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Abstract— A distributed parallel and soft real-time simulation
architecture is presented. It employs a publish-subscribe commu-
nication framework layered on a peer-to-peer Transport Con-
trol Protocol-based message passing architecture. Mechanisms
for efficient implementation and control of information flow
between simulated entities form part of the architecture. A light-
weight base simulation object model is also employed to provide
maximum modularity and extensibility while keeping complexity
manageable. The simulation architecture evolved over time to
allow for the efficient implementation of a system of systems,
virtual simulation. It has been successfully applied in an air
defence simulation as a decision support tool and for standard
operating procedure concept evaluation.
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I. INTRODUCTION

In a decision support environment, system of systems level
simulations are applied to provide end-users with the capa-
bilities to identify, define, implement (virtual) and evaluate
concepts that would otherwise be costly, time-consuming or
impractical. Systems of systems level simulators typically
involve multiple modelled entities with complex interactions
and are executed in virtual or constructive simulation modes
[1].

This paper presents a simulation architecture that evolved
over time during decision support to an air defence procure-
ment programme [2, 3]. Although there was no need for a
generic, re-usable architecture – It was to be only used for a
single simulation environment – it still had to provide stan-
dardised interfaces for efficient integration of models, services
and other simulation-logistical functions. It should also support
both constructive and virtual simulations, hence it should at
least be soft real-time compatible when performing operator-
in-the-loop simulations. Operators will mainly interact with
the simulation via integrated mock-up consoles and not full
immersive synthetic environments, which may be supported
by integrated, external systems. Furthermore, it must allow
both distributed and non-distributed simulation execution. The
first is required to maintain soft real-time compliance when
employing the virtual simulation mode if model processing
loads are high. The latter is required for easier test and
debugging as well as batch executions for statistical analyses.
A conservative, discrete stepped time management mode forms
an inherent part of the simulation architecture, as almost all

of the models used in the air defence simulation environment
are discrete time-stepped. To provide an efficient and effective
decision support capability, specifically during system concep-
tualisation and field exercises, the architecture should allow
for quick implementation and integration of new models. The
same holds for the integration of external systems. Interoper-
ability with other simulations is not an absolute requirement,
but should not be excluded by design.

Several peer-to-peer architectures are reported in the liter-
ature, of which some are aimed at internet-based information
sharing, discrete event simulations [4]–[7] or cooperative com-
puting, such as solving processing intensive problems with
ad hoc peer-to-peer networks [8]. Some architectures are also
aimed at massively multi-player online role playing and other
games [9, 10]. Giesecke [11] quantitatively investigated avail-
ability in peer-to-peer systems for prediction and identified
basic characteristics to derive a formal model for describing
architectures. Kotilainen [12] reports on an efficient peer-to-
peer network simulator used to study artificial neural network
algorithms.

Other simulation architectures or frameworks include the
Aggregate Level Simulation Protocol (ALSP) [13], Distributed
Interactive Systems (DIS) [14] and the High Level Architec-
ture (HLA) [15]. The first two are seen as precursors to HLA.
Although all three were developed for the defence community
of the United State of America, HLA was intended to be
adopted by the wider simulation community. The Standard
Simulation Architecture [16] provides an additional framework
to HLA to allow more flexibility, but be more cost-effective
without paying performance penalties. The Open Simulation
Architecture (OSA) [17] is a discrete event simulation archi-
tecture that promises integration of new and existing contri-
butions at all levels. Hawley [18] proposes an object-oriented
simulation architecture that separates the implementation of
the dynamic system being modelled (application layer) from
the simulation management functions (executive layer). The
Extensible Modelling and Simulation Framework (XMSF)
[19] aims to harness web-based technologies to promote in-
teroperable simulations and provides mechanisms for systems
to discover and use web services.

Of these architectures only HLA was evaluated since it is a
fully fledged approach that covers all aspects of the simulation
life cycle. However, in the South African defence environment
it was not the optimal choice at the time. Although HLA pro-
motes interoperability, the federation object model should still
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be agreed or translated when two simulations are integrated.
This was not always the case, therefore interoperability was
not easily achievable [3].

The simulation architecture presented is not offered as an al-
ternative for the above-mentioned architectures or frameworks,
but rather to highlight the mechanisms used to implement an
efficient architecture against the backdrop of system of systems
simulation criteria. Efficiency in terms of implementation is
required since a very small development team was used. In
terms of simulation execution, soft real-time execution for
multiple entities with update rates of 100Hz are used, requiring
an architecture with low overheads.

II. SYSTEM OF SYSTEMS-LEVEL SIMULATION
ARCHITECTURE NEEDS

This section addresses the specific needs for a simulation
architecture to meet the criteria as outlined in Section I and is
discussed in the following subsections.

A. System of Systems Simulation

Fig. 1: The Systems Hierarchy applied to Modelling and
Simulation (Adapted from [1, 20])

An adapted version of the systems hierarchy is shown in
Figure 1 as applied to modelling and simulation [1, 20].
Systems of systems simulations are typically applicable at the
engagement and tactical levels where entities are modelled at
equipment and individual operator level. Individual entities are
modelled, but forms “systems” when grouped organisationally.
Tactical simulations also require one-on-one engagements,
whereas higher order simulations require strategic actions of
aggregated entities. For mission and theatre simulations enti-
ties are aggregated into units and generally referred to as war-
gaming simulations [1]. Lower system hierarchy simulations
tend to focus more on the function of entities, whereas the
higher levels on the behaviour of entities.

B. Constructive and Virtual Simulation Mode Support

Tactical level simulations (Figure 1) imply that not only
equipment is simulated, but also the use of equipment, in-
cluding standard operating procedures. This again implies that
the human operators, human-equipment and human-human

interactions be modelled, so that it becomes a constructive
simulation. Simulation execution requirements for constructive
simulations tend to be less stringent, but the faster a simulation
executes, the more applicable it becomes as a what-if type
analyses tool, as it allows a simulation user to test and evaluate
scenarios quickly. Virtual simulations need to be at least soft
real-time compliant to maintain realism [21].

C. Distributed and Non-Distributed Simulation

Non-distributed simulations are generally less complex to
test and debug than distributed simulations, as simulation
execution does not have to be traced across multiple processing
nodes. However, non-distributed simulations may be soft real-
time incompatible when model processing loads become too
high for a single processing node.

Distributed simulations on the other hand require efficient
inter-process communication frameworks, such that the inter-
processing node communication overheads do not counter
the advantage of extra processing nodes. Virtual simulations
with multiple entities that are modelled at system of systems
level, typically require distributed simulation to either provide
faster than or real-time compatibility. The ideal simulation
architecture would support both distributed and non-distributed
simulation execution without having to alter the implementa-
tion, but only its configuration.

D. Modularity and Extensibility

Since the simulation architecture is used in a decision sup-
port environment, including the evaluation of system concepts,
it should be efficient to add, maintain and upgrade models
of equipment, operator terminals, external system interfaces
and operators. In addition to the entities that participate in a
synthetic environment, it should also be efficient to extend,
maintain and upgrade the synthetic environment itself. Ser-
vices such as inter-entity line of sight calculations should be
inherently part of the synthetic environment. External system
interfacing should be supported, but note that external systems
may have requirements that cannot be met by the simulation
architecture, such as hard real-time compatibility.

E. Time-stepped Simulation

Conservative time management is an integral part of the
simulation architecture and is enforced by using a discrete
time-stepped mechanism. Spatio-temporal properties play a
pivotal role in any air defence system, therefore time-line
accuracy is of importance in a simulation environment, and
hence architecture.

Although models may internally use predictive event-based
time management, their external interfaces should support
conservative time management. This is necessary as both
predictable and non-predictable events occur in an air defence
simulation environment, of which the non-predictable events
may violate causality, if non-conservative time management is
used.

Most of the external systems that will be integrated, produce
spatio-temporal data, be it in the form of positions of an



aircraft from a flight simulator, or time-stamped detections
from a sensor such as a radar. External systems that may be
integrated includes equipment, data sources and simulators.

III. HIGH-LEVEL SIMULATION ARCHITECTURE DESIGN

In order to meet the needs as identified in Section II, a
simulation architecture evolved from a single application to
a fully distributed simulation architecture. After providing
a short overview of the present architecture, each part is
carefully explained in subsequent subsections.

The simulation architecture is based on an inter-process
communication (IPC) framework using the Transfer Control
Protocol (TCP). Processing nodes are fully connected in a
peer-to-peer fashion and message-passing is managed via a
publish-subscribe mechanism. Processes that need to commu-
nicate within the simulation architecture are:
• Models - Models of equipment, humans and operator

consoles (interfaces).
• Services - Includes line-of-sight, terrain elevation and

peripheral services such as data loggers.
• Consoles or Gateways - All external systems that need

to be integrated with the simulation architecture is im-
plemented via a gateway which in effect translates the
protocol of the external system into the simulation object
and spatial reference models of the simulation architec-
ture. Mock-up operator consoles are also integrated via
this mechanism.

Fig. 2: Base Simulation Object Model

The above list of items is grouped under a base object
to form the simulation object model of the architecture as
indicated in Figure 2. An economical simulation object model
(SOM) has been designed to curb implementation complexity.

A. Publish-Subscribe Object Communication Framework
All models, services and consoles (hereafter collectively re-

ferred to as objects) should be able to communicate efficiently
in a distributed environment. Furthermore, it should be easy
to establish and manage the communication channels between
objects. A layered approach will reduce future migration effort
to other IPC frameworks: keep the object implementation and
communication logistics of an object separate. The object
communication framework should also hide the underlying
distributed implementation from the user of the framework and
not dictate model fidelity or simulation granularity. The frame-
work should allow distributed and non-distributed execution

for easier test and debugging without requiring implementation
changes of the framework or client software.

The publish-subscribe mechanism employed in the object
communication framework is analogous to magazine subscrip-
tions and also similar to object management in HLA [22]:
• Different publishers advertise their sets of titles available

for subscription.
• Subscribers may subscribe to titles of their choice when

they would like to.
• Publishers will then publish issues at regular intervals,

which all subscribers will receive.
• All subscribers receive identical copies of an issue of a

title.
• Publishers may also add titles at any given time to their

collections. Cancellation of titles is not supported at
present.

• A subscriber can read a copy of an issue as many times
as they would like until a new one arrives.

• A subscriber may also elect to ignore old issues and only
read the latest. Note that this is one of two supported
modes, the second is an extension to the analogy (See
next list).

• A publisher cannot change the content of an issue once
it has been published and received by its subscribers.

The implementation of the publish-subscribe mechanism is
somewhat extended over the analogy to allow more flexibility:
• Subscribers can select at what interval (rate) they want

to receive issues. The maximum update rate is limited by
the smallest time increment (frame) of the simulation.

• Subscribers can select if they want all issues of a given
publisher, or just selected titles, without subscribing sep-
arately to each title.

• The subscriber may select what will happen with copies
of issues that are received but not read. If kept, all copies
from the oldest to the most recent have to be read to get
to the latest issue. If not kept, the most recent copy is
always available to be read. An in between mode is not
supported.

• A specialised extension to support modelled communica-
tions between objects (modelled equipment or operators,
not IPC related communications) is provided with ad-
ditional parameters to support transmission functionality
(status, delays, sender/receiver identification, etc.). Mes-
sages destined for transmission are passed immediately
to the receiver where they are delayed in a cache to
model the correct transmission delay, until delivery. The
minimum transmission delay of a message is limited by
the minimum time increment of the simulation. Messages
are also rather delayed at the receiver than the transmitter,
as the receiver knows, implicitly, its own position and,
from the issue meta-data, the sender’s position which are
both required by the communications model.

Functionality as listed in the above two lists, are directly
supported in the simulation architecture as part of the base
object model and the simulation backbone, which is a set of



classes and functions providing the necessary mechanisms.

B. Peer-to-peer Processing Node Architecture

A peer-to-peer processing node architecture was ultimately
selected above the client-server architecture, as the server may
form a bottleneck due to the double latency and bandwidth
usage for messages transmitted from a client to the server and
then to the receiving client from the server (Figure 3(a)).

To minimise traffic at a server, an intermediate layer of
servers were considered before using the peer-to-peer archi-
tecture. The intermediate servers (Figure 3(b)) have less traffic
to route, and will only transmit messages to other intermediate
servers via the top-level server if a receiving client requires
it. The scheme is efficient, but has one major drawback: The
architecture is not domain independent, as the clustering of
clients per intermediate server requires prior knowledge of
clients that can be grouped by type or anticipated traffic.

Note that the peer-to-peer architecture will result in a single
latency for messages passed between nodes (indicated as peers
in Figure 3(c)), but IPC connections have to be brokered
or configured in some way before a simulation execution
starts. In the client-server case, all clients connect to the
same server. The peer-to-peer architecture suffers from the
same domain knowledge challenge as the intermediate server
solution, i.e. which models may be grouped for acceptable
execution performance. The ultimate architecture would allow
for both the automatic distribution of models across processing
nodes, as well as automatically introducing intermediate server
layers for optimal execution performance. Each processing
node executes a subset of all objects (models, consoles and
services). In the case where a single processing node is
used, all objects are executed on it. As conservative time
management is used in a time-stepped fashion, the slowest or
most processing intensive object governs the global execution
performance of the simulation. Load balancing is therefore
necessary and is supported either as a static configuration
or with dynamic load management [23]. The latter requires
passing of objects in-process between processing nodes during
run-time.

The peer-to-peer architecture is fully connected, thus each
node is connected to each other node at start-up using TCP.
This results in n(n−1)

2 connections, where n is the number of
nodes (peers). For the client-server case the number of con-
nections equals the number of clients. Connections between
objects are made using a proprietary, binary-packed protocol,
irrespective if objects are on the same processing node or not,
or if only one processing node is used.

C. TCP Implementation Details

Specific TCP implementation tweaks to ensure lower mes-
sage latency between nodes are discussed in this subsection.

TCP messages are grouped per destination node and sent off
together instead of sending each message separately. Message
latency still turned out to be a problem due to TCP’s Nagel
algorithm [24]. The Nagel algorithm usually improves band-
width (saves on message header overhead) by caching short

messages for a certain time-out or until they are big enough to
fill a complete data packet before sending the data. Typically
message groups were much smaller than the normal packet
size of 1.5 kilobyte. Turning off the Nagel algorithm gave
the simulation architecture complete control over message
sending times which decreased latencies considerably. The
communication model would cause a node to send information
to every other node once every simulation time increment
which means that the shorter the latencies the faster the
simulation can execute.

The TCP sending buffer was also made bigger than the
default to allow the simulation architecture to push messages
into the sending buffer without blocking to allow the simula-
tion to continue processing while the TCP operating system
thread continues sending. This approach saves the overhead of
implementing the simulation’s TCP sending code in a separate
processing thread.

To start a distributed simulation, all the nodes except the
first node may be started up in any order. As soon as the first
node is started it makes connections to all the other nodes,
which in turn make connections to each other and finally start
the simulation.

IV. RESULTS

Initial experiments with a non-distributed and intermediate
server-client (see Section III) architecture showed that in order
to execute large enough simulations, distributed processing
would be required to maintain soft real-time compatibility
[25]. Approximately 6-8 processing nodes were estimated for
real-time compliance, but less could be used, as the model
loading metrics were very conservative. Between 40 and 100
objects, with varying levels of fidelity were anticipated. With
the actual architecture, a fully populated scenario translates
to 177 entities that require processing. The architecture is still
efficient enough to execute this at approximately soft real-time.
Of the entities, 160 are models, 8 consoles and 9 services.

Soft real-time execution is maintained by synchronising
with the local processing node clock. Processing time is
yielded not to exceed real-time. However, this only works
when the processing nodes are not overloaded, i.e. able to
process all models within a simulation time frame, otherwise
extra processing nodes may be added. If this still does not
help, soft real-time compatibility cannot be maintained.

Distributed performance tests were done with a process-
ing intensive test object that takes exactly 1ms PC time to
increment and publishes a single title which is a text string
of length 512 bytes. Each test object subscribes to the titles
of all the other test objects, including its own title. The
communication setup is thus fully connected over all objects.
A 100Hz closed loop distributed simulation is run over one
to six machines in as fast as possible mode. Simulation
distribution and communication overhead results are presented
in Table I. The simulation frames are 10ms in length, equating
to a 100Hz update rate, giving ten 1ms slots for a maximum
of ten models per node to sustain soft real-time execution. It
can be seen that a single node is very efficient, running at



Fig. 3: Client-Server (a) Intermediate-Server (b) and Peer-to-Peer (c) Processing Node Architectures

99% of real time with 10 models which translates to a 1%
communication overhead. Table I also shows that:

1) to run up to 9 test objects real time at least 1 node is
required;

2) to run up to 18 test objects real time at least 2 nodes
are required;

3) to run up to 24 test objects real time at least 3 nodes
are required;

4) to run up to 32 test objects real time at least 4 nodes
are required;

5) to run up to 35 test objects real time at least 5 nodes
are required;

6) to run up to 42 test objects real time at least 6 nodes
are required.

To run 42 test objects at real time at least 6 nodes are
required running 7 objects each. This translates to an average
communication overhead of just under 30%. Network usage
was measured by using Windows XP’s task manager network
performance window. Note that the tests performed are worst
case scenarios. All objects subscribe to all other objects and
themselves (n2 subscriptions) and the issue size is 512 bytes
which is big enough for 21 double precision 3D coordinate
triplets or a list of approximately 64 English words.

The simulation architecture has been successfully applied
in an air defence simulation as a decision support tool and for
standard operating procedure concept evaluation. It has been
applied in extensions of the air defence simulation that include
satellite-based optical and radar sensors for maritime surveil-
lance concept development. It was also used for integration
with various external systems, including situational air picture
systems, operator console mock-ups, air traffic radars, flight
simulators and similar simulations.

V. FUTURE WORK

A key challenge with soft real-time simulations is what
should be done if the simulation slips on world-time? This
often occurs, as models tend to have spurious high processing
requirements. What techniques should be used to catch up
again on world-time, specifically when a simulation is con-
nected to external systems, such as a flight simulator or air
picture systems? One solution is to use innovative schemes in

console implementations to external systems to cater for data
that arrives at the wrong-time, i.e. too late, or to too early. In
the first case, prediction algorithms are necessary and in the
latter buffering schemes.

Future work includes conducting comparative studies be-
tween peer-to-peer, intermediate server and client-server archi-
tectures. There is also ample opportunity for load balancing
research: How to measure model loading per processing node
efficiently and effectively, and load balancing algorithms.

VI. CONCLUSION

The ability to execute an entire simulation in an all-in-one
mode on a single processing node (desktop computer) is a
key advantage in how the simulation architecture is used. It
is efficient and quick to configure scenarios for simulation,
and to visually verify them using peripheral two and three
dimensional viewers. Similar techniques are used to verify and
validate newly integrated models, consoles or services. It is
then merely a matter of changing a configuration to execute
the simulation distributed to achieve soft real-time execution.
The simulation architecture is suitable for parallel execution
on a small to medium scale infra-structure.

The publish-subscribe architecture is very flexible in terms
of objects and connection management. However, care should
be taken to adhere to a standard way of implementing objects
and not to abuse the flexibility.

The soft real-time performance figures obtained with worst-
case object loadings indicate that the architecture is adequate
for a small number of nodes with less than 10 objects per node.
It is expected that network overheads will limit scalability to
less than 100 objects in total, and therefore, the architecture
is not considered to be scalable for large simulations (100’s
of objects), requiring soft real-time performance.
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