
RUBLX : A RUBY-BASED BATCH LANGUAGE FOR XGRID

Tetsuya SUZUKI
Kiyoto HAMANO

Department of Electronic Information Systems
Shibaura Institute of Technology
Minuma, Saitama city, Saitama,

337-8570, Japan
Email: {tetsuya, m107076}@sic.shibaura-it.ac.jp

Abstract—We present a Ruby-based batch language
for Xgrid and its processor. Xgrid is an environ-
ment for distributed and parallel computing on the
Mac OS X operating system, and Ruby is an object-
oriented programming language for general purposes.
In the standard Xgrid environment, jobs in batch files
are statically defined by an XML-based language, and
submitted jobs are managed by their ID numbers. It
is not easy for human to read and write XML-based
batch files and to manage jobs by ID numbers. In our
approach, jobs in batch files can be dynamically de-
fined by a Ruby-based language, and submitted jobs
can be managed by their logical names. Semantic
checks and consistency managements are also done at
submission in our approach. Our approach syntacti-
cally and semantically makes it easy to use Xgrid.

Keywords—Grid and Cluster Computing, Languages

I. Introduction

Xgrid[1] is an environment for distributed and par-
allel computing on the Mac OS X operating system.
We use Xgrid for Web mining and metadata gen-
eration[5], which need much computation. By the
standard method, jobs for Xgrid can be submitted
by an XML-based batch language and are managed
by their job ID numbers.

We have difficulties in reading and writing the
XML-based batch files and managing jobs. XML
tags in batch files and job management by IDs are
obstacles for them.

To solve the problems, we present a Ruby-based
batch language for Xgrid and its processor. Ruby[2]
is an object-oriented programming language. By our
method, jobs can be submitted by concise batch files
and be managed by symbolic names.

The organization of this paper is as follows. In
section 2 we explain Xgrid and its batch language.
We present our approach using examples in section
3, and compare it with other approaches in section
4. In section 5 we state our conclusion. We explain
the detail of our batch language in appendix.

II. Xgrid and the batch language

A. Xgrid

Xgrid mainly consists of three kinds of software:
clients, a controller and agents. A client is a pro-
gram to submit jobs to a controller and receive the
results from it. A job is a set of tasks, and a task

% xgrid -h xgridcontroller -p pass
-job batch bc.plist

Fig. 1. Job submission by ’xgrid’

% xgrid -h xgridcontroller -p pass
-job results -id 381

Fig. 2. Retrieval of the results by ’xgrid’

is a program executed in Xgrid. A controller is a
program to receive jobs from clients, split them into
tasks and send them to agents. An agent is a pro-
gram to execute assigned tasks and return the results
to the controller. The results are sent to clients via
the controller. They can work on different computers
connected by local area network.

The standard client program ’xgrid’, which is in-
voked from command line interface, provides two
methods to submit jobs. In the first method we
specify a job, which consists of a program and its
command line arguments, in the command line argu-
ments for ’xgrid’. We can submit a single task job
only at once by the method. In the second method
we specify a batch file in the command line argu-
ments for ’xgrid’. A batch file is a file to specify jobs
and their tasks. In batch files we can also describe
jobs which must finish before a job starts, and tasks
which must finish before a task starts. We call such
relations dependency relationships. We can submit
multi-task jobs at once by the method. The client
program ’xgrid’ also provides methods to manage
jobs and retrieve their results using job ID numbers.
For example, we can stop, delete and restart jobs.

Fig.1 and Fig.2 show how to use the ’xgrid’ com-
mand from command line. Fig.1 is an example of job
submission where the argument ’bc.plist’ is a batch
file name. Fig.2 is an example of retrieval of the re-
sults where the argument ’381’ is the job ID whose
results is retrieved. In both cases the ’-h’ and the
’-p’ options specify a controller’s host name and a
password to connect it respectively.

B. The standard batch language

The standard batch language for Xgrid is based
on XML with key/value structure. We explain the
language using Fig.3 in the following.

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

Fig.3 shows a batch file in the batch language. It
defines a job with a task which executes a command
line ’/usr/bin/bc -q bc exp.txt’ in Xgrid where a cal-
culator program ’/usr/bin/bc’ reads an expression
’1+2’ from the script file ’bc exp.txt’ of Fig.4 and
outputs the value of the expression to its standard
output. The script file ’bc exp.txt’ is defined from
the line 8 to the line 18 of Fig.3. The contents of
the script file is embedded in the line 13 of Fig.3
as a base64-encoded string. Base64[3] is an encod-
ing method which translates a byte stream to a US-
ASCII string. The task is defined from the line 19
to the line 31 of Fig.3. The command path and its
command line arguments are defined there.

As shown in Fig.3, users are responsible for consis-
tency managements such that a job definition must
include all file definitions which tasks in the job will
refer to.

The batch language provides task prototype for
concise task definitions though it is not used in Fig.3.

C. Problems in use of Xgrid

The followings are problems in use of Xgrid.
1. XML tags are obstacles for human to read and

write batch files.
2. Files referred by tasks must be embedded as

base64-encoded strings in batch files.
3. Jobs can not be dynamically determined by

batch files at submission. In cases such that a
job to execute many of a program with different
parameters is described, the batch file can be
more concise by dynamically determined jobs.

4. Jobs are managed by their ID numbers.
5. Dependency relationships among jobs in a same

batch file can not be specified. The relationships
must be specified by job IDs determined at sub-
mission which are never known at describing the
batch file.

6. Xgrid users are responsible for semantic consis-
tency check of batch files.

III. A Ruby-based batch language and its
processor

To solve the problems pointed out in the previ-
ous section, we propose a Ruby-based batch language
for Xgrid (RuBLX) and a client program ’rxgrid’ for
RuBLX. In this section, we explain the design prin-
ciples and examples of batch files in RuBLX. We ex-
plain the detail of our batch language in appendix.

A. Design principles

The followings are design principles for our ap-
proach.

1. XML tags are not used in batch files.
2. Base64 encoding are not needed in batch files.
3. Jobs can be dynamically determined.
4. Jobs can be managed by symbolic names.
5. Dependency relationships among jobs in a same

batch file can be specified.

1: <?xml version="1.0" encoding="UTF-8"?>
2: <!DOCTYPE plist PUBLIC
"-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
3: <plist version="1.0">
4: <array>
5: <dict>
6: <key>name</key>
7: <string>job1</string>
8: <key>inputFiles</key>
9: <dict>
10: <key>bc_exp.txt</key>
11: <dict>
12: <key>fileData</key>
13: <data>MSArIDIKcXVpdAo=
14: </data>
15: <key>isExecutable</key>
16: <string>NO</string>
17: </dict>
18: </dict>
19: <key>taskSpecifications</key>
20: <dict>
21: <key>bc</key>
22: <dict>
23: <key>command</key>
24: <string>/usr/bin/bc</string>
25: <key>arguments</key>
26: <array>
27: <string>-q</string>
28: <string>bc_exp.txt</string>
29: </array>
30: </dict>
31: </dict>
32: </dict>
33: </array>
34: </plist>

Fig. 3. An XML-based batch file ’bc.plist’

1 + 2
quit

Fig. 4. A script file ’bc exp.txt’

6. Semantic checks and consistency management
are automatically done.

We use the Ruby programming language as the ba-
sis of our batch language because Ruby can evaluate
a string as its program. Our client program ’rxgrid’
implemented in Ruby evaluates an RuBLX batch file
as a Ruby program for lexical analysis, syntax anal-
ysis and semantic analysis. It then generates XML-
based batch files where base64 encoding and seman-
tic check are automatically done, and submits them
using ’xgrid’. The client generates an XML-based
batch file for each job in a same RuBLX batch file
to enable to specify dependency relationships among
jobs in the RuBLX batch file. It also generates a
map file, which records the correspondence between
job IDs and symbolic job names, at submission. The
client provides job management methods by symbolic
job names using map files.

B. Examples

We explain an overview of our approach and show
that our approach solves the problems pointed out in
the previous section using three examples.

1: file "bc_exp.txt" do |t|
2: t.agentPathName = "bc_exp.txt"
3: t.localPathName = "bc_exp.txt"
4: t.isExecutable = false
5: end
6:
7: task "bc" do |t|
8: t.command = "/usr/bin/bc"
9: t.arguments = ["-q", "bc_exp.txt"]
10: t.refersTo = ["bc_exp.txt"]
11: end
12:
13: job "job1" do |t|
14: t.tasks = ["bc"]
15: end

Fig. 5. An RuBLX batch file ’bc.rb’

381,job1

Fig. 6. A map file ’bc map.csv’

% rxgrid -h xgridcontroller -p pass
-job batch bc.rb

Fig. 7. Job submission

% rxgrid -h xgridcontroller -p pass
-job results -id job1
-map bc_map.csv

Fig. 8. Retrieval of the results

The first example is shown in Fig.5. It is an exam-
ple of a batch file in RuBLX. The job described there
is the same as the job of Fig.3. Files, tasks and jobs
have logical names as identifiers, and are defined as
follows.

• A file is defined from the line 1 to the line 5. It
starts with a keyword ’file’ followed by a logical
file name ’bc exp.txt’ and a do-end block with a
parameter ’t’. The followings are defined in the
block: a path name of the file on agent machines,
the contents of the file by a local file and whether
it is executable or not.

• A task is defined from the line 7 to the line 11.
It starts with a keyword ’task’ followed by a log-
ical task name ’bc’ and a do-end block with a
parameter ’t’. The followings are defined in the
block: a path name of a command, command
line arguments for it and a file referred by it,

• A job is defined from the line 13 to the line 15.
It starts with a keyword ’job’ followed by a log-
ical job name ’job1’ and a do-end block with a
parameter ’t’. A task in the job is defined in the
block.

The batch file in Fig.5 is more concise than the
batch file in Fig.3. There is no XML tag in Fig.5,
and the number of lines in Fig.5 is 15 while that in
Fig.3 is 34.

A consistent management is done at submission of
the batch file. The job definition in the generated
XML-based batch file includes a file definition which
the task ’bc’ refers to though the file definition is not
referred in the job definition in the RuBLX batch file.

Fig.6 shows a map file generated at submission of
the batch file of Fig.5. The map file indicates that
the ID number of the job ’job1’ is 381.

Fig.7 and Fig.8, which correspond to Fig.1 and
Fig.2 respectively, show how to use our processor
’rxgrid’. Fig.7 shows an example of job submission
where the command line argument ’bc.rb’ is a batch
file name. Fig.8 shows an example of retrieval of
the results where the command line arguments ’job1’
and ’bc map.csv’ are the job name whose results is
retrieved and a map file respectively.

The second example is shown in Fig.9. It is an
example of a batch file with dependency relationships
among jobs. Three jobs ’job0’, ’job1’ and ’job2’ are
defined there.

• The job ’job0’ is a previously submitted job with
the job ID 333. The job ID can be specified by
a pair of a logical job name and a map file as
shown in appendix.

• The job ’job1’ is a job with a task ’echo1’.
• The job ’job2’ is a job with a task ’echo2’

which starts after two jobs ’job0’ and ’job1’
are done. The dependency is defined by
’t.dependsOnJobs’ in the block.

Our client program takes account of both depen-
dency relationships among jobs and those among
tasks. It does topological sort on jobs for submission.
If it finds either cyclic dependency relationships for
jobs or those for tasks, it declares errors.

The third example is shown in Fig.10. It is an
example of a batch file where the number of tasks in
a job are dynamically determined at submission.

In the batch file, a task is defined for each file
whose name ends with ’.txt’ in a current directory.
The files are collected by a standard Ruby library
’Dir’ in the line 1 of Fig.10. Each task calculates the
value of an expression in the file using ’/usr/bin/bc’.
Variables, arrays, flow controls and a standard Ruby
library are used in the batch file because it is not
known how many files will exist in a current direc-
tory at submission when the batch file is written.

Definitions of files, tasks and jobs are basically
declarative in RuBLX. The order of definitions is not
significant. Procedural description, however, can be
used as this example.

Templates can be used for definitions in RuBLX
though some programming skill is needed. For ex-
ample, a template for a task is used from the line 16
to the line 20 in Fig.10 where ’taskName’ and ’f.to s’
are used as parameters for the template.

IV. Comparison

We compare our approach with PyXG[1] because
our approach solves problems of the standard Xgrid

1: task "echo1" do |t|
2: t.command = "/bin/echo"
3: t.arguments = ["1"]
4: end
5:
6: task "echo2" do |t|
7: t.command = "/bin/echo"
8: t.arguments = ["2"]
9: end
10:
11: job "job0" do |t|
12: t.id = 333
13: end
14:
15: job "job1" do |t|
16: t.tasks = ["echo1"]
17: end
18:
19: job "job2" do |t|
20: t.tasks = ["echo2"]
21: t.dependsOnJobs = ["job0", "job1"]
22: end

Fig. 9. An RuBLX batch file with dependency relationships
among jobs

environment which we pointed out as shown in the
previous section, and PyXG also uses a programming
language to specify and submit Xgrid jobs as our
approach.

PyXG is a module for the Python programming
language[4], which enables to submit jobs to Xgrid
controllers and manage them from Python programs.
Python is an object-oriented programming language.
Fig.11 shows a program with PyXG. In the program,
not only job construction steps (the lines 5 and 6) but
also steps for connecting to a controller (the lines 2,
3 and 4) and a step for submission (the line 7) are
described.

The main differences between PyXG and our ap-
proach are as follows.

1. Programs with PyXG are completely procedu-
ral while our batch files are basically declarative.
The order of definitions is not significant in our
approach. Procedural descriptions are used in
our batch files if needed as shown in Fig.10. In
PyXG, semantic checks and the ordering of job
submission must be procedurally described. In
our approach, they are done automatically.

2. Programs with PyXG includes everything re-
lated to Xgrid while our batch files consist of
job specifications only.

The interested reader is referred to [1] for other
Xgrid client programs.

V. Conclusions

We proposed a Ruby-based batch language for the
grid computing environment Xgrid, and a client pro-
gram for the language. They solve the problems

1: filelist = Dir.glob("*.txt")
2:
3: filelist.each do |f|
4: file f.to_s do |t|
5: t.agentPathName = f.to_s
6: t.localPathName = f.to_s
7: t.isExecutable = false
8: end
10: end
11:
12: taskNames = []
13: filelist.each do |f|
14: taskName = "bc" + f.to_s
15: taskNames = taskNames | [taskName]
16: task taskName do |t|
17: t.command = "/usr/bin/bc"
18: t.arguments = ["-q", f.to_s]
19: t.refersTo = [f.to_s]
20: end
21: end
22:
23: job "job1" do |t|
24: t.tasks = taskNames
25: end

Fig. 10. An RuBLX batch file with dynamically defined tasks

1: from xg import *
2: conn = Connection(

hostname=’xgridcontroller’,
password=’pass’)

3: cont = Controller(conn)
4: g = cont.grid(0)
5: js = JobSpecification()
6: js.addTask(’/usr/bin/bc’,

args=’bc_script.txt’)
7: j = g.batch(js)

Fig. 11. A Python program with PyXG

about Xgrid: XML tags as obstacles for human to
read and write batch files, consistency management
of batch files by users, job management by job ID
numbers, and so on. Users with some programming
skill can describe batch files using templates. Our
approach makes it easy to use Xgrid.

Acknowledgements

This research was partially supported by the Min-
istry of Education, Science, Sports and Culture,
Grant-in-Aid for Young Scientists (B), 18700035
from 2006 to 2007.

References

[1] Baden Hughes. Building computational grids with apple’s
xgrid middleware. In Rajkumar Buyya, Tianchi Ma, Rei-
haneh Safavi-Naini, Chris Steketee, and Willy Susilo, edi-
tors, ACSW Frontiers, volume 54 of CRPIT, pages 47–54.
Australian Computer Society, 2006.

[2] Brian Marick. Everyday Scripting with Ruby. Pragmatic
Bookshelf, 2007.

[3] David Wood. Programming Internet Email. Oreilly &
Associates Inc, 1999.

[4] Mark Lutz and David Ascher. Learning Python. Oreilly
& Associates Inc, 2003.

[5] Tetsuya Suzuki and Takehiro Tokuda. A system for land-
scape photograph localization. In ISDA (1), pages 1080–
1085. IEEE Computer Society, 2006.

Appendix

We explain the detail of our batch language. A
batch file includes one or more job definitions, one or
more task definitions and zero or more file definitions.
The order of definitions is not significant. It can also
include any Ruby code anywhere.

Fig.12, Fig.13, Fig.14 and Fig.15 show the syntax
of a file definition, a task definition and job defini-
tions respectively. In the figures, non terminal sym-
bols are enclosed with ’<’ and ’>’. A pair of paren-
thesises followed by a question mark ’(X)?’ means
X is optional. A pair of parenthesises with a vertical
bar between them ’(X | Y)’ means X or Y .

Each definition has a do-end block with a param-
eter <PARAM>, and the detail of each definition is
given there. The order of description in such a do-
end block is not significant. A same identifier must
be used for <PARAM> in a same do-end block.

In the following, we explain the syntax of a file
definition, a task definition and a job definition in
this order.

Fig.12 shows the syntax of a file definition. A
file definition starts with a keyword ’file’. It
takes two arguments: a string for a logical file
name(<LOGICAL FILE NAME>) and a block with
a parameter. The block specifies the detail of the
file. In the following, we use ’t’ as the parameter.
In the block, the value of ’t.agentPathName’ spec-
ifies a path of the file on an agent machine. The
content of the file is specified by ’t.localPathName’
or ’t.contents’. The value of ’t.localPathName’
<PATH ON LOCAL> specifies the contents by the
path of a local file. The value of ’t.contents’
<STRING> specifies the contents by a string.
Both of them can not be specified at once. The
value of ’t.isExecutable’ <EXECUTABLE> specifies
whether the file is executable or not: ’true’ for exe-
cutable, ’false’ for not-executable.

Fig.13 shows the syntax of a task definition.
A task definition starts with a keyword ’task’.
It takes two arguments: a string for a logi-
cal task name(<LOGICAL TASK NAME>) and a
block with a parameter. The block specifies the
detail of the task. In the following, we use
’t’ as the parameter. In the block, the value
of ’t.command’ <PATH OF COMMAND> speci-
fies a path of a command which will run on
an agent machine. The value of ’t.arguments’
<COMMAND ARGUMENT LIST> specifies com-
mand line arguments by an array. The value
of ’t.environment’ <ENVIRONMENT HASH> spec-
ifies environment variables and their values by

a hash. The keys of the hash are names
of environment variables, and their values are
values of the environment variables. The
value of ’t.inputStream’ <LOGICAL FILE NAME>
specifies a logical file name whose contents
are used as the standard input. The value
of ’t.dependsOn’ <LOGICAL TASK NAME LIST>
specifies logical task names which the task de-
pends on by an array. The value of ’t.refersTo’
<LOGICAL FILE NAME LIST> specifies logical
file names by an array, each of which the
task will read. The value of ’t.inputFileMap’
<INPUT FILE MAP HASH> specifies the corre-
spondence between file paths on agents and the con-
tents for this task only by a hash. The keys of the
hash are file paths and their values are logical file
names.

Fig.14 and Fig.15, which are for previously sub-
mitted jobs and jobs to be submitted respectively,
show the syntax of a job definition.

In both cases, a job definition starts with a key-
word ’job’. It takes two arguments: a string for a
logical job name(<LOGICAL JOB NAME>) and a
block with a parameter. The block specifies the de-
tail of a job. In the following, we use ’t’ as the pa-
rameter.

The detail of previously submitted jobs are
defined in the block of Fig.14 as follows. The
value of ’t.id’ specifies a previously submit-
ted job ID. The previously submitted job ID
is given either by an integer or by a pair of a
logical job name and a map file. The pair is
specified by ’jobId(<LOGICAL JOB NAME>,
<MAP FILE PATH>)’ where
<LOGICAL JOB NAME> is a logical job name
and <MAP FILE PATH> is the path of a map file
which includes the logical job name.

The detail of jobs to be submitted are de-
fined in the block of Fig.15 as follows. The
value of ’t.mail’ <MAIL ADDRESS> spec-
ifies an e-mail address to which an e-mail
is sent when the job status is changed.
The value of ’t.taskMustStartSimultaneously’
<TASK MUST START SIMULTANEOUSLY>
specifies whether tasks must start simultaneously
or not by a boolean value: ’true’ is for yes, and
’false’ is for no. The value of ’t.minimumTaskCount’
<MINIMUM TASK COUNT> specifies the mini-
mum number of tasks which are needed to start
at the same time. The value of ’t.dependsOnJobs’
<LOGICAL JOB NAME LIST> specifies logical
job names which the job depends on by an array. The
value of ’t.files’ <LOGICAL FILE NAME LIST>
specifies logical file names used in the
job by an array. The value of ’t.tasks’
<LOGICAL TASK NAME LIST> specifies logical
task names in the job by an array.

file <LOGICAL FILE NAME> do | <PARAM> |
<PARAM> .agentPathName = <PATH ON AGENT>
(<PARAM> .localPathName = <PATH ON LOCAL> | <PARAM> .contents = <STRING>)
(<PARAM> .isExecutable = <EXECUTABLE>) ?

end

Fig. 12. The syntax of a file definition

task <LOGICAL TASK NAME> do | <PARAM> |
<PARAM> .command = <PATH OF COMMAND>
(<PARAM> .arguments = <COMMAND ARGUMENT LIST>) ?
(<PARAM> .environment = <ENVIRONMENT HASH>) ?
(<PARAM> .inputStream = <LOGICAL FILE NAME>) ?
(<PARAM> .dependsOn = <LOGICAL TASK NAME LIST>) ?
(<PARAM> .refersTo = <LOGICAL FILE NAME LIST>) ?
(<PARAM> .inputFileMap = <INPUT FILE MAP HASH>) ?

end

Fig. 13. The syntax of a task definition

job <LOGICAL JOB NAME> do | <PARAM> |
<PARAM> .id = (<PREVIOUSLY SUBMITTED JOB ID> |

jobId(<LOGICAL JOB NAME> , <MAP FILE PATH>))
end

Fig. 14. The syntax of a job definition (case 1)

job <LOGICAL JOB NAME> do | <PARAM> |
(<PARAM> .mail = <MAIL ADDRESS>) ?
(<PARAM> .taskMustStartSimultaneously = <TASK MUST START SIMULTANEOUSLY>) ?
(<PARAM> .minimumTaskCount = <MINIMUM TASK COUNT>) ?
(<PARAM> .dependsOnJobs = <LOGICAL JOB NAME LIST>) ?
(<PARAM> .files = <LOGICAL FILE NAME LIST>) ?
<PARAM> .tasks = <LOGICAL TASK NAME LIST>

end

Fig. 15. The syntax of a job definition (case 2)

