediction and 
wakeup are assumed to operate at the same time after 
execute/branch-resolution stage of the instruction n. So 
no extra wakeup penalty is incurred. The branch 
recovery instruction is fetched at t+4. In this ideal case, 
more careful adjustments are needed in pipeline design. 
In fact, one extra wakeup penalty will be incurred in 
normal non-phased on-demand policy when branch is 
mis-predicted, as shown in Figure 3b. The wakeup is 
operated after address generation. The branch recovery 
instruction is fetched at t+5. In this case, extra wakeup 
latency is incurred when branch is mis-predicted. 
 



 

 

(a) Branch Misprediction in  Non-Phased Drowsy I-Cache 
with ideal on-demand wakeup prediction policy

Fetch Decode Execute Write
back

Addr
Generation Wakeup

.

.

.

Fetch

t t+4
(b) Branch Misprediction in  Drowsy Instruction Cache 

with normal on-demand wakeup prediction policy

t+5

Instruction n
Branch Misprediction

Branch recovery 
Instruction

Fetch Decode Execute Write
back

Wakeup

.

.

.
Fetch

t t+4

Addr
Generation

Instruction n
Branch Misprediction

Branch recovery 
Instruction

 
Figures 3: Pipeline comparison when Branch Mis-

prediction 
 
IMPROVED PHASED ON-DEMAND POLICY 

 
As shown in Figure 4, we propose a phased drowsy 
instruction cache with on-demand wakeup prediction 
policy. The access to tag array of I-Cache is moved 
from fetch stage to wakeup stage. The tag and data 
array of I-Cache are accessed in two phases. The tag 
array is in the active mode all the time and only the data 
array can be put into drowsy mode. In each cache 
access, all tag blocks in current set being accessed are 
accessed at the same time in wakeup stage to ascertain 
the matching way. Then only one data block in 
matching way is accessed according to the result of tag 
comparison in fetch stage. It is the real result of tag 
comparison  not the result of way prediction that is used 
to tell which way would be accessed in data array, so 
we can consider that the way prediction is perfect in our 
policy. In fact the way predictor is not used any more. 
Since no way prediction information can be used, so all 
data blocks in the set which will be accessed in fetch 
stage should be pre-woken up in wakeup stage with the 
tag comparison at the same time.  
 

Wakeup
Data Blocks

IFQ

PC

From branch-resolution stage

branch 

predictor

Wakeup stage Fetch stage

Next 
PC

Branch Recovery 
Addr

I-Cache 
(Tag)

I-Cache
 (Data)

Address 

Generation

Branch 
Pred Addr

 
 

Figures 4: Phased Drowsy Instruction Cache with on-
demand wakeup prediction policy 

 
For instance, in a 4-way set-associative I-Cache with 
our improved policy, all four data blocks in current set 
being accessed are pre-woken up in advance.  But in  I-
Cache with prior on-demand policy, only one data block 

is necessary to be pre-woken up if way prediction hits. 
So, a little more leakage energy would be consumed in 
data array because of high way prediction hit ratio. In 
addition, all the tag blocks are active at any time in our 
improved policy. Though the leakage energy in tag 
array is not saved in our proposed policy, in modern 
high-performance microprocessor, the number of bits in 
a data block is far larger than that in a tag block, so the 
leakage energy of tag array has less influence on the 
total energy of I-Cache. For example: if the data block 
size is 16byte and the tag address bits are 20, then  the 
energy  consumed by tag array is about 0.16 times of 
the energy consumed by data array. 
In I-Cache with our improved policy, four tag blocks 
and one data block are accessed in each cache access if 
cache hits. No data block is  accessed if cache misses. 
In I-Cache with prior policy, the number of tag and data 
blocks accessed in each cache access is determined by 
result of way prediction. If way prediction hits, only one 
tag and one data block are accessed. If way prediction 
misses, additional three tag and three blocks are 
accessed, too. Since the way prediction hit ratio is higer 
in prior on-demand policy, so more dynamic energy is 
consumed in I-Cache with our improved policy. 
Comparing the prior policy, our proposed policy has 
less performance overhead because no extra wakeup 
latency is incurred by way mis-prediction. Perfect way 
prediction can reduce the performance overhead and 
save the extra energy caused by increasing execution 
time. That is, we use the reduction of energy profitted 
from perfect way prediction to balance the increment 
energy caused by always active tag array in wakeup 
stage and try to find  the optimum trade-off point 
between them.  
 
EVALUATION METHODOLOGY 

For optimum architecture design in high-performance 
low-energy I-Cache, not only the leakage energy but 
also the dynamic energy should be considered at the 
same time. The additional energy in whole processor 
caused by increased execution time should be 
considered, too. This section describes the energy and 
performance evaluation model to evaluate our proposed 
policy and other policies. The simulation environment is 
also introduced. 
 
Energy and Performance Evaluation Model 

The base model is a conventional I-Cache without any 
energy controlling policy. IPC' and IPC are the number 
of instructions committed per-cycle with and without 
energy controlling policy. The program execution time 
is T′ or T when energy controlling policy is used or not.  
The normalized execution time to base model is s and 
can be calculated as equation (1). 
 

s = T′/T=IPC/IPC′       (1) 
 



 

 

Assuming the average proportion between energy of I-
Cache (Eicache) and energy of whole processor (E) is α. 
The energy of processor except I-Cache is Eelse. The 
ratio of energy in tag array (Eicache_tag) to data array 
(Eicache_data) is m and it can be represents proximately as 
the ratio of the bit width in tag array to data array. So, 
Eicache/E=α and Eicache_tag/Eicache_data=m.  
Ed and Es are the baseline dynamic energy and leakage 
energy respectively, and E′d and E′s are the 
corresponding dynamic and leakage energy with energy 
controlling policy. 
 
Normalized leakage energy of I-Cache. 
The eactive and estandy represent the leakage energy of one 
bit memory unit during one cycle in active mode and in 
drowsy mode respectively. Assuming estandy is q times of 
eactive, so estandy=qeactive. The proportion between the 
number of drowsy cache lines and the number of all 
cache lines is Rturnoff. Ndata and Ntag are the number of 
bits in all tag array and data array in I-Cache. In data 
array of I-Cache without energy controlling policy, the 
leakage energy is eactive NdataT. In our proposed policy, 
the leakage energy of drowsy data blocks is 
edrowsyRturnoffNdataT′ and the leakage energy of active data 
blocks is eactive(1-Rturnoff)NdataT′. Equation (2) shows the 
normalized leakage energy to base model in data array 
of I-Cache.  
 

E′s_icache_data/ Es_icache_data= [ eactive (1-Rturnoff) 
Ndata+edrowsyRturnoffNdata]T′/ (eactive NdataT)  
=[(1-Rturnoff)+ Rturnoffq]s      (2) 
 

Tag array of I-Cache is active at all the time in our 
proposed policy. The leakage energy of active tag 
blocks is increased due to longer execution time, thus, 
E′s_icache_tag=sEs_icache_tag. The energy caused by mode 
switching between the drowsy and active mode is 
negligible. The normalized leakage energy to base 
model in I-Cache is μ and calculated as shown in 
equation (3). 
 

μ= E′s_icache / Es_icache =(E′s_icache_tag 
+E′s_icache_data )/(Es_icache_tag +Es_icache_data) 
= [m+(1-Rturnoff)+ Rturnoffq]s/(m+1)      (3) 
 

Normalized dynamic energy of I-Cache. 
Nassoc represents the cache associativity, WPHR 
represents the way prediction hit ratio and CHR 
represents the cache hit ratio. In our proposed policy, all 
tag blocks in current accessed set are accessed at the 
same time. Only the data block in matching way is 
accessed when cache hits, no data block is necessary to 
be accessed when cache misses. The normalized 
dynamic energy to base model in I-Cache is v and can 
be calculated as equation (4) shows.  
 

ν = E′d_icache / Ed_icache =(E′d_icache_tag 
+E′d_icache_data )/(Ed_icache_tag +Ed_icache_data) 
= (Nassoc m+CHR)/ [Nassoc (m+1)]     (4) 

Normalized energy of else compenents in processor. 
The energy of else compenernts in processor is not 
optimized by the energy controlling policy. In contrast, 
it will be increased for longer execution time. We 
assume that it increases in direct proportion to the 
execution time approximately. that is E′else=sEelse. 
 
Normalized energy of whole processor. 
Not only the leakage energy but also the dynamic 
energy in I-Cache is considered at the same time. 
Assuming the ratio of leakage energy in I-Cache to 
leakage energy in whole processor is α1, the ratio of 
dynamic energy in I-Cache to dynamic energy in whole 
processor is α2 and the ratio of dynamic energy of 
processor to total energy in processor is β. The ratio of 
dynamic energy to leakage energy in I-Cache is n and 
can be calculated as equation (5).  

 
n =Ed_icache/Es_icache =(α2β)/[α1(1-β)]     (5) 
 

So, the normalized energy of I-Cache (γ) can be 
calculated as equation (6) shows. The normalized 
energy of whole processor is calculated as equation (7) 
shows and it is represented as η. Equation (8) shows the 
normalized of EDP to base model in whole processor.  

γ = (E′d_icache+E′s_icache)/(Ed_icache +Es_icache) 
= (νn+μ)/ (n+1)     (6) 

 
η = (E′icache/Eicache) α+(E′else/Eelse)(1-α) 
=γα+s(1-α)   (7) 

 
EDP′/ EDP = (E′/E)(IPC/IPC′) =ηs      (8) 

 
Simulation Environment 

We use Hotleakage simulator (Zhang et al. 2003)  to get 
the value of the basic parameters (IPC, IPC′, Rturnoff, and 
CHR) required by our evaluation modle for evaluating 
energy and performance. The processor parameters 
model a high-performance microprocessor similar to 
Alpha 21264 (Gowan et al. 1998) as shown in Table 1. 
The energy parameters are based on the 70nm/0.9V 
technology. Benchmarks are chosen from SPEC 
CPU2000. Each benchmark is first fast-forwarded a 
billion instructions and then simulated the 300 millions 
instructions. We compare our phased on-demand policy 
with three policies: noaccess-JITA policy, normal non-
phased on-demand policy and ideal non-phased on-
demand policy. These policies are described in Table2.  
Because the average proportion between energy of I-
Cache and energy of whole processor is different 
among different processors, we assume it is a moderate 
value (α=10%) first. We will also research other cases 
with different α. The parameter m and q can be 
calculated according to the processor parameters and 
energy parameters: m=0.14, q=0.04. According to the 
prediction from ITRS (SIA. 2004), the leakage energy 
will be equal to dynamic energy in microprocessors 
when the process technology is 70nm, so we assumes 
the β=0.5. According to the estimation from Hotleakage 



 

 

simulator, the α1 is 3% and α2 is 4.3% approximately in 
our processor parameters model. So, n is 1.43 by 
equation (5). Because the increased execution time may 
incur extra energy, so we assume that the decay interval 
is 32K cycles in noaccess-JITA policy for less 
performance overhead. 
 

Table 1: Architecture/Energy parameters 
 

Processor parameters 
Instruction Window 8 IFQ, 80 RUU,  

40 LSQ 
Fetch/Decode/Issue/Commit 
width 

4 instructions/cycle 

L1 I-Cache 64KB, 4-way, 32B 
block, 1 cycle latency 

Branch Predictor type comb 
Branch mis-prediction 
latency 

2 cycles 

Way prediction policy MRU 
The switch latency between 
different mode 

1 cycle latency 

Energy parameters 
Process Technology 70nm 
Temperature 353K 
Supply Voltage 0.9V in active mode; 

0.3V in drowsy mode 
Threshold Voltage NMOS:0.1902V;  

PMOS: 0.2130V 
Leakage energy of I-Cache 
in drowsy mode 

0.019142 J 

Leakage energy of I-Cache 
in active mode 

0.441827 J 

 
Table 2: Description for different policies 

 
Policy Description 

noaccess-JITA  The decay interval is 32K cycles. 
Real way predictor is used. Branch 
prediction information is not used 
for wakeup prediction. 

normal  
non-phased on-
demand 

One-cycle extra wakeup latency is 
incurred when branch is mis-
predicted and real way predictor is 
used. The tag array and data array 
are accessed in one stage. 

Ideal 
non-phased 
on-demand 

No extra wakeup latency is 
incurred when branch is mis-
predicted and a perfect way 
predictor is used. The tag array 
and data array are accessed in one 
stage. 

Phased 
on-demand 

One-cycle extra wakeup latency is 
incurred when branch is mis-
predicted and way predictor is not 
used. The tag array and data array 
are accessed in two phases. 

 

Simulation Results 

As shown in Figure 5, our proposed phased on-demand 
policy has less performance overhead than other on-
demand policies and the performance overhead is only 
0.42% on average. The normalized execution time in 
normal non-phased on-demand policy is increased by 
3.2% to base model on average. The main reason is that 
extra two-cycle latency is incurred by incorrect way 
prediction and extra one-cycle wakeup latency is 
incurred by incorrect branch prediction. When prefect 
way predictor is used and extra one-cycle wakeup 
latency caused by incorrect branch prediction is avoided, 
the performance overhead can be reduced to 0.79% as 
in ideal non-phased on-demand policy. The 
performance overhead in noaccess-JITA policy is 
0.33% and it is smallest in all policies. The performance 
overhead in phased on-demand policy is only a little 
smaller than ideal non-phased on-demand policy.  
The way prediction hit ratio is shown in Figure 6. Since 
no way predictor is used in our proposed policy, the 
WPHR is considered as 100% just like in ideal non-
phased on-demand policy. The WPHR is 93.1% and 
93.3% on average in normal non-phased on-demand 
policy and in noaccess-JITA policy respectively. The 
execution time is influenced by WPHR more obviously 
in normal non-phased on-demand policy. For instance, 
the WPHR in gcc, gzip, twolf and mesa is far lower 
than that in other programs, so the normalized execution 
time in these programs is larger than that in others. The 
execution time is almost not influenced by WPHR in 
noaccess-JITA policy.  
 

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04
1.06
1.08
1.1

gcc gzip mcf twolf bzip2 art equake ammp mesa averge

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

noaccess-JITA normal non-phased on-demand
phased on-demand ideal non-phased on-demand

 
Figures 5: Normalized execution time 

 

88

90

92

94

96

98

100

gcc gzip mcf twolf bzip2 art equake ammp mesa

W
PH

T(
%

)

noaccess-JITA normal non-phased on-demand
phased on-demand ideal non-phased on-demand

 
Figures 6: Way prediction hit Ratio 

 



 

 

As shown in Figure 7, the turn-off ratios in all on-
demand policies except noaccess-JITA policy are 
almost the same. In normal non-phased on-demand 
policy and ideal non-phased on-demand policy, the 
turn-off ratio is 99.95% on average and near the 
optimum turn-off ratio in drowsy cache. In our 
proposed policy, the turn-off ratio is 99.8% on average 
and it is only a little smaller than optimum value. In 
noaccess-JITA policy, the cache lines are turned off 
only if they are not accessed within a decay interval, so 
the turn-off ratio in this policy is far smaller than in 
other policies. It is only 67.35% on average. 
 

40

50

60

70

80

90

100

gcc gzip mcf twolf bzip2 art equake ammp mesa

Tu
rn

 o
ff 

R
at

io

noaccess-JITA normal non-phased on-demand
phased on-demand ideal non-phased on-demand

 
 

Figures 7: Turn-off ratio in drowsy I-Cache 
 
We estimate the normalized total energy of I-Cache 
according to our proposed energy evaluation model. As 
shown in Figure 8, in normal non-phased on-demand 
policy, the normalized total energy of I-Cache is 15.4% 
on average. It is very near the lowest value 14.6% in 
ideal non-phased on-demand policy. In our proposed 
policy, the normalized total energy of I-Cache is 24.6% 
on average. Compared with other on-demand policies, 
phased on-demand policy is not very good for reducing 
the total energy of I-Cache. However, it is better than 
noaccess-JITA policy. The normalized total energy of I-
Cache in noaccess-JITA is 64.3% on average.  
The normalized energy of whole processor is also 
calculated according to our proposed policy and shown 
in Figure 9. In our proposed policy, the normalized 
energy of whole processor is 92.7% on average. In ideal 
non-phased on-demand policy, the normalized energy 
of whole processor is 91.8% on average. Our proposed 
policy is very near the ideal non-phased on-demand 
policy for reducing the energy of whole processor. In 
normal non-phased on-demand policy, the energy saved 
in whole processor is less than that in our proposed 
policy and the normalized energy of whole processor is 
93% on average. The normalized energy of whole 
processor in noaceess-JITA policy is 96.6% on average. 
It is the worst policy for reducing energy of whole 
processor.  
Figure 10 shows the normalized EDP of whole 
processor. In our proposed policy, the EDP is improved 
by 6.9% on average and only a little smaller than 7.4% 
in ideal non-phased on-demand policy. In normal non-
phased on-demand policy, the EDP is only improved by 
4% due to obvious performance overhead. In noaccess-

JITA policy, the EDP can be improved by 3.1% on 
average. So, except the ideal non-phased on-demand 
policy, the phased on-demand policy is the best policy 
for improving the EDP of whole processor.   
 

0

0.1

0.2
0.3

0.4

0.5
0.6

0.7

0.8

gcc gzip mcf twolf bzip2 art equake ammp mesa averge

N
or

m
al

iz
ed

 to
ta

l e
ne

rg
y 

of
 I-

C
ac

he

noaccess-JITA normal non-phased on-demand
phased on-demand ideal non-phased on-demand

 
Figures 8: Normalized total energy of I-Cache 

 

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

gcc gzip mcf twolf bzip2 art equake ammp mesa averge

N
or

m
al

iz
ed

 e
ne

rg
y 

of
 w

ho
le

 p
ro

ce
ss

or

noaccess-JITA normal non-phased on-demand
phased on-demand ideal non-phased on-demand

 
 

Figures 9: Normalized energy of whole processor 
 

0.8

0.85

0.9

0.95

1

1.05

gc
c

gz
ip mcf

tw
olf

bz
ip2 art

eq
ua

ke
am

mp
mesa

av
erg

e

ED
P 

of
 w

ho
le

 p
ro

ce
ss

or

noaccess-JITA normal non-phased on-demand
phased on-demand ideal non-phased on-demand

 
Figures 10: Normalized EDP of whole processor 

 
As shown in Figure 11 and Figure 12, if we change the 
proportion of I-Cache’s energy to whole processor’s 
energy from 5% to 25% (α is increased from 5% to 
25%), the energy saving and the EDP in whole 
processor are both improved in all policies with the 
increasing α. As shown in Figure 11, except the ideal 
non-phased on-demand policy, our proposed policy is 
the best policy for reducing the energy of whole 
processor when α is smaller than 15%. The normal non-
phased on-demand policy is the best policy when α is 
larger than 15%.  That is beause the energy saved in I-



 

 

Cache is more pivotal than the energy increased by 
increased execution time when the proportion of I-
Cache’s energy to whole processor’s energy is larger. 
Since the performance overhead is not very obvious in 
I-Cache with on-demand policies, so the EDP is 
improved in all on-demand policies with different α. As 
shown in Figure 12, in all cases, the phased on-demand 
policy is near-ideal policy for improving the EDP in 
whole processor.  
 

0.7

0.8

0.9

1

5% 10% 15% 20% 25%

N
o
r
m
a
l
i
z
e
d
 
e
n
e
r
g
y
 
o
f
 
w
h
o
l
e

p
r
o
c
e
s
s
o
r

noaccess-JITA normal non-phased on-demand

phased on-demand ideal non-phased on-demand

 
 

Figures 11: Normalized energy of whole processor 
 

0.7

0.8

0.9

1

5% 10% 15% 20% 25%

E
D
P
 
o
f
 
w
h
o
l
e
 
p
r
o
c
e
s
s
o
r

noaccess-JITA normal non-phased on-demand

phased on-demand ideal non-phased on-demand

 
 

Figures 12: Normalized EDP of whole processor 
 
CONCLUSIONS 

This work presents a phased drowsy I-Cache with on-
demand wakeup prediction policy. The access to tag 
array is moved from the fetch stage to the wakeup stage. 
Way predictor is not used any more. Though energy of 
I-Cache reduced in our proposed policy is less than that 
in normal non-phased on-demand policy, the 
performance overhead in our proposed policy is smaller 
and it is near the lowest performance overhead in ideal 
non-phased on-demand policy. In our proposed policy, 
the optimum trade-off point between the reduction of 
leakage energy in the tag array and perfect way 
prediction is reached. When the proportion of I-Cache’s 
energy to whole processor’s energy is 10%, with only 
0.42% performance overhead, our proposed policy can 
reduce the energy of whole processor by 7.3% and 
improves the EDP by 6.9% on average. When the 
proportion of I-Cache’s energy to whole processor’s 
energy is increased from 5% to 25%, our proposed 
policy is the near-optimum policy in any cases for 
improving the EDP of whole processor. 

REFERENCES 

Chengyi Zhang, Hongwei Zhou, Minxuan Zhang, and 
Zuocheng Xing. 2006. “An architectural leakage power 
reduction method for instruction cache in ultra deep 
submicron microprocessors.” In the 11th Asia-Pacific 
Conference(ACSAC 2006), 588-594. 

Flautner K., N.S.Kim, S.Martin, D.Blaauw, and T.Mudge. 
2002. “Drowsy Caches: Simple Techniques for Reducing 
Leakage Power.”  In ISCA2002, 147-157. 

Gowan M.K., Biro L.L. and Jackson D.B. 1998. “Power 
Considerations in the Design of the Alpha 21264 
Microprocessor.” In DAC’98, Los Alamitos, California, 
U.S, 26-31. 

Inoue, K., Ishihara, T., and Murakami, K. 1999. “Way-
predicting Set-Associative Cache for High performance 
and Low Energy Consumption.” In Proc. Of 1999 
International Symposium on low power Electronics and 
Design (ISLPED1999), 273-275. 

Kaxiras S., Z. Hu and M. Martonosi. 2001. “Cache Decay: 
Exploiting Generational Behavior to Reduce Cache 
Leakage Power.”  In ISCA2001, 240-251. 

Kim N. S., K. Flautner, D. Blaauw and T. Mudge. 2004a.  
“Single-Vdd and Single-Vt Super-Drowsy Techniques for 
Low-Leakage High-Performance Instruction Caches.” In 
Proc. of Int. Symp. on Low Power Electronics and Design, 
54-57. 

Kim N. S., K Flautner, D. Blaauw, and T. Mudge. 2004b. 
“Circuit and Microarchitectural Techniques for Reducing 
CacheLeakage Power.” IEEE Transaction on VLSI 
Systems 12, No. 2 (Feb). 167-184. 

Li Y., D. Parikh, Y. Zhang, K. Sankaranarayanan, M. Stan, 
and K. Skadron. 2004. “State-Preserving vs. Non-State-
Preserving Leakage Control in Caches.” In Proc. of the 
Design Automation and Test in Europe Conference. 22-27. 

Manne S., A. Klauser, and D. Grunwald. 1998. “Pipeline 
Gating: Speculation Control for Energy Reduction.” In 
Proc. Of Int. Symp. on Computer Architecture,  132-141. 

Powell M. D. et al. 2000. “Gated-Vdd: A Circuit Technique to 
Reduce Leakage in Deep-Submicron Cache Memories.”  
In  ISLPED2000, 90-95. 

Segars S. 2001. “Low Power Design Techniques for 
Microprocessors.” ISSCC Tutorial. 

SIA. International Technology Roadmap for Semiconductors, 
2004. 

Sung Woo Chung and Kevin Skadron. 2006. “Using branch 
prediction information for near-optimal I-Cache leakage.” 
In the 11th Asia-Pacific Conference(ACSAC 2006), 24-37.  

Zhang Y., D. Parikh, K. Sankaranarayanan, K. Skadron and M. 
R. Stan. 2003. “Hotleakage: An Architectural, 
Temperature-aware Model of Subthreshold and Gate 
Leakage.” Tech. Report CS-2003-05, Department of 
Computer Sciences, University of Virginia, (Mar). 

 
Zhou Hongwei received the B.S degrees 
in architecture of computer from National 
University of Defense Technology, 
changsha, Hunan, P.R.China, in 2003. 
Currently he is working toward the Ph.D 
degree at National University of Defense 

Technology.His main research interests are architectural 
level power optimization for Ultra-Deep submicron 
microprocessors and leakage current reduction in VLSI 
circuits. His e-mail address is : 
hongw.zhou@gmail.com 


