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ABSTRACT 
 
This paper presents and evaluates a new method for 
process scheduling in distributed systems. Scheduling in 
distributed operating systems has a significant role in 
overall system performance and throughput. An 
efficient scheduling is vital for system performance. The 
scheduling in distributed systems is known as an NP-
complete problem even in the best conditions, and 
methods based on heuristic search have been proposed 
to obtain optimal and suboptimal solutions. In this 
paper,   using the power of genetic algorithms we solve 
this problem considering load balancing efficiently. We 
evaluate the performance and efficiency of the proposed 
algorithm using simulation results. 
 
INTRODUCTION 
 
Scheduling in distributed operating systems is a critical 
factor in overall system efficiency. A Distributed 
Computing system (DCS) is comprised of a set of 
Computers (Processors) connected to each other by 
communication networks. Process scheduling in a 
distributed operating system can be stated as allocating 
processes to processors so that total execution time will 
be minimized, utilization of processors will be 
maximized, and load balancing will be maximized. 
Process scheduling in a distributed system is done in 
two phases: in the first phase processes are distributed 
on computers, and in the second processes execution 
order on each processor must be determined .Process 
scheduling in distributed systems has been known to be 
NP-complete. 
Several methods have been proposed to solve 
scheduling problem in DCS. The proposed methods can 
be generally classified into three categories: Graph-
theory-based approaches [23], mathematical models-
based methods [24], and heuristic Techniques [2, 6, 18, 
21].  
Heuristics can obtain suboptimal solution in ordinary 
situations and optimal solution in particulars. Since the 
scheduling problem has been known to be NP-complete, 
using heuristic Techniques can solve this problem more 

efficiently. Three most well-known heuristics are the 
iterative improvement algorithms [13],the probabilistic 
optimization algorithms, and the constructive heuristics. 
In the probabilistic optimization group, GA-based 
methods [1,4,5,11,13,14,17] and simulated annealing 
[12,20] are considerable which extensively have been 
proposed in the literature.  
One of the crucial aspects of the scheduling problem is 
load balancing. While recently created processes 
randomly arrive into the system, some processors may 
be overloaded heavily while the others are under-loaded 
or idle. The main objectives of load balancing are to 
spread load on processors equally, maximizing 
processors utilization and minimizing total execution 
time [12]. In dynamic load balancing, processes must be 
dynamically allocated to processors in arrival time and 
obtain a near optimal schedule, therefore the execution 
of the dynamic load balancing algorithm should not take 
long to arrive at a decision to make rapid task 
assignments.  [9,15,16,19,22] have proposed scheduling 
algorithms considering load balancing . 
A GA starts with a generation of individuals, which are 
encoded as strings known as chromosomes. A 
chromosome corresponds to a solution to the problem. 
A certain fitness function is used to evaluate the fitness 
of each individual. Good individuals survive after 
selection according to the fitness of individuals. Then 
the survived individuals reproduce offspring through 
crossover and mutation operators. This process iterates 
until termination condition is satisfied [10]. GA-based 
algorithms have emerged as powerful tools to solve NP-
complete constrained optimization problems, such as 
traveling salesman problem, job-shop scheduling and 
flow-shop scheduling, machine learning, VLSI 
technology, genetic synthesis and etc [3, 7]. 
In this paper using the power of genetic algorithms we 
solve this problem considering load balancing 
efficiently. The proposed algorithm maps each schedule 
with a chromosome that shows the execution order of 
all existing processes on processors. The fittest 
chromosomes are selected to reproduce offspring; 
chromosomes which their corresponding schedules have 
less total execution time, better load-balance and 
processor utilization. We assume that the distributed 
system is non-uniform and non-preemptive, that is, the 
processors may be different, and a processor completes 
current process before executing a new one. The load-
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balancing mechanism used in this paper only schedule 
processes without process migration and is centralized. 
The remainder of this paper is organized as follows: The 
problem description and formulation is given in Section 
2, In Section 3, we describe the proposed algorithm. 
Section 4, gives the performance evaluation of the 
proposed algorithm in comparison with other similar 
algorithms. Section 5 concludes this research. 
 
P
 

ROBLEM DESCRIPTION AND FORMULATION 

In order to schedule the processes in a distributed 
system, we should know the information about the input 
processes and distributed system itself such as : 
Network topology, processors speed, communication 
channels speed and so on. Since we study a 
deterministic model, a distributed system with m 
processors, m > 1 should be modeled as follows: 
• P ={   is the set of processors 
in the distributed system. Each processor can only 
execute one process at each moment, a processor 
completes current process before executing a new one, 
and a process can not be moved to another processor 
during execution. R is an  
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 matrix, where the 
element   of R, is the 

communication delay rate between and . H is an  up vp
 matrix, where the element  

mvu ≤, of H, is the time required to 

transmit a unit of data  from  to  . It is obvious 

that  
up vp

 and   0r . 

• is the set of processes to 
execute. A is an   

{ },....,3,2,1 nttttT =
mn×  matrix, where the element  

 of A, is the execution 

time of process  on processor .In homogeneous  
distributed systems the execution time of an individual  
process  on all processors is  equal, that means : 

it jp

it

ima .  D is a linear  

matrix, where the element n≤ of D, is the 

data volume for process  to be transmitted, when 

process  is to be executed on a remote processor. 
it

it
• F is a linear  matrix, where the element 

of F, is the target processor that is 

selected for process  to be executed on. C is a linearit  

matrix, where the element   of C, is 

the processor that the process  is presented on just 
now. 

it

The problem of process scheduling is to assign for each 
process  a processor  so that total 
execution time will be minimized, utilization of 
processors will be maximized, and load balancing will 

be maximized. In such systems there are finite numbers 
of processes, each having a process number and a 
execution time and placed in a process pool from which 
processes are assigned to processors. The main 
objective is to find a schedule with minimum cost. The 
following definitions are also needed: 

Tit ∈ Pfi ∈
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efinition 1 

The processor load for each processor is the sum of 
processes execution times allocated to that processor. 
However, as the processors may not always be idle 
when a chromosome (schedule) is evaluated, the current 
existing load on individual processors must also be 
aken into account, therefore (1): t
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Definition 2 
 
The length or maxspan of a schedule T is the maximal 
finishing time of all processes or maximum load. Also 
communication cost (CC) to spread recently created 

rocesses on processors must be computed (2,3)  : p
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efinition 3 

The Processor utilization for each processor is obtained 
by dividing the sum of processing times by maxspan, 
and the average of processors utilization is obtained by 
dividing the sum of all utilizations by number of 
processors (4, 5): 
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Definition 4 
 
Number of Acceptable Processor Queues (NoAPQ): We 
must define thresholds for light and heavy load on 
processors. If the processes completion time of a 
processor (by adding the current system load and those 
contributed by the new processes) is within the light and 
heavy thresholds, this processor queue will be 
acceptable. If it is above the heavy threshold or below 
the light-threshold, then it is unacceptable, but what is 
important is average of number of acceptable processors 
queues, which is achievable by (6): 

 
   (6) ocessorsOfNumberNoAPQAveNoAPQ Pr=
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efinition 5 

A Queue associated with every processor, shows the 
processes that processor has to execute. The execution 
order of processes on each processor is based on queues. 
 
T
 

HE PROPOSED GA-BASED ALGORITHM 

Genetic algorithms, as powerful and broadly applicable 
stochastic search and optimization techniques, are the 
most widely known types of evolutionary computation 
methods today. In general, a genetic algorithm has five 
basic components as follows [3]: 
1. An encoding method, that is a genetic representation 
(genotype) of solutions to the program. 
2. A way to create an initial population of individuals 
(chromosomes). 
3. An evaluation function, rating solutions in terms of 
their fitness, and a selection mechanism. 
4. The genetic operators (crossover and mutation) that 
alter the genetic composition of offspring during 
reproduction. 
5. Values for the parameters of genetic algorithm. 
 
G
 

enotype 

In the GA-Based algorithms each chromosome 
corresponds to a solution to the problem. The genetic 
representation of individuals is called Genotype. Many 
Genotypes have been proposed in [3] .In this paper a 
chromosome consists of an array of n digits, where n is 
the number of processes. Indexes show process numbers 
and a digit can take any one of the 1..m  values, which 
shows the processor that  the process is assigned to. If 
more than one process is assigned to the same 
processor, the left to-right order determines their 
execution order on that processor. 
 
I
 
nitial Population 

A genetic algorithm starts with a set of individuals 
called initial population. Most GA-Based algorithms 
generate initial population randomly. Here, each 
solution i is generated as follows: one of the 
unscheduled processes is randomly selected, and then 
assigned to one of the processors. The important point is 
the processors are selected circularly, it means that they 
are selected respectively form first to last and then come 
back to first. This operation is repeated until all of 
processes have been assigned. An initial population with 
size of   POPSIZE is generated by repeating this 
method. 
 
F
 

itness Function 

As discussed before, the main objective of GA is to find 
a schedule with optimal cost while load-balancing, 
processors utilization and cost of communication are 
considered. We take into account all objectives in 
following equation. The fitness function of a Schedule T 
(7): 
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Which  1,,,0 ≤< θγβα  are control parameters to 
control effect of each part according to special cases and 
their default value is one. This equation shows that a 
fitter solution (Schedule) has less maxspan, less 
communication cost, higher processor utilization and 
higher Average number of acceptable processor queues. 
 
S
 

election 

The selection process used here is based on spinning the 
roulette wheel, which each chromosome in the 
population has a slot sized in proportion to its fitness. 
Each time we require an offspring, a simple spin of the 
weighted roulette wheel gives a parent chromosome. 
The probability  that a parent  is selected is given 
by (8): 
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where  is the fitness of  chromosome . )( iTF iT
 
C
 

rossover 

Crossover is generally used to exchange portions 
between strings. Several crossover operators are 
described in the literature [10]. Crossover is not always 
affected, the invocation of the crossover depends on the 
probability of the crossover Pc. We have implemented 
two crossover operators. The GA uses one of them, 
which is decided randomly. 
 
Single-Point Crossover 
This operator randomly selects a point, called Crossover 
point, on the selected chromosomes, then swaps the 
bottom halves after crossover point, including the gene 
at the crossover point and generate two new 
chromosomes called children. 
 
Proposed Crossover 
This operator randomly selects points on the selected 
chromosomes, then for each child non-selected genes 
are taken from one parent and selected genes  from the 
other. 
 
M
 

utation 

Mutation is used to change the genes in a chromosome. 
Mutation replaces the value of a gene with a new value 
from defined domain for that gene. Mutation is not 
always affected, the invocation of the Mutation depend 
on the probability of the Mutation Pm. We have 
implemented two mutation operators. The GA uses one 
of them, which is decided randomly. 
 



First Mutation Operator 
This operator randomly selects two points on the 
selected chromosome, then generates a chromosome by 
swapping the genes at the selected points. 
 
Second Mutation Operator 
The other approach is to check if any jobs could be 
swapped between processors which would result in a 
lower make span. If we want to test every possible 
swap, it would be computationally very intensive, and in 
larger problems would take an unfeasible amount of 
time. It also seems unreasonable to consider swapping 
processes on processors which their load is significantly 
below the make span, therefore we try to swap 
processes between overloaded and under loaded 
processors. This concept can be implemented as 
follows:  

 
1. First, select a processor, say , which has the 
latest finish time. 

vp

2. Second, select a processor, say , which has 
least finish time. 

up

3. Third, try to transfer a process form to  or 

swap a single pair of processes between and 

 that improves the make span of both processors 
the most. 

vp up

vp
up

4. This procedure is repeated until no further 
improvement is possible. 
 

R
 

eplacement Strategy 

When genetic operators (crossover, mutation) are 
applied on selected parents  two new 
chromosomes T' and T'' are generated. These 
chromosomes are added to new temporary population. 
By repeating this operation a new temporary population 
with size of 2*POPSIZE is generated. After that fitter 
chromosomes are selected from current population and 
new temporary population, at last selected 
chromosomes made new population and algorithm 
restarts. 

2,1 TT

 
T
 

ermination Condition 

We can apply multiple choices for termination 
condition: Max number of generation, algorithm 
convergence, equal fitness for fittest selected 
chromosomes in respective iterations. 
 
T
 

he Structure of Proposed GA-Based Algorithm 

Our proposed GA-Based algorithm starts with a 
generation of individuals. A certain fitness function is 
used to evaluate the fitness of each individual. Good 
individuals survive after selection according to the 
fitness of individuals. Then the survived individuals 
reproduce offspring through crossover and mutation 
operators. This process iterates until termination 
condition is satisfied. It is Considerable to say that 

parameters such as θγβα ,,,,,,, NOGENPOPSIZEmPcP  
must be determined before GA is started. Figure 1 
shows this operation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Procedure GA-Based algorithm; 
Begin 
  initialize P(k);  {create an initial population} 
  evaluate P(k);  {evaluates all individuals in the 
population} 
Repeat  
       For i=1 to 2*POPSIZE do 

Select two chromosomes as parent 1  
and parent 2 from population; 
Child 1 and Child 2  Crossover( parent1, 
parent2); 

 Child 1   Mutation ( Child 1 ); 
 Child 2  Mutation ( Child 2 ); 
 Add (new temporary population, Child 1, Child 2 
); 
       End For;  
       Make (new population, new temporary population, 
population ); 
      Population = new population; 
 While (not termination condition); 
Select Best chromosome in population as solution and 
return it;  
End 

Figure 1: The Structure Of Proposed Algorithm  
 

E
 

XPERIMENTAL RESULTS 

In this section, we have used the simulation results to 
show the performance of the proposed GA-based 
algorithm. Current solution techniques are concentrated 
on scheduling tasks with precedence constraints so our 
approach is not completely comparable with them. We 
have implemented more than 3000 lines of C++ 
program to simulate all of the proposed algorithms. All 
simulation experiments are run on a Pentium III 800, 
256 MB RAM, IBM PC. We have tried different values 
of the population size ( POPSIZE), mutation Probability  
(Pm ),and crossover probability ( Pc ),to find which 
values would steer the search towards the best solution. 
The measurement of performance of these algorithms 
was based on three metrics: total completion time, 
average processor utilization and, cost of 
communication. The default parameters were varied and 
the results collected from test runs were used to study 
the effects of changing these parameters. 
 
C
 

hanging The Number of Processes 

We have studied the effect of increasing number of 
processes on total completion time and average 
processor utilization. The Obtained results are shown in 
Figure 2 and, Figure 3. A considerable point in Figure 3 
is that when number of processes is increased, higher 
utilization is obtained. Brief justifications for the values 
used are given below. When the values discussed were 
tested ‘base values’ for each of the parameters where 
used to help isolate the performance of the parameter in 



hand. These values were: Pc=0.9, Pm=0.1, 
POPSIZE=50,  
NOGEN=50, m=10 (number of processors), 
n=100...1000. 
 

 
 

Figure 2: Total Completion Time  
 

 
 

Figure 3:  Average Processor Utilization 
 
C
 

hanging The Number of Generations 

When the number of generations was increased our 
proposed algorithm had a better function. The Obtained 
results are shown in Figure 4, Figure 5 and, Figure 6. 
While the number of generations was increased the total 
completion time was reduced, it is because the quality 
of the generated process assignment improves after each 
generation. A considerable point in these figures is that 
when the number of generations was increased higher 
utilization is obtained and, the cost of communication 
was decreased. Brief justifications for the values used 
are given below. These values were: Pc=0.9, Pm=0.1, 
POPSIZE=100, NOGEN=50…245, m=10 (number of 
processors), n=300 (number of processes). 
 

 
 

Figure 4: Total Completion Time 
 

 
 

Figure5: Average Processor Utilization 
 

 
 

Figure 6: Cost Of Communication 
 
C
 

hanging The Size of Population 

Changing the size of population is also considerable in 
terms of total completion time, processor utilization 
and, cost of communication. The Obtained results are 
shown in Figure 7, Figure 8 and, Figure 9. While the 
size of population was increased the total completion 
time was decreased and, average processor utilization 
was increased. it is because that the number of the fitter 
chromosomes which are able to survive was increased, 
therefore fitter offspring may be generated and it leads 
to better schedules. According to above results while the 
size of population was increased higher processor 
utilization obtained and the cost of communication was 
decreased. Brief justifications for the values used are 
given below. Pc=0.9, Pm=0.1, POPSIZE=50…150, 
NOGEN=50, m=10 (number of processors), n=300 
(number of processes). 
 

 
 

Figure 7: Total Completion Time 
 



 
 

Figure 8:  Average Processor Utilization 
 

 
 

Figure 9: Cost Of Communication 
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ONCLUTIONS 

Scheduling in distributed operating systems has a 
significant role in overall system performance and 
throughput. The scheduling in distributed systems is 
known as an NP-complete problem even in the best 
conditions. We have presented and evaluated new GA-
Based method to solve this problem. This algorithm 
considers multi objectives in its solution evaluation and 
solves the scheduling problem in a way that 
simultaneously minimizes maxspan and communication 
cost, and maximizes average processor utilization and 
load-balance. Most existing approaches tend to focus on 
one of the objectives. Experimental results prove that 
our proposed algorithm tend to focus on all of the 
objectives simultaneously and optimize them. 
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