
OPTIMIZING CACHE EFFICIENCY BY SIMULATION DRIVEN
AUTOMATIC PADDING

Marco Höbbel, Thomas Rauber, Carsten Scholtes

Fachgruppe Informatik

Universität Bayreuth

Universitätsstr. 30

95447 Bayreuth

{hoebbel,rauber,carsten.scholtes}@uni-bayreuth.de

ABSTRACT

We present a toolset to automatically optimize the cache

efficiency of an arbitrary application by dynamically

padding memory allocations. The toolset is also suitable

to guide manual optimizations. Histograms are used to

evaluate cache simulations of memory traces of the ap-

plications considered. A general algorithm is presented

that calculates optimized pad sets based on the informa-

tion contained in the histograms. These pad sets can then

be used to optimize further runs of the applications ex-

amined. Experiments show that the cache hit rates of the

modified applications are considerably increased.

Keywords: cache optimization, dynamic padding, mem-

ory tra ces, performance visualization

I. INTRODUCTION

For most programs, the execution time should be as short

as possible. Especially for computation intensive appli-

cations a good runtime efficiency minimizes the through-

put time, thereby preserving computation resources for

other pending or scheduled applications. Scientific prob-

lem solvers, for example, are mostly time and data in-

tensive in nature. Many mathematical computations like

vector-matrix or matrix-matrix multiplications and addi-

tions in multiphase, iterative or cyclic algorithms refer to

user data in problem specific access patterns. For reg-

ular applications, it can be expected that repeated pro-

gram executions exhibit a similar memory access pat-

tern. Many data intensive applications therefore benefit

from a high memory bandwidth which in modern archi-

tectures is supported by supplying a multi-level cache hi-

erarchy. The efficiency of caching depends strongly on

temporal or spatial reuse, so potential conflicts should

be avoided. Different techniques are applied in order to

ensure that the fastest cache level in the memory hier-

archy is addressed first. Padding is one such approach

and has been successfully applied for many high perfor-

mance applications. Unfortunately, most of these opti-

mization techniques are problem specific and difficult to

adapt for general use. Additionally to a high experience

of the programmer, a deep analysis of the program and its

access pattern is required to become aware of the relevant

effects and to finally optimize cache usage. Due to the

immense effort associated with this approach, often only

post-programming optimizations by the compiler or the

runtime system are employed for gaining high efficiency

with minimal effort.

In order to support analyzing code sections optimized by

hand and runtime optimizations of applications without

having their source code, a trace based acquisition of data

for analyzing the application’s memory access pattern is

suitable. We present such an approach in this paper. The

advantage of the approach is (1) that it can be applied

also for programs for which the source code is unknown

and (2) that the programmer does not have to apply low-

level code optimizations to obtain a good overall perfor-

mance. The approach is based on histograms which are

data structures having the potential to hold the necessary

information like access patterns acquired during a first

phase tracing program run. Based on the histograms of

an application, a second phase computes a memory align-

ing pad set of all or at least the major cache impacting

references which leads to a better overall performance.

The generated optimal offsets can then be applied by a

compiler to create an optimized binary code. In the case

of only having a binary executable, an enhanced runtime

system can intercept memory allocation operations and

patch them to provide the optimized padding for the fol-

lowing program runs.

The paper’s objective is the presentation of a post-

compilation, performance optimizing and visualizing

toolset, which is suitable for general use, even in the ab-

sence of the source code of the application to be opti-

mized. In section II, we introduce the notation used in the

rest of the paper. In section III we describe the optimiza-

tion method. It is subdivided into three parts concerning

the trace driven data acquisition (III-A), the histogram

types describing conflicts (III-B) and the automated op-

timization algorithm (III-C). In section IV we present

measured results for different example applications be-

fore we discuss related work and conclude our paper.

II. TERMINOLOGY

The memory interface of the execution platform is mod-

eled as follows: The cache [Handy, 1998] is subdivided

into cache lines, which represent the minimal amount

of data transferable between cache and main memory.

The main memory is subdivided into memory lines of the

same size SCL, which are mapped round-robin onto the

cache lines. An access which can be satisfied directly

from the cache is called a (cache) hit and takes a latency

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)



of tLH
CPU cycles. If the cache does not contain a copy

of the memory line to be accessed, the access is called

a (cache) miss and results in a maximal stalling time of

tLM
cycles for validating by accessing the main mem-

ory. An access to a memory line that has been accessed

before is called a reuse. The last access to the reused

memory line before the reuse is called the source access

of the reuse. The time between source access and reuse is

called the reuse distance of the reuse. The set of accesses

occurring within the reuse distance of a reuse, thus, po-

tentially replacing the memory line to be reused, is called

interference of the reuse.

Many cache hardware platforms do not only validate the

cache line just accessed, but also preload the next k ones

in order to prevent latency cycles by adopting an antici-

pating early validation strategy [Oren, 2000]. A simple

k-line prefetching strategy with k = 1 tries to also load

the line in sequence of the last two accesses into the cache

A reference is a contiguous chunk of memory contain-

ing elements accessed by the application. From the ad-

dress bus’ point of view, each reference R is classified

by its base address base addrR (the first address of the

chunk) and the size of its elements sizeR. For analyzing,

we collect all addresses of the accesses of an array refer-

ence and store an extra attribute that counts the number

lengthR of array elements contained. The program/data

trace T is the set of all accessed data- and instruction-bus

addresses. It contains all collected accesses in the form

of tuples ma = (time, addr, acctype) ∈ T specifying

time ∈ [0, runtime in cycles] in absolute system cycles,

the accessed address addr ∈ [0, virtual memory size) of

the reference and the access type acctype, denoted by ei-

ther r (data read), w (data write), d (data read or write) or

i (instruction read).

Furthermore, a discriminator Ref
acctype
refname can be applied

to T to extract the specific accesses of type acctype of the

reference refname:

Ref t
R :={ma = (time, adr, type) :

adr ≥ baseadrR,ma ∈ T, type = t

adr < baseadrR + sizeR · lengthR} ⊂ T

For simplicity, Ref∗

R includes all traced tuples of refer-

ence R. If, for example, only the data bus is used, it is

Ref∗

R = Refd
R.

III. METHOD

A. Data acquisition

In a first phase, a trace of a fixed problem size is gen-

erated by capturing the addresses and properties of all

memory accesses. Different tools can be used to gener-

ate such traces:

QPT: On SPARC [Mauro and McDougall, 2001],

[SPARC, 2000] architectures, for example, there exists

the QPT [Larus, 1993] toolset. It distinguishes between

data read, data write and instruction read accesses. These

traces are useful for binary level post-compilation opti-

mizations. Such optimizations will rely on all the runtime

information caught. They will be realized by manipulat-

ing the original binary to use dedicated dynamic memory

allocations.

SPD: Given the source code of the application to be

optimized, there is another method for acquiring trace

data that supports a deeper analysis. It is based on self

protocoled datatypes (SPD) that we developed and that

can be used instead of the original data types. Tracing

with these is helpful for examining and refining parts of

the whole program by focusing on only the basic con-

flicting scenarios within the source code. Additional ac-

cess attributes like the name of the triggering reference

(refname) and its data type (field-type) can be extracted

without changing the binary used to produce the trace.

These attributes may be taken into account by future op-

timization strategies like, for example, a symbolic refer-

ence analysis.

Other: Due to the availability of the GNU tool gdb on

many architectures, it is interesting to use it for data ac-

quisition by simulated program runs. Binaries (with sym-

bol table) include valuable symbolic information helpful

for generating more transparent analyses.

Another pure simulation tool Simics [Magnusson et al.,

2002], [Magnusson et al., 1998] is useful for address

trace generation with the ability to focus on special ap-

plication bounded addresses only.

For these and other tools it is mandatory that the trace

generation is not corrupting inter-reference correlations.

Apart from analyzing given applications, the tracing tools

are also useful to verify the benefits of optimizations.

B. Histograms

During the trace run of the program to be analyzed,

the generated access pattern has to be stored in a way

that conserves information on which the later optimiza-

tion phase depends. Our simulation based histogram il-

lustrations expose patterns in an intuitively understand-

able manner. A directed extraction of the data stored

in the first phase supports the final automatic optimiza-

tion step. Furthermore, the intuitive understandability of

graphically visualized histograms inspires the invention

of new types of histograms capturing additional informa-

tion suitable to support a more target oriented or better

performing analysis.

For simplicity, we consider in the following only data

accesses T d
∗

(both, reading and writing) and no instruc-

tion reading accesses. Our histograms count accesses to

address offsets or address differences of accesses. They

hold counts for up to Hsize consecutive such address val-

ues. Hsize will match the size SC of the cache of the

target platform. Different types of histograms are em-

ployed:

SRH – single reference histogram: The stored data of

the first histogram type SHR is concerned with a sin-

gle reference R only. For an address baseadrR + i

the value SHR(i) counts the number of memory ac-



cesses to the address offset i of reference R, such that∑Hsize−1
i=0 SHR(i) = |Refd

R|. The latter represents the

significance of the reference R in comparison to the other

references in the program trace. The generated pattern

stored in the histogram is evaluated by accumulating the

offsets from the base address baseadrR. The histogram

SHR is then defined as the set of all pairs of offsets i and

their corresponding access count SHR(i):

SHR(i) := |{ma = (time, adr, type) :
ma ∈ Refd

R,

i = (adr − baseadrR)%Hsize}|

SHR := {(i,S HR(i)) :
i ∈ [0,Hsize)}

For scalar 0-dimensional types of references, the his-

tograms degenerate to simple counters.

SDH – self distance histogram: A self distance histogram

DHR refers to a single reference R, too, but accumulates

the distances of consecutive accesses to R. We first in-

troduce the predecessor predR2
(ma) ∈ Refd

R2
of an ac-

cess ma = (ta, aa, t) ∈ Ref t
R1

in order to then define

DHR(i) for an address distance i:

predR2
(ma) := (tb, ab, t) ∈ Ref t

R2
with

tb = max{time :
∃ (time, a, t) ∈ Ref t

R2
,

time < ta}

DHR(i) := |{ma = (ta, aa, d) ∈ Refd
R :

∃ (tb, ab, d) = predR(ma),
(aa − ab)%Hsize = i}|

The information extracted by this kind of histogram de-

scribes the step increment of sequential memory ac-

cesses. Other references with similar step increment pat-

terns can be padded in order to avoid thrashing con-

stellations. Furthermore, given a sequential access pat-

tern, which can be observed for many references, the his-

togram allows us to detect the prefetch distance and to

estimate the resulting usage efficiency for each cache line

fetched. Larger distances imply a sparser usage. This in-

formation can be used to resolve padding conflicts with

other references by favoring references with more effi-

cient cache line usage.

PDH – pairwise distance histogram: This type of histo-

gram calculates distances like SDH , but this time, the

accesses refer to the consecutive accesses between two

distinguished references R1 and R2:

P HR1,R2
(i) := |{ma = (ta, aa, d) ∈ Refd

R1
:

∃ (tb, ab, d) = predR2
(ma),

((aa − baseadrR1
)−

(ab − baseadrR2
))%Hsize = i}|

The histogram P HR1,R2
highlights distances conflicting

spatially. To avoid the problem of mutual thrashing, all

significant distances in P HR1,R2
should be excluded in

the later pad set.

sList =sort( SHd
∗

by | SHd|)

gH = Hd
stack

FOR H ∈ sList DO

offsets[H] = fmin(gH,H, offsets)

gH = gH ⊕ (H ≫ offsets[H])
DONE

Figure 1: Optimization Algorithm

Histograms support a number of basic operations useful

during the optimization. Two histograms H1 and H2 can

be merged to a new histogram H = H1 ⊕ H2 which is

defined a follows:

∀Hsize−1
i=0 H(i) = H1(i) + H2(i)

A histogram H can be rolled by an offset o to yield a new

histogram H ′ = H ≫ o which is defined as follows:

∀Hsize−1
i=0 H ′((i + o)%Hsize) = H(i)

The significance |H| of a histogram H is defined as the

number of the accesses contained:

|H| :=
∑Hsize−1

i=0 H(i)

In the following, these operations and constructs are used

to formulate the optimization algorithm.

C. Optimization

The third and final phase is the optimization. It uses the

different types of histogram data generated to determine

a pad set for a later cache optimized program execution.

The algorithm is based on a greedy strategy recognizing

the patterns the histograms describe. Appropriate heuris-

tics consider the conflict potential and find a padding with

minimal miss potential.

The algorithm we propose, as outlined in Figure 1, is

straightforward and tries to simplify the complex prob-

lem of finding the best fitting overall solution by using

reference and inter-reference specific histogram overlay-

ing. To do so, (1) it applies the greedy paradigm to a

sorted list of histograms which are padded with a ”high-

est significance first” strategy. Then, the reference chosen

to be padded is shifted by an offset that offers the best

overlay with a global histogram gH . This offset is the

current reference’s relative pad. It is determined (2) by a

minimization function fmin(gH,H, offsets). The global

histogram gH represents the conflict potential of the ref-

erences padded so far. It is initialized with the histogram

pertaining to special references like the stack area that

cannot be padded easily. Each time a new offset has been

determined, the global histogram is updated by merging

it with the current histogram rolled by the amount of its

offset. Frequently, there exists a set Omin of multiple

offsets with a minimal or near minimal conflict poten-

tial according to fmin. These alternatives offer flexibility

when optimizing simultaneously for further targets like,



for example, for efficient use of more than one level of a

cache hierarchy.

Equipartition: A simple, intuitive approach is trying to

make use of the whole cache. The function fmin in

charge tries to achieve a uniform distribution of cache

accesses by padding all references according to their ac-

cesses described in the SRH histograms. In each step of

the algorithm, the current histogram H of a single ref-

erence and the current global histogram gH are merged

with an offset found by a normal deviation guided func-

tion fmin. We first define the histogram jH as the global

histogram after merging it with the current histogram H

at offset j. Then, we define sj as a measure for the de-

viation to be expected for offset j. The set S is defined

as the set of values sj for all available offsets j. The set

Omin contains the offsets corresponding to a minimal or

near minimal deviation. The parameter ǫ ≥ 0 controls

the accepted range of results from which fmin chooses

its result.

jH := gH ⊕ (H ≫ j)

sj := 1
Hsize

∑Hsize−1
i=0 (jH(i) − 1

Hsize

|jH|)2

S := {sj : j ∈ [0,Hsize)}

Omin := {i : si ≤ ǫ + min S}

This strategy is especially useful for applications whose

memory footprint is smaller or not much larger than the

cache size.

Inter-reference distance: Each non zero value in a PDH

difference histogram points out a potential conflict for the

pair of references concerned. The histogram bars weight

the conflict distances between the two references. A sin-

gle bar’s height indicates the conflict potential for the

bar’s offset. Thus, in order to avoid mutual cache thrash-

ing the difference in the padding offsets for the two refer-

ences concerned, is chosen to correspond to a bar as low

as possible considering that this optimization has to be

done simultaneously for all PDH-histograms of the cur-

rent reference with the references already padded in the

global scope.

Self distance restrictions: In the cases of multiple simi-

larly optimal offsets determined by other strategies, the

histogram type SDH can additionally optimize for k-line

prefetching. Prefetching is very susceptible to memory

bandwidth, which can be lowered by padding references

with similar self distances, as described by the SDHs, to

cache regions avoiding continued thrashing.

After determining the offsets forming the runtime pad

set, the memory allocation can be further optimized with-

out influencing the padding offsets to minimize the total

memory usage. This optimization is not in the scope of

this paper. It resembles the enlarged backpack problem

for a multiple count of packs.

Finally the optimization results are stored in a single file

associated with the executables name.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60

h
it

 ra
te

problem size (n)

opt
unopt

opt(wght)
unopt(wght)

Figure 2: Cache Hit Rate for LU Decomposition on a 4k Direct Mapped
Cache with Line Size 32

D. Optimized Execution

The final target of the considerations above is the opti-

mized cache aware execution of the traced program. We

achieve it with one of two options:

ld preload: In order to intercept the original memory al-

location operations associated to individual references,

we have to catch and to patch all malloc, free and

realloc system calls during the runtime of the pro-

gram to be optimized with the help of the pre-determined

pad set. A simple but effective way of doing this, is to

manipulate the internal hooks of the memory manage-

ment system. Therefore, a preloaded code overriding the

original allocations was written, which sets up the pad

offset of each dynamically allocated reference. The orig-

inal program code does not need to be aware of these

circumstances, in fact, the base address is shifted to the

optimized offset but from the application’s perspective it

appears as a normal memory allocation.

Compiler, Datatypes: Having the source of the applica-

tion to be optimized, the compiler itself is capable to

shift the references to the pre-determined offsets, as well.

In this case, all pads are already set and fixed up in the

compilation. Besides, this source level patching offers

zero runtime overhead for accessing the pre-determined

padded structures by simple base address shifts which

have to be done in the unoptimized case, too.

In our testing environment we actually do the padding by

applying the pad set to the self protocoling data types.

IV. EXPERIMENTAL RESULTS

To show the usability of the concept of automated simula-

tion driven padding, we chose the often used matrix data

structure and, as a typically applied operation, the ma-

trix multiplication. The multidimensional structures are

made up of separate arrays in order to keep the opportu-

nity for reordering and to maximize the number of refer-

ences that could be padded. This assumption reflects the

reality of often used row or column major data types in

high level programming languages. C-programs should



 0

 5

 10

 15

 20

 0  256  512  768  1024  1280  1536  1792  2048

c
o

u
n

t 
o

f 
a

c
c
e

s
s
e

s

cache / set addresses

 100

 1000

A,s,i,j,helper
x[]
b[]
A[]

A[0][]
A[1][]
A[2][]

A[3][]
A[4][]
A[5][]
A[6][]
A[7][]
A[8][]
A[9][]

(a)

S
R

H
 / c

o
u
n
t o

f a
cc

es
se

s

S
D

H
 / c

o
u
n
t o

f a
cc

es
se

s

histogram offset addresses of reference A[15]

LU/FBS(x100)-SRH
FBS-SRH

LU/FBS(x100)-SDH
FBS-SDH

 0

 50

 100

 150

 200

 0  100  200  300  400  500
 1

 10

 100

 1000

 10000

 100000

(b)

Figure 3: (a) Histogram for LU Decomposition with n=10 (b) SRH, SDH of the Row Reference A[15]

use row-major memory alignment for efficient memory

access, but not all programs are optimized in this way.

For this reason, non language conform data to memory

mappings are interesting, too, for showing that padding

can support a better cache performance for such pro-

grams, as well.

In the following, we present the results of examining and

optimizing a few different applications.

A. LU decomposition to solve linear equation systems

We examine data intensive solvers as the Gauß-algorithm

in order to design target oriented optimization heuristics.

In Figure 3(a) the first histogram type SRH shows the ac-

cess patterns of each reference with their original pads.

There are graphs for the rows Ai of matrix A, its row

pointers A[], the vectors x, b and the stack segment in-

cluding the local variables as well as loop iterators, accu-

mulating variables and the pointer to the matrix A. The

chosen problem size of n = 10 allows to conveniently

display at once all the access patterns resulting from solv-

ing a linear system of equations.

In order to solve the problem Ax(i) = b(i) several times

with a modified vector b(i) and a static coefficient matrix

A ∈ Rn,n we can decompose A into a lower triangular

matrix L and an upper triangular matrix U with LU = A.

Both of the triangular matrices are stored in the original

places of the former quadratic coefficient matrix A. U

is formed by applying the Gauß elimination algorithm to

A while L holds the corresponding elimination factors.

The computation of L and U takes place only once and

has an asymptotic complexity of O(n3). The forward

substitution Ly = b(i) derives y from the current vec-

tor b(i) and the backward substitution Ux(i) = y solves

the proper problem. Both operations are of complexity

O(n2) and address the same references the LU decom-

position already accessed.

Figure 3(b) on the right side shows the histograms SRH

and SDH of the single row A15’s accesses in one diagram

for solving the problem Ax(i) = b(i) of the size n = 50

for 100 different vectors b(i). The pattern for SHA15
is as

expected and mixes phases one and two by counting all

accesses. The overlayed (right axis) histogram DHA15
,

depicts the difference patterns split according to the two

sequential phases of decomposition and solution. The

pattern DH of a matrix row generates, in addition to the

linear inner loop sequential accesses, spikes for reverse

directed accesses for every line rewind enforced by the

outer loop of the decomposition. The 100 forward and

backward substitutions are computed in place by altering

the elements of vector b. In the difference pattern his-

togram, they show a behavior similar to that of the LU

decomposition.

Figure 2 compares the performances before and after op-

timization for different system sizes n. One measurement

comprises one LU decomposition and 100 repeated solu-

tions. The performance of the optimized versions is con-

sistently higher and the results behave much more stable

than with the original, straightforward padding provided

by the memory allocation system.

B. Matrix-Matrix Multiplication

The results for another typical problem of an optimized

single matrix-matrix multiplication C = A ·B for differ-

ent system sizes n shown in Figure 4 are padded into a 4k

direct mapped cache with line size 32 and hit / miss laten-

cies of tLH
= 1 and tLM

= 7, respectively. The matrices

A,B,C ∈ Rn×n can be stored in row- or column-major

order. For the experiment’s results presented in Figure

4(a) a unique row-major ordering for all three matrices

was chosen (row-row-row ordering). For small n, com-

pulsory misses are dominant and memory bandwidth is

poorly used with only partially accessed cache lines. For

n < 14 the whole problem can be cache contained al-

though the unoptimized allocation scheme arranges ref-

erences’ footprints usually cyclically within the cache is-

suing larger chunks of memory aligned to memory para-

graphs, compare Figure 3(a). Our current padding heuris-

tic compacts all references for minimal, but effective



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60

h
it

 ra
te

problem size (n)

opt
unopt

opt(wght)
unopt(wght)

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60

h
it

 ra
te

problem size (n)

opt
unopt

opt(wght)
unopt(wght)

(b)

Figure 4: Matrix-Matrix Multiplication on a 4k Directed Mapped Cache with Line Size 32; (a) Exclusive Row, (b) Row-Column Ordered

cache usage. With increasing problem size, the original

program runs suffer early of slight but continuous degen-

eration of cache performance because the probability of

thrashing grows with n. Badly chosen memory align-

ments drastically impact the over-all hit rate quite often.

The weighted plots in the figures discussed give an im-

pression of the runtime effect based on the efficiency of

the program’s data cache usage. Given the numbers h of

hits, m of misses and the latencies tLM
and tLH

, we es-

timate the total sum of cycles used to access memory as

h · tLH
+ m · tLM

. The weighted hit rate hrw is then

defined as follows:

hrw =
h · tLH

h · tLH
+ m · tLM

Figure 4(b) depicts the results measured for a more effi-

cient implementation with row-column-row major mem-

ory alignment of the three matrices A, B and C, respec-

tively. Due to the smaller number of potentially conflict-

ing cache lines, the over-all performance is further in-

creased compared to the row-row-row major memory or-

dering in Figure 3(a).

C. Runge-Kutta solver for ODEs

As an example dealing with different data structures and

access patterns, we examined an application to solve or-

dinary differential equations (ODEs) with a Runge-Kutta

algorithm. For certain problem sizes this application dis-

played unexpectedly long run times. Using our toolset

we were able to identify a thrashing constellation in these

configurations. An analysis of the access patterns en-

abled us to devise a new solver with a consistently im-

proved memory behavior [Korch and Rauber, 2006].

V. RELATED WORK

Techniques for increasing the locality of memory ref-

erences have been studied extensively. An important,

purely analytical model for effects of loop transforma-

tions [Abella et al., 2002] partly combined with padding

and tiling can evaluate cache performance using CMEs

(Cache Miss Equations) [Ghosh et al., 1997], [Vera et al.,

2004] for special and zoned loop constructs. Another ap-

proach [Scholtes, 2003], based on conflict classes, does

so for the Cholesky factorization. For applications with

seemingly irregular or complex access patterns, an alter-

native memory mapping can be applied by evaluating in-

dices with the help of an easy to compute map function.

The memory access patterns generated by these func-

tions are designed to have a better cache performance but

they are strictly problem specific [Coleman and McKin-

ley, 1995]. The Morton-Ordering is such a more general

approach optimizing the memory layout for matrix oper-

ations as proposed in [Thiyagalingam and Kelly, 2006].

Many scientific libraries like LAPACK [Anderson et al.,

1999] are based on the BLAS (Basic Linear Algebra

Subprograms) that can be considered as a de facto stan-

dard for linear vector matrix based numerical algorithms.

ATLAS (Automatically Tuned Linear Algebra Software)

[Whaley et al., 2001] provides an efficient implementa-

tion of BLAS routines, as well as a genetic [Vera et al.,

2003] CME guided algorithm for detecting well perform-

ing tile sizes [Jin et al., 2001], [Rivera and Tseng, 1999]

and pad offsets [Vera et al., 2002].

VI. CONCLUSION

To our knowledge we present a new approach to design

a post compilation performance optimization tool set for

general use without necessarily having the source code

of the application to be optimized available. Additional

tools are provided for analyzing graphically the data ac-

quired in the first phase trace run and the results of the

optimizations. One of these is an extensible cache sim-

ulation engine with a graphical front end supporting the

issues of our optimization strategies. It is also suited for

guiding a manual program optimization.

The proposed automated optimization algorithm uses

the data previously acquired and stored into histograms

describing access patterns. It balances the potential



of single references to cause cache conflicts. Mea-

sured results show a significantly improved cache perfor-

mance. Unfortunate memory allocations producing ex-

cessive thrashing are avoided altogether.

For future, more sophisticated optimization heuristics ac-

counting for multi-level caches, the different memory hi-

erarchy latencies will be used to refine the prediction of

miss penalties and, along with this, the automatic op-

timization. Furthermore we expect it to be possible to

extrapolate the memory behavior of an application from

a few small problem sizes to larger problem sizes by

spreading the measured histograms accordingly. Our dis-

tance histograms currently disregard the time passed be-

tween two accesses whose distance is recorded. We plan

to introduce a temporal component reflecting this time in

order to provide a better base for optimizations.

REFERENCES

[Abella et al., 2002] Abella, J., Gonzàles, A., Llosa, J., and Vera, X.
(2002). Near-optimal loop tiling by means of cache miss equations
and genetic algorithms. In Proceedings of the 2002 ICPP Work-
shops, pages 568–577.

[Anderson et al., 1999] Anderson, E., Bai, Z., Bischof, C., Blackford,
L. S., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum, A., Ham-
marlin, S., McKenney, A., and Sorensen, D. (1999). LAPACK Users’
Guide, Third Edition. Society for Industrial and Applied Mathemat-
ics.

[Coleman and McKinley, 1995] Coleman, S. and McKinley, K. S.
(1995). Tile size selection using cache organization and data lay-
out. In Proceedings of the SIGPLAN ’95 Conference on Program-
ming Language Design and Implementation (PLDI’95), SIGPLAN
Notices, La Jolla, CA.

[Ghosh et al., 1997] Ghosh, S., Martonosi, M., and Malik, S. (1997).
Cache miss equations: An analytical representation of cache misses.
Workshop on Interaction between Compilers and Computer Archi-
tectures, Third International Symposium on High-Performance Ar-
chitectures (HPCA-3).

[Handy, 1998] Handy, J. (1998). the Cache Memory book. Academic
Press, Inc., 2nd edition. THE authoritative reference on cache de-
sign.

[Jin et al., 2001] Jin, G., Mellor-Crummey, J., and Fowler, R. (2001).
Increasing temporal locality with skewing and recursive blocking.
In SC2001: High Performance Networking and Computing. ACM
Press and IEEE Computer Society Press. CD-ROM.

[Korch and Rauber, 2006] Korch, M. and Rauber, T. (2006). Optimiz-
ing locality and scalability of embedded Runge-Kutta solvers using
block-based pipelining. J. Par. Distr. Comp., 6(3):444–468.

[Larus, 1993] Larus, J. R. (1993). Efficient program tracing. In Pro-
ceedings of IEEE Computer, pages 52–61.

[Magnusson et al., 2002] Magnusson, P. S., Christensson, M., Eskil-
son, J., Forsgren, D., Hållberg, G., Hgberg, J., Larsson, F., Moest-
edt, A., and Werner, B. (2002). Simics: A full system simulation
platform. Computer, 35(2):50–58.

[Magnusson et al., 1998] Magnusson, P. S., Dahlgren, F., Grahn, H.,
Karlsson, M., Larsson, F., Lundholm, F., Moestedt, A., Nilsson, J.,
Stenstrøm, P., and Werner, B. (1998). SimICS/sun4m: A virtual
workstation. In Usenix Annual Technical Conference, New Orleans,
Lousiana.

[Mauro and McDougall, 2001] Mauro, J. and McDougall, R. (2001).
SOLARIS Internals. Sun Microsystems Press - A Prentice Hall Title.

[Oren, 2000] Oren, N. (2000). A survey of prefetching techniques.
Technical Report number CS-2000-10, University of the Witwater-
srand, Johannesburg, South Africa.

[Rivera and Tseng, 1999] Rivera, G. and Tseng, C.-W. (1999). A com-
parison of compiler tiling algorithms. In Proceedings of the 8th In-
ternational Conference on Compiler Constuction (CC’99).

[Scholtes, 2003] Scholtes, C. (2003). Abschätzung der Fehlzugriffe bei
dünn besetzten Matrixoperationen auf Architekturen mit einem di-
rekt mapped Cache. Dissertation.

[SPARC, 2000] SPARC (2000). The SPARC Architecture Manual Ver-
sion 9. SPARC International, Inc.

[Thiyagalingam and Kelly, 2006] Thiyagalingam, J. and Kelly, P. H. J.
(2006). Is morton layout competitive for large two-dimensional ar-
rays ? Concurr. Comput. : Pract. Exper., 18(11):1509–1539.

[Vera et al., 2003] Vera, X., Abella, J., Gonzalez, A., and Llosa, J.
(2003). Optimizing program locality through cmes and gas. pact,
00:68.

[Vera et al., 2004] Vera, X., Bermudo, N., Llosa, J., and Gonzalez, A.
(2004). A fast and accurate framework to analyze and optimize
cache memory behavior. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 26(2):263–300.

[Vera et al., 2002] Vera, X., Llosa, J., and González, A. (2002). Near-
optimal padding for removing conflict misses. In Pugh, W. and
Tseng, C.-W., editors, LCPC, volume 2481 of Lecture Notes in Com-
puter Science, pages 329–343. Springer.

[Whaley et al., 2001] Whaley, R. C., Petitet, A., and Dongarra, J. J.
(2001). Automated empirical optimizations of software and the AT-
LAS project. Parallel Computing, 27(1–2):3–35.


