
A GENETIC ALGORITHM FOR PROCESS SCHEDULING IN
DISTRIBUTED OPERATING SYSTEMS CONSIDERING LOAD

BALANCING

M. Nikravan and M. H. Kashani
Department of Electrical Computer

Islamic Azad University, Shahriar Shahreqods Branch
Tehran, Iran

E-mail: moh.nikravan@gmail.com,mh.kashani@gmail.com

KEY WORDS
Distributed systems, scheduling, genetic algorithm,
simulated annealing , load balancing.

ABSTRACT

This paper presents and evaluates a new method for
process scheduling in distributed systems. Scheduling in
distributed operating systems has a significant role in
overall system performance and throughput. An
efficient scheduling is vital for system performance. The
scheduling in distributed systems is known as an NP-
complete problem even in the best conditions, and
methods based on heuristic search have been proposed
to obtain optimal and suboptimal solutions. In this
paper, using the power of genetic algorithms we solve
this problem considering load balancing efficiently. We
evaluate the performance and efficiency of the proposed
algorithm using simulation results.

INTRODUCTION

Scheduling in distributed operating systems is a critical
factor in overall system efficiency. A Distributed
Computing system (DCS) is comprised of a set of
Computers (Processors) connected to each other by
communication networks. Process scheduling in a
distributed operating system can be stated as allocating
processes to processors so that total execution time will
be minimized, utilization of processors will be
maximized, and load balancing will be maximized.
Process scheduling in a distributed system is done in
two phases: in the first phase processes are distributed
on computers, and in the second processes execution
order on each processor must be determined .Process
scheduling in distributed systems has been known to be
NP-complete.
Several methods have been proposed to solve
scheduling problem in DCS. The proposed methods can
be generally classified into three categories: Graph-
theory-based approaches [23], mathematical models-
based methods [24], and heuristic Techniques [2, 6, 18,
21].
Heuristics can obtain suboptimal solution in ordinary
situations and optimal solution in particulars. Since the
scheduling problem has been known to be NP-complete,
using heuristic Techniques can solve this problem more

efficiently. Three most well-known heuristics are the
iterative improvement algorithms [13],the probabilistic
optimization algorithms, and the constructive heuristics.
In the probabilistic optimization group, GA-based
methods [1,4,5,11,13,14,17] and simulated annealing
[12,20] are considerable which extensively have been
proposed in the literature.
One of the crucial aspects of the scheduling problem is
load balancing. While recently created processes
randomly arrive into the system, some processors may
be overloaded heavily while the others are under-loaded
or idle. The main objectives of load balancing are to
spread load on processors equally, maximizing
processors utilization and minimizing total execution
time [12]. In dynamic load balancing, processes must be
dynamically allocated to processors in arrival time and
obtain a near optimal schedule, therefore the execution
of the dynamic load balancing algorithm should not take
long to arrive at a decision to make rapid task
assignments. [9,15,16,19,22] have proposed scheduling
algorithms considering load balancing .
A GA starts with a generation of individuals, which are
encoded as strings known as chromosomes. A
chromosome corresponds to a solution to the problem.
A certain fitness function is used to evaluate the fitness
of each individual. Good individuals survive after
selection according to the fitness of individuals. Then
the survived individuals reproduce offspring through
crossover and mutation operators. This process iterates
until termination condition is satisfied [10]. GA-based
algorithms have emerged as powerful tools to solve NP-
complete constrained optimization problems, such as
traveling salesman problem, job-shop scheduling and
flow-shop scheduling, machine learning, VLSI
technology, genetic synthesis and etc [3, 7].
In this paper using the power of genetic algorithms we
solve this problem considering load balancing
efficiently. The proposed algorithm maps each schedule
with a chromosome that shows the execution order of
all existing processes on processors. The fittest
chromosomes are selected to reproduce offspring;
chromosomes which their corresponding schedules have
less total execution time, better load-balance and
processor utilization. We assume that the distributed
system is non-uniform and non-preemptive, that is, the
processors may be different, and a processor completes
current process before executing a new one. The load-

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

balancing mechanism used in this paper only schedule
processes without process migration and is centralized.
The remainder of this paper is organized as follows: The
problem description and formulation is given in Section
2, In Section 3, we describe the proposed algorithm.
Section 4, gives the performance evaluation of the
proposed algorithm in comparison with other similar
algorithms. Section 5 concludes this research.

P

ROBLEM DESCRIPTION AND FORMULATION

In order to schedule the processes in a distributed
system, we should know the information about the input
processes and distributed system itself such as :
Network topology, processors speed, communication
channels speed and so on. Since we study a
deterministic model, a distributed system with m
processors, m > 1 should be modeled as follows:
• P ={ is the set of processors
in the distributed system. Each processor can only
execute one process at each moment, a processor
completes current process before executing a new one,
and a process can not be moved to another processor
during execution. R is an

}

mm×
mvuuvr ≤≤ ,1

mm×
uvh ≤1

0=uuh =uu

mjniaij ≤≤≤≤ 1,1

iaiani ===≤≤ ...211
idi ≤1

niif ≤≤1

nici ≤≤1

∑∑
==

+=
iprocessor

toprocesses
AssignedNewofNo

k
ik

iprocessor
onprocesses

allocatedofNo

j
iji aapLoad

.

.

1
,

.

1
,)(

()
ocessorsofNumberi

pLoadTspan i

Pr1
)(max)(max

≤≤∀
=

mpppp ,....,,, 321

 matrix, where the
element of R, is the

communication delay rate between and . H is an up vp
 matrix, where the element

mvu ≤, of H, is the time required to

transmit a unit of data from to . It is obvious

that
up vp

 and 0r .

• is the set of processes to
execute. A is an

{ },....,3,2,1 nttttT =
mn× matrix, where the element

 of A, is the execution

time of process on processor .In homogeneous
distributed systems the execution time of an individual
process on all processors is equal, that means :

it jp

it

ima . D is a linear

matrix, where the element n≤ of D, is the

data volume for process to be transmitted, when

process is to be executed on a remote processor.
it

it
• F is a linear matrix, where the element

of F, is the target processor that is

selected for process to be executed on. C is a linearit

matrix, where the element of C, is

the processor that the process is presented on just
now.

it

The problem of process scheduling is to assign for each
process a processor so that total
execution time will be minimized, utilization of
processors will be maximized, and load balancing will

be maximized. In such systems there are finite numbers
of processes, each having a process number and a
execution time and placed in a process pool from which
processes are assigned to processors. The main
objective is to find a schedule with minimum cost. The
following definitions are also needed:

Tit ∈ Pfi ∈

D

efinition 1

The processor load for each processor is the sum of
processes execution times allocated to that processor.
However, as the processors may not always be idle
when a chromosome (schedule) is evaluated, the current
existing load on individual processors must also be
aken into account, therefore (1): t

 (1)

Definition 2

The length or maxspan of a schedule T is the maximal
finishing time of all processes or maximum load. Also
communication cost (CC) to spread recently created

rocesses on processors must be computed (2,3) : p

(2)

()∑
=

×+=
processesnewofnumber

i
ifcfc dhrTCC

iiii
1

)((3)

D

efinition 3

The Processor utilization for each processor is obtained
by dividing the sum of processing times by maxspan,
and the average of processors utilization is obtained by
dividing the sum of all utilizations by number of
processors (4, 5):

span
pLoadpU i

i max
)()(= (4)

ocessorsOfNumber
processorsofNo

i
ipUAveU Pr))

1
((∑

=
=

(5)
Definition 4

Number of Acceptable Processor Queues (NoAPQ): We
must define thresholds for light and heavy load on
processors. If the processes completion time of a
processor (by adding the current system load and those
contributed by the new processes) is within the light and
heavy thresholds, this processor queue will be
acceptable. If it is above the heavy threshold or below
the light-threshold, then it is unacceptable, but what is
important is average of number of acceptable processors
queues, which is achievable by (6):

 (6) ocessorsOfNumberNoAPQAveNoAPQ Pr=

D

efinition 5

A Queue associated with every processor, shows the
processes that processor has to execute. The execution
order of processes on each processor is based on queues.

T

HE PROPOSED GA-BASED ALGORITHM

Genetic algorithms, as powerful and broadly applicable
stochastic search and optimization techniques, are the
most widely known types of evolutionary computation
methods today. In general, a genetic algorithm has five
basic components as follows [3]:
1. An encoding method, that is a genetic representation
(genotype) of solutions to the program.
2. A way to create an initial population of individuals
(chromosomes).
3. An evaluation function, rating solutions in terms of
their fitness, and a selection mechanism.
4. The genetic operators (crossover and mutation) that
alter the genetic composition of offspring during
reproduction.
5. Values for the parameters of genetic algorithm.

G

enotype

In the GA-Based algorithms each chromosome
corresponds to a solution to the problem. The genetic
representation of individuals is called Genotype. Many
Genotypes have been proposed in [3] .In this paper a
chromosome consists of an array of n digits, where n is
the number of processes. Indexes show process numbers
and a digit can take any one of the 1..m values, which
shows the processor that the process is assigned to. If
more than one process is assigned to the same
processor, the left to-right order determines their
execution order on that processor.

I

nitial Population

A genetic algorithm starts with a set of individuals
called initial population. Most GA-Based algorithms
generate initial population randomly. Here, each
solution i is generated as follows: one of the
unscheduled processes is randomly selected, and then
assigned to one of the processors. The important point is
the processors are selected circularly, it means that they
are selected respectively form first to last and then come
back to first. This operation is repeated until all of
processes have been assigned. An initial population with
size of POPSIZE is generated by repeating this
method.

F

itness Function

As discussed before, the main objective of GA is to find
a schedule with optimal cost while load-balancing,
processors utilization and cost of communication are
considered. We take into account all objectives in
following equation. The fitness function of a Schedule T
(7):

()
() ())()(max

)(
)(

TCCTspan
AveNoAPQAveU

Tfitness
×××

×××
=

βα
θγ

 7) (

Which 1,,,0 ≤< θγβα are control parameters to
control effect of each part according to special cases and
their default value is one. This equation shows that a
fitter solution (Schedule) has less maxspan, less
communication cost, higher processor utilization and
higher Average number of acceptable processor queues.

S

election

The selection process used here is based on spinning the
roulette wheel, which each chromosome in the
population has a slot sized in proportion to its fitness.
Each time we require an offspring, a simple spin of the
weighted roulette wheel gives a parent chromosome.
The probability that a parent is selected is given
by (8):

ip iT

∑
=

= POPSIZE

j
j

i
i

TF

TFP

1
)(

)(
 (8)

where is the fitness of chromosome .)(iTF iT

C

rossover

Crossover is generally used to exchange portions
between strings. Several crossover operators are
described in the literature [10]. Crossover is not always
affected, the invocation of the crossover depends on the
probability of the crossover Pc. We have implemented
two crossover operators. The GA uses one of them,
which is decided randomly.

Single-Point Crossover
This operator randomly selects a point, called Crossover
point, on the selected chromosomes, then swaps the
bottom halves after crossover point, including the gene
at the crossover point and generate two new
chromosomes called children.

Proposed Crossover
This operator randomly selects points on the selected
chromosomes, then for each child non-selected genes
are taken from one parent and selected genes from the
other.

M

utation

Mutation is used to change the genes in a chromosome.
Mutation replaces the value of a gene with a new value
from defined domain for that gene. Mutation is not
always affected, the invocation of the Mutation depend
on the probability of the Mutation Pm. We have
implemented two mutation operators. The GA uses one
of them, which is decided randomly.

First Mutation Operator
This operator randomly selects two points on the
selected chromosome, then generates a chromosome by
swapping the genes at the selected points.

Second Mutation Operator
The other approach is to check if any jobs could be
swapped between processors which would result in a
lower make span. If we want to test every possible
swap, it would be computationally very intensive, and in
larger problems would take an unfeasible amount of
time. It also seems unreasonable to consider swapping
processes on processors which their load is significantly
below the make span, therefore we try to swap
processes between overloaded and under loaded
processors. This concept can be implemented as
follows:

1. First, select a processor, say , which has the
latest finish time.

vp

2. Second, select a processor, say , which has
least finish time.

up

3. Third, try to transfer a process form to or

swap a single pair of processes between and

 that improves the make span of both processors
the most.

vp up

vp
up

4. This procedure is repeated until no further
improvement is possible.

R

eplacement Strategy

When genetic operators (crossover, mutation) are
applied on selected parents two new
chromosomes T' and T'' are generated. These
chromosomes are added to new temporary population.
By repeating this operation a new temporary population
with size of 2*POPSIZE is generated. After that fitter
chromosomes are selected from current population and
new temporary population, at last selected
chromosomes made new population and algorithm
restarts.

2,1 TT

T

ermination Condition

We can apply multiple choices for termination
condition: Max number of generation, algorithm
convergence, equal fitness for fittest selected
chromosomes in respective iterations.

T

he Structure of Proposed GA-Based Algorithm

Our proposed GA-Based algorithm starts with a
generation of individuals. A certain fitness function is
used to evaluate the fitness of each individual. Good
individuals survive after selection according to the
fitness of individuals. Then the survived individuals
reproduce offspring through crossover and mutation
operators. This process iterates until termination
condition is satisfied. It is Considerable to say that

parameters such as θγβα ,,,,,,, NOGENPOPSIZEmPcP
must be determined before GA is started. Figure 1
shows this operation.

Procedure GA-Based algorithm;
Begin
 initialize P(k); {create an initial population}
 evaluate P(k); {evaluates all individuals in the
population}
Repeat
 For i=1 to 2*POPSIZE do

Select two chromosomes as parent 1
and parent 2 from population;
Child 1 and Child 2 Crossover(parent1,
parent2);

 Child 1 Mutation (Child 1);
 Child 2 Mutation (Child 2);
 Add (new temporary population, Child 1, Child 2
);
 End For;
 Make (new population, new temporary population,
population);
 Population = new population;
 While (not termination condition);
Select Best chromosome in population as solution and
return it;
End

Figure 1: The Structure Of Proposed Algorithm

E

XPERIMENTAL RESULTS

In this section, we have used the simulation results to
show the performance of the proposed GA-based
algorithm. Current solution techniques are concentrated
on scheduling tasks with precedence constraints so our
approach is not completely comparable with them. We
have implemented more than 3000 lines of C++
program to simulate all of the proposed algorithms. All
simulation experiments are run on a Pentium III 800,
256 MB RAM, IBM PC. We have tried different values
of the population size (POPSIZE), mutation Probability
(Pm),and crossover probability (Pc),to find which
values would steer the search towards the best solution.
The measurement of performance of these algorithms
was based on three metrics: total completion time,
average processor utilization and, cost of
communication. The default parameters were varied and
the results collected from test runs were used to study
the effects of changing these parameters.

C

hanging The Number of Processes

We have studied the effect of increasing number of
processes on total completion time and average
processor utilization. The Obtained results are shown in
Figure 2 and, Figure 3. A considerable point in Figure 3
is that when number of processes is increased, higher
utilization is obtained. Brief justifications for the values
used are given below. When the values discussed were
tested ‘base values’ for each of the parameters where
used to help isolate the performance of the parameter in

hand. These values were: Pc=0.9, Pm=0.1,
POPSIZE=50,
NOGEN=50, m=10 (number of processors),
n=100...1000.

Figure 2: Total Completion Time

Figure 3: Average Processor Utilization

C

hanging The Number of Generations

When the number of generations was increased our
proposed algorithm had a better function. The Obtained
results are shown in Figure 4, Figure 5 and, Figure 6.
While the number of generations was increased the total
completion time was reduced, it is because the quality
of the generated process assignment improves after each
generation. A considerable point in these figures is that
when the number of generations was increased higher
utilization is obtained and, the cost of communication
was decreased. Brief justifications for the values used
are given below. These values were: Pc=0.9, Pm=0.1,
POPSIZE=100, NOGEN=50…245, m=10 (number of
processors), n=300 (number of processes).

Figure 4: Total Completion Time

Figure5: Average Processor Utilization

Figure 6: Cost Of Communication

C

hanging The Size of Population

Changing the size of population is also considerable in
terms of total completion time, processor utilization
and, cost of communication. The Obtained results are
shown in Figure 7, Figure 8 and, Figure 9. While the
size of population was increased the total completion
time was decreased and, average processor utilization
was increased. it is because that the number of the fitter
chromosomes which are able to survive was increased,
therefore fitter offspring may be generated and it leads
to better schedules. According to above results while the
size of population was increased higher processor
utilization obtained and the cost of communication was
decreased. Brief justifications for the values used are
given below. Pc=0.9, Pm=0.1, POPSIZE=50…150,
NOGEN=50, m=10 (number of processors), n=300
(number of processes).

Figure 7: Total Completion Time

Figure 8: Average Processor Utilization

Figure 9: Cost Of Communication

C

ONCLUTIONS

Scheduling in distributed operating systems has a
significant role in overall system performance and
throughput. The scheduling in distributed systems is
known as an NP-complete problem even in the best
conditions. We have presented and evaluated new GA-
Based method to solve this problem. This algorithm
considers multi objectives in its solution evaluation and
solves the scheduling problem in a way that
simultaneously minimizes maxspan and communication
cost, and maximizes average processor utilization and
load-balance. Most existing approaches tend to focus on
one of the objectives. Experimental results prove that
our proposed algorithm tend to focus on all of the
objectives simultaneously and optimize them.

REFERENCES

[1] W.Yao, J.Yao, & B.Li, “Main Sequences Genetic
Scheduling For Multiprocessor Systems Using Task
Duplication”, International Journal of Microprocessors and
Microsystems, 28, 2004, 85-94.
[2] G.L.Park, “Performance Evaluation of a List Scheduling
Algorithm In Distributed Memory Multiprocessor Systems”,
International Journal of Future Generation Computer Systems
20, 2004, 249-256.
[3] A.T. Haghighat, K. Faez, M. Dehghan, A. Mowlaei, & Y.
Ghahremani, “GA-based heuristic algorithms for bandwidth-
delay-constrained least-cost multicast routing”, International
Journal of Computer Communications 27, 2004, 111–127.
[4] M. Moore, “An Accurate and Efficient Parallel Genetic
Algorithm to Schedule Tasks on a Cluster”, Proceedings of
the IEEE International Parallel and Distributed Processing
Symposium, 2003.
[5] V. D. Martino, “Sub Optimal Scheduling in a Grid using
Genetic Algorithms”, Proceedings of the IEEE International
Parallel and Distributed Processing Symposium, 2003.

[6] C.I.Park, & T.Y.Choe, “An optimal scheduling algorithm
based on task duplication” , IEEE Trans. on Computers, 51(4),
2002, 444–448.
[7] A.T. Haghighat, K. Faez, M. Dehghan, A. Mowlaei, & Y.
Ghahremani, “Multicast routing with multiple constraints in
high-speed networks based on genetic algorithms” , In ICCC
2002 Conf., India, 2002, 243–249.
[8] A.Y.Zomaya, & Y.Teh, “Observations on Using Genetic
Algorithms for Dynamic Load-Balancing”, IEEE Trans .On
Parallel and Distributed Systems, 12(9), 2001, 899-911.
[9] K.Qureshi, and M.Hatanaka, “A Practical Approach of
Task Scheduling and Load Balancing on Hetrogeneous
Distributed Raytracing Systems”, Information Processing
Letters 79, 2001, 65-71.
[10] L.M.Schmitt, “Fundamental Study Theory of Genetic
Algorithms” , International Journal of Modelling and
Simulation Theoretical Computer Science 259, 2001, 1 – 61.
[11] A.Y.Zomaya, C.Ward, & B.Macey, “Genetic Scheduling
for Parallel Processor Systems: Comparative Studies and
Performance Issues”, IEEE Trans. On Parallel and
Distributed Systems, 10(8), 1999, 795-812.
[12] S. Salleh, & A.Y. Zomaya, “Scheduling in Parallel
Computing Systems: Fuzzy and Annealing Techniques”,
Kluwer Academic, 1999.
[13] M.Lin, & L.T.Yang, “Hybrid Genetic Algorithms for
Scheduling Partially Ordered Tasks in a Multi-processor
Environment”, Proc. of the 6th IEEE Conf. on Real-Time
Computer Systems and Applications, 1999, 382–387.
[14] Sung-Ho Woo, Sung-Bong Yang, Shin-Dug Kim, Tack-
Don Han, "Task scheduling in distributed computing systems
with a genetic algorithm", High-Performance Computing on
the Information Superhighway, HPC-Asia '97, 1997, p. 301.
[15] C. Xu, & F. Lau, “Load-Balancing in Parallel Computers
: Theory and Practice”, Kluwer Academic, 1997.
[16] Y. Lan, & T. Yu, “A Dynamic Central Scheduler Load-
Balancing Mechanism”, Proc. of the 14th IEEE Ann. Int'l
Phoenix Conf. on Computers and Communication, 1995, 734-
740.
[17] E.S.H.Hou, N.Ansari, & H.Ren, “A Genetic Algorithm
for Multiprocessor Scheduling”, IEEE Trans. On Parallel and
Distributed Systems, 5(2), 1994, 113-120.
[18] C.M.Woodside, & G.G.Monforton, “Fast Allocation of
Processes in Distributed and Parallel Systems”, IEEE Trans.
On Parallel and Distributed Systems, 4(2), 1993, 164-174.
[19] H.C. Lin, & C.S. Raghavendra, “A Dynamic Load-
Balancing Policy with a Central Job Dispatcher (LBC)”,
IEEE Trans. on Software Eng., 18(2), 1992, 148-158.
[20] A.Nanda, et. al, “Scheduling Directed Task Graphs on
Multiprocessors Using Simulated Annealing”, Proc. Int'l.
Conf. On Distributed Systems, 1992, 20-27.
[21] A.K.Sarje & G.Sagar, “Heuristic Model for Task
Allocation in Distributed Computer Systems”, Proc. of the
IEE-E, 138(5), 1991, 313-318.
[22] F. Bonomi, & A. Kumar, “Adaptive Optimal Load-
Balancing in a Heterogeneous Multiserver System with a
Central Job Scheduler”, IEEE Trans. on Computers, 39(10)
1990, 1232-1250.
[23] C.C.Shen, & W.H.Tsai, “A Graph Matching Approach to
Optimal Task Assignment in Distributed Computing Using a
Minimax Criterion”, IEEE Trans. On Computers, 34(3), 1985,
197-203.
[24] P.Y.R.Ma, E.Y.S.Lee, & J.Tsuchiya, “A Task Allocation
Model for Distributed Computing Systems”, IEEE Trans. On
Computers, 31(1), 1982, 41-47.
[25] T.C.Hu, combinatorial algorithms (Addison-Wesley,
1982).

	KEY WORDS

