

EXPERIENCES WITH ASPECT-BASED PARALLELIZATION OF
SCIENTIFIC CODE

Manuel Díaz, Sergio Romero, Bartolomé Rubio, Enrique Soler and José M. Troya

Department of Languages and Computer Science
University of Málaga

29071, Málaga, SPAIN
E-mail: mdr@lcc.uma.es

KEYWORDS
Languages, Object-Oriented Programming & Design.

ABSTRACT

This paper discusses the use of Aspect-Oriented
Programming (AOP) to support the parallelization of
scientific code. The idea is to develop parallelism
concerns in separate aspects so that the weaving process
can inject the code structures which allow the sequential
scientific core to be executed in parallel. A series of
advantages can initially be derived from this aspect-
based approach. As parallelism is modularized into
separate units, the code-tangling level is reduced. The
parallel version is developed by reusing the code pieces
which implement the numerical computation
sequentially. Moreover, different aspects can be written
to adapt the application to different high-performance
environments. This paper describes some experiences
with the code parallelization using aspects. Specifically,
the integration of both task and data parallelism in the
context of two parallel scenarios (i.e. multithreading
and message-passing) is addressed in a case study. The
work is an attempt to assess the benefits and limitations
of applying AOP for these purposes.

INTRODUCTION

Scientific software frequently exploits parallelism for
achieving high-performance when tackling large-scale
and realistic engineering problems. Implementations are
typically based on parallel programming libraries (e.g.
PThreads, MPI, PVM) which provide the developer
with a set of primitives to code parallelism concerns.
However, code-tangling problems often arise in these
applications as the statements describing the numerical
computation are mixed with those expressing
parallelism.

Aspect-Oriented Programming (Kiczales et al. 1997)
helps the developer to achieve the separation of
concerns, especially in those situations when such
concerns cut across multiple parts (clases, components,
modules) of a system. The modular management of
cross-cutting concerns leads to a simpler application
code which is easier to develop and maintain and has a
greater potential for reuse. A well-modularized cross-
cutting concern is called an aspect.

The management of high-performance concerns using
AOP is emerging as a promising line of research. In
(Harbulot and Gurd 2004), the separation of the parallel
structure cross-cutting Java scientific applications is
addressed using the general-purpose language AspectJ
(Kiczales et al. 2001). The work in (Harbulot and Gurd
2006) describes an extension of the AspectJ join point
model aimed at allowing loops to be parallelized
without re-factoring the base-code. A methodology for
the modular development of parallel programs which is
based on the composition of multiple fine-grain aspects
such as concurrency, partition, distribution and so on, is
discussed in (Sobral 2006). The proposal in (Díaz et al.
2005) is focused on a component framework for the
efficient development of high-performance applications.
Specific concerns which affect a set of scientific
components, such as the communication scheme
underlying the application, are modeled into a special
type of entities called aspect components.

This paper focuses on the idea that scientific programs
can (possibly) be written sequentially in a way that
enables parallelism to be added later, for instance, once
the code has been tested and debugged. Although the
parallelization of a scientific program may require many
changes of diverse nature in different parts of its code,
we can consider the effects of these changes as the
result of weaving what we have called parallelization
aspects into the sequential scientific core (i.e. the part in
charge of the numerical computation). The bodies of
these aspects will implement additional functionalities
such as distribution, communication and
synchronization, in order to enable the sequential core
to be executed in parallel.

We can anticipate a series of advantages derived from
this aspect-based parallelization approach:
• Parallel statements don’t obscure the mathematical

model, as the former are isolated into aspects,
which results in a reduction of code-tangling.

• The parallel application is set-up by weaving
aspects into the sequential core, promoting core
reuse.

• The applied parallelism model can be replaced
simply selecting different aspects to be woven.

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

Despite the potential benefits, this approach may also
lead to some serious shortcomings. The characteristics
of the aspect-oriented language used determine the type
of interaction between aspects and base-code. For
instance, in a general-purpose language such as
AspectJ, the interactions are mainly based on
intercepting method calls (pointcuts plus advice code),
augmenting data structures (introductions), and so on.
However, the parallelization of code following these
mechanisms can be very difficult unless the programs
are written assuming (explicitly) the fact that the code
pieces which will be parallelized must be accessed and
managed through valid join points. This leads us to
consider new sequential designs which include sets of
interfaces and/or classes aimed at allowing aspects to
inject parallelism. In some sense, the parallelization
concern must be somehow considered from the initial
design of the code. Obviously, this represents an extra
effort in the development of the sequential scientific
core.

This work is an attempt to assess the feasibility and
suitability of the approach. The purpose is to describe a
real experience which allows us to determine the overall
advantages and limitations of using aspects for the code
parallelization. At first, we describe a sequential
program which computes the 2D-Fast Fourier
Transform (Briham 1988) of a collection of matrices.
Then, aspect weaving is used to integrate both task and
data parallelism into the scientific code. This is carried
out in the context of two different parallel scenarios:
multithreading with shared memory, and message-
passing based on MPI.

The implementation is based on the aspect-oriented
language AspectC++ (Spinczyk et al. 2002). In
AspectC++, almost all the language elements are
efficiently implemented at compile-time, which makes
the tool more suitable for the development of high-
performance concerns than other approaches using
Java-based dynamic weaving such as AspectJ.

The paper is structured as follows. Section 2 provides
an overview of AspectC++. The case study is presented
in section 3, where the sequential solution is described.
Sections 4 and 5 provide an in-depth description of the
parallelization using multithread programming and
MPI, respectively. The paper finishes with some
conclusions.

ASPECTC++ FUNDAMENTALS

AspectC++ is a general purpose language extension to
C++ for the support of Aspect-Oriented Programming.
An aspect can be understood as a modularized unit that
implements a cross-cutting concern. The points at which
an aspect can interfere with the base-code are called
join points.

A pointcut identifies a set of join points. Pointcuts are
described by means of pointcut expressions, which can
refer to combinations of static program entities, such as
classes, functions or namespaces, and other points in the
control flow of the program. For instance, the
expression:

execution(“void Dialog::set%(...)”)

refers to the execution of any method of Dialog having
both a name beginning with set and void as return
type. In the match expression, % is used as a wildcard
symbol and ... represents any sequence of arguments.
A pointcut declaration allows a pointcut to be named so
that it can be reused in different parts of the program.

The advice is the mechanism which defines the way the
aspect affects the base-code. An advice declaration
indicates the block of code to be executed when specific
join points are reached. The advice code can be
executed before, after, or both before and after (i.e.
around) the join point. For instance, the following
advice can be used to trace the execution of “setter”
methods in Dialog:

advice execution(“void Dialog::set%(...)”) && that(d)
 : before(Dialog &d) {
 cout << “Dialog:” << d.name
 << “ will be modified.” << endl;
}

The code in the example above is triggered just before
the method execution. The function that() binds a
variable to the object on which the method is invoked
(i.e. the object referred to by this). Other pointcut
functions can be used to access information such as the
arguments of a function and its return value.
Furthermore, the object tjp (of class JoinPoint) allows
the programmer to retrieve context information from
within the advice code.

A different type of advice is that represented by
introductions, which are used to augment data
structures. For instance, the following code uses a slice
element to add data members and methods to the class
Dialog. A method which is defined this way can access
even private data members:

advice “Dialog” : slice class {
 Time creation;
 int isExpired() {
 return ((Time::now() - creation) > 3600) ? 1:0;
 }
};

The aspect is the language construction in which all
these elements are combined for the implementation of
modularized cross-cutting concerns. In terms of
syntaxis, an aspect is very similar to a C++ class
definition. In this sense, aspects can have data members
and methods, and can inherit from classes and even
other aspects. The code below shows an aspect which
implements an “expiration” concern for the class
Dialog. The functionality consists of preventing the
modification of any dialog window which has already

expired. In an around advice, the original join point
code can be executed by calling tjp->proceed():

aspect Expiration {
 pointcut resetTime() = construction(“Dialog”) ||
 execution(“void Dialog::show(...)”);

 advice resetTime() && that(d) : after(Dialog &d) {
 d.creation = Time::now();
 }
 advice execution(“void Dialog::set%(...)”)&&that(d)
 : around(Dialog &d) {
 if (!d.isExpired())
 tjp->proceed();
 }
};

CASE STUDY: THE SEQUENTIAL 2D-FFT

The Fast Fourier Transform (FFT) is used to produce
frequency analysis of discrete signals in a wide range of
application domains: image analysis, signal processing,
speech recognition, astronomy, etc. The processing of a
vector of N elements (i.e. complex numbers) involves
O(N logN) operations. The FFT of a matrix (called 2D-
FFT) consists of using FFT to transform each column,
and then uses the result to transform each row (again
using FFT).

This section describes a C++ code for the sequential
processing of a stream of complex matrices using the
2D-FFT. The problem has been broken down into four
main activities (sensor, FFT on columns, FFT on rows,
writer) which are coupled following a pipeline scheme,
so that each activity consumes the result of the previous
one. The class diagram is shown in figure 1.

+create()
+addStage()
+linkStages()
+getStages()
+execute()

Pipe

+create()

FFT2D

+execute()
+getInputData()
+setInputData()
+getOutputData()
+setOutputData()

Stage

+execute()

Writer

+execute()

FFTRows

+execute()

FFTCols

+execute()

Sensor

+create()
+get()
+set()
+getBlock()
+setBlock()
+getRect()

Data

+get()
+set()
+points()
+dimX()
+dimY()

Rect

1
* * 2

11

Figure 1: 2D-FFT class diagram

The class FFT2D models the problem as a sequential
pipeline. The activities inherit from Stage. Data and
Rect represent, respectively, complex matrices and
rectangular regions. The implementation of some of the
methods is described below:

int main(int argc, char **argv) {
 Pipe *pipe = new FFT2D;
 pipe->create();
 pipe->execute(NUM_MATS, pipe->getStages());
 delete pipe;
}

void FFT2D::create() {
 Stage *s1 = new Sensor(1);
 Stage *s2 = new FFTCols(2);
 ...
 Rect r(1,DIMX,1,DIMY);
 linkStages(s1,s2,&r);
 ...
 addStage(s1);
 ...
}

void Pipe::linkStages(Stage *s1,Stage *s2,Rect *r) {
 Data *d = new Data(r);
 s1->setOutputData(d);
 s2->setInputData(d);
 ...
}

void Pipe::execute(int iters,vector<Stage *> *stgs) {
 ...
 for (int i=0; i<iters; i++)
 for (int s=0; s<stgs->size(); s++) {
 stg = (*stgs)[s];
 stg->execute(&(stg->rect));
 }
}

void FFTCols::execute(Rect *r) {
 ...
 if (iter == 0)
 buffer = new Data(r);

 getInputData()->getBlock(buffer); //input to buffer

 for (int x = r->x0; x<= r->x1; x++) {
 ... // FFT on column x using buffer
 }
 getOutputData()->setBlock(buffer); //buffer tooutput
}

Each stage is associated with two Data objects, one of
them being used as input and the other as output. Each
time the stage is executed, the input is consulted so that
its value can be used in the computation. The
connection between two stages is implemented by
sharing the same Data instance. This way, the ith stage
writes the result in the object which is read by the
(i+1)th stage. In the class FFTCols, the creation of the
intermediate data buffer is carried out only in the first
iteration. The computation of the one-dimensional FFT
entails a series of swapping and floating-point
operations on the elements of the vector.

Compared to a classical implementation, the solution
presented here offers some additional elements which
are atypical in sequential scientific programs. They have
been considered specifically with the aim of facilitating
the parallelism integration by means of an AO
language. Let us enumerate some of the elements:
• The degree of decomposition in terms of methods,

interfaces and classes is high, therefore providing a
rich set of join points to be intercepted.

• Activities are represented by different classes in the
system, making the potential use of active elements
easier (threads, distributed objects, etc.).

• Stages have to be linked explicitly and the linkage
is based on sharing an object of class Data. This
can be used as the basis for communicating active
elements.

• Additional arguments in method calls are especially
useful in two cases: for indicating the list of stages
in the computation, and for setting the stage
iteration range through an object of class Rect. The
arguments can be altered by the aspect code.

Regarding the parallel execution, the solution can
exploit both task and data parallelism. On the one hand,
the pipeline can run its stages concurrently, which
means that up to four matrices can be processed
simultaneously. On the other hand, the stages

computing the FFT, which are the ones with higher
computational cost, can divide the matrix into several
blocks for an “embarrassingly” parallel computation.
The following aspect establishes the degree of
parallelism by setting both the type of data distribution
and the number of blocks for every stage. This aspect
declaration can be reused regardless of the parallelism
implementation:

aspect Parallelism {
 advice “Stage” : slice class {
 int blocks; // Number of blocks
 int distribution; // Type of data distribution
 };

 advice construction(“Stage”) && that(s)
 : after(Stage &s){
 switch (s.id) {
 case 1:s.blocks=1; break;
 case 2:s.blocks=4;s.distribution=BY_COLS; break;
 case 3:s.blocks=4;s.distribution=BY_ROWS; break;
 case 4:s.blocks=1; break;
 }
 }
};

MULTITHREAD-BASED DESIGN

The execution of multiple threads is a way to exploit
parallel hardware, as the operating system is able to run
each thread on a different processor. Thread interactions
can be based on variables which are allocated to a
global memory space. Synchronization mechanisms are
required to ensure the consistency of the shared data.

We have based the multithread implementation on the
Adaptive Communication Environment ACE (Schmidt
2002), an object-oriented framework for the efficient
development of concurrent communication software.
The portability of ACE enables the same multithread
code to be run on top of different interfaces such as
POSIX PThreads, Solaris threads and Win32 threads.

The application described here uses groups of threads to
execute the stages in parallel (one group per stage). The
group size is indicated by the attribute blocks
introduced in Stage by the aspect Parallelism, as
stated at the end of the previous section.

Stage Connection

In the sequential version, the stages were connected by
sharing a single instance of Data. This is a shortcoming
in the parallel version since a stage running slower than
the others will block the preceding ones, which will not
be able to write in their output Data objects. A way to
increase the performance is to link the stages using a
buffer which supports the storage of multiple data
elements. Figure 2 illustrates the idea. Four threads are
running the code of FFTCols. Each time a result is
produced, it is placed into a FIFO buffer from which the
next stage (FFTRows, using four threads as well)
retrieves its input data.

A Fifo class with the typical get()/put() methods is
used for the implementation of the stage connections.

As the Fifo objects will be accessed by different
threads, synchronization mechanisms have to be
considered. In our approach, the synchronization
concern is developed in a separate aspect to be woven
into the class Fifo:

data
i

data
i+1

data
i+2

Output Data object of FFTCols
4 execution threads

FIFO BUFFER

Input Data object of FFTRows
4 execution threads

Figure 2: Stage connection scheme

aspect SynchFifo {
 advice “Fifo” : slice class {
 ACE_Thread_Mutex *mutex;
 ACE_Condition<ACE_Thread_Mutex> *notEmpty;
 ACE_Condition<ACE_Thread_Mutex> *notFull;
 };

 advice execution(“void Fifo::get(...)”) && that(f) :
 around(Fifo &f) {
 f.mutex->acquire(); // mutex acquired
 while (f.size() == 0)
 f.notEmpty->wait(); // Blocks if buffer is empty
 tjp->proceed(); // Element removal
 f.notFull->signal(); // The buffer has free space
 f.mutex->release(); // mutex released
 }
 ... // advice on Fifo::put()
};

The second advice introduces code before and after the
get() operation in order to control the removal of data.
The body of the advice is accessed in mutual exclusion.
If the Fifo buffer is empty, the thread is blocked in the
notEmpty condition variable, waiting for any other
thread to insert new data. Otherwise, a call to tjp-
>proceed() executes the code of get(). Then, we are
sure that the buffer is not full, and so the variable
notFull can be signaled, which will possibly wake up
other threads which may be blocked in this variable
because they can not complete a put() operation.

In order to integrate the new connection mechanism, the
following advice is used to intercept the method
linkStages(). Instead of sharing a single Data
instance, adjacent stages will share a synchronized Fifo
object.

advice “Stage” : slice class {
 Fifo *inputFifo;
 Fifo *outputFifo;

 ACE_Barrier *inputBarrier;
 ACE_Barrier *outputBarrier;
};

advice execution(“void Pipe::linkStages(...)”) &&
 args(s1,s2,r) && that(p)
 : after(Stage *s1,Stage *s2,Rect *r,Pipe &p) {
 ...
 Fifo *f = new Fifo(MAX_FIFO_SIZE);
 s1->outputFifo = f;
 s2->inputFifo = f; // s1 and s2 share a FIFO
 ...
}

Thread Creation

The creation of threads is considered in the following
advice, which affects the method execute() of Pipe:

advice execution(“void Pipe::execute(...)”) && that(p)
 && !cflow(execution(“void *work(...)”))
 : around(Pipe &p) {
 ...
 Vector<Rect> vr;

 for (int i=0; i<p.getStages()->size(); i++) {
 Stage *s = *(p.getStages())[i]; // For each stage
 s->rect.distribute(s->distribution,s->blocks,&vr);

 for (int j=0; j<s->blocks; j++) { //For each block
 arg = new ThrArg(j,iters,&p,s,&(vr[j]));
 ACE_Thread_Manager::instance()->spawn(
 (ACE_THR_FUNC)work,arg,
 THR_NEW_LWP|THR_JOINABLE); // Thread launched
 }
 }
 ACE_Thread_Manager::instance()->wait(); //Wait
}

There is no call to tjp->proceed(), which means that
the code join point will not be executed in this context.
For each stage, the iteration range represented by the
attribute rect is partitioned. Then, the group of threads
is launched. The number of threads to be started is
indicated in the attribute blocks. Every thread receives
information through an object of type ThrArg, which
includes the block identifier, the number of matrices to
process, and references to the pipeline, the stage and the
new iteration range.

Parallel Execution

The function work() executed by the threads saves the
ThrArg variable and executes the pipeline using, this
time, a stage list of only one element. The ACE_TSS
template implements thread specific storage, which
allows each thread to manage its own copy of arg:

ACE_TSS<ThrArg> arg;
static void *work(void *argument) {
 arg->set((ThrArg *)argument);
 arg->pipeline->execute(arg->iters,&(arg->stages));
}

Finally, data have to be moved from the Fifo buffers to
the input and output Data objects each time a stage is
executed. This involves the synchronization of threads:

pointcut invocations() =
 execution(“void Sensor::execute(...)”) ||
 execution(“void FFTCols::execute(...)”) ||
 execution(“void FFTRows::execute(...)”) ||
 execution(“void Writer::execute(...)”);

advice invocations() && that(s) : around(Stage &s) {
 if ((s.getInputData()!= NULL) && (arg->id == 0))
 s.inputFifo->get(s.getInputData());
 s.inputBarrier->wait(); // Waits to complete input

 Rect **pr = (Rect **)tjp->arg(0);
 *pr = &(arg->rect); // Iteration range changed

 tjp->proceed(); // Stage execution
 s.outputBarrier->wait(); // Waits to end computation

 if ((s.getOutputData()!= NULL) && (arg->id == 0))
 s.outputFifo->put(s.getOutputData());
}

The pointcut invocations() refers to the execution of
any of the stages. When the advice code is triggered, the

thread with id zero retrieves a new matrix from the
input Fifo buffer and updates the input Data object.
The other threads assigned to the stage are blocked until
this operation is complete. Before the call to tjp-
>proceed(), the Rect argument, which denotes the
iteration range, is replaced with the value stored in the
variable arg. The threads wait until the code of the
stage is executed. Then all the parts of the output Data
object has been correctly updated with new values. The
thread with id zero is allowed to insert the result into
the output Fifo buffer.

MPI-BASED DESIGN

MPI is a collection of routines widely used in the
development of parallel programs on architectures with
distributed memory including computer networks. The
programming model consists of a set of processes
communicating by means of message-passing.

The aspect presented in this section will transform the
sequential program into an SPMD application using
MPI.

Application Set-up

The following advice ensures that the message-passing
environment is initialized and terminated correctly:

advice execution(“int main(...)”) && args(ac,av)
 : around(int ac, char **av) {
 MPI_Init(&ac,&av);
 tjp->proceed();
 MPI_Finalize();
}

Unlike the code in section 4, the group of processes of
an MPI application is created in a static way when the
application is started. A specific computation has to be
assigned to each process in the group. So,
correspondence between the process rank and the pair
(stage, iteration range) is required. The association in
the opposite direction is also needed. The aspect defines
the methods mpiToProblem() and problemToMpi() in
order to carry out these mappings. Their codes are quite
simple as they use the information set by the aspect
Parallelism.

In the multithread version, the threads accessed data
using shared memory, so the parallelization aspect was
mainly focused on the creation and synchronization of
threads. Owing to the distributed nature of MPI, the
data flow in the pipeline has to be implemented by
means of message-passing. The parallelization aspect in
this section will be mainly focused on communications.

Data distribution must be taken into account in order to
implement efficient point-to-point communications on
the stage interactions. Figure 3 depicts this scenario.
The stage on the left uses four processes, each one
computing the FFT (on columns). When the result is
passed to the next stage, data is partitioned to send
remote processes the exact data pieces they require. In

this figure, process 3 has to send specific data to
processes 5, 6, 7 and 8. As can be noted, the
information about the data distribution and the number
of blocks of the stages is essential. New attributes and
methods are introduced in some classes:

pr
oc

 1

pr
oc

 2

pr
oc

 3

pr
oc

 4

4 processes computing
FFT on columns

4 processes computing
FFT on rows

proc 5

proc 7

proc 6

proc 8

Figure 3: Communication between stages

advice “Stage” : slice class {
 vector<Data *> inputPartition;
 vector<Data *> outputPartition;
};

advice “Data” : slice class {
 int remote; // Remote process
 Stage *preceding; // Preceding stage
 Stage *next; // Next stage

 void send(int p) { // Sends data to process p
 MPI_Send((void*)ptr,rect.points()*sizeof(complex),
 MPI_BYTE,p,MYTAG,MPI_COMM_WORLD);
 }
 void recv(int p) { // Receives data from process p
 MPI_Status status;
 MPI_Recv((void*)ptr,rect.points()*sizeof(complex),
 MPI_BYTE,p,MYTAG,MPI_COMM_WORLD,&status);
 }
};
advice execution(“void Pipe::linkStages(...)”) &&
 args(s1,s2,r) : after(Stage *s1,Stage *s2,Rect *r) {
 s1->getOutputData()->preceding = s1;
 s2->getInputData()->next = s2;
}

The meaning of the code is simple. The class Stage is
augmented with two attributes which represent two data
partitions used to receive (send) data from (to) other
processes. For instance, the list outputPartition of the
process 3 (again in figure 3) will contain four Data
elements, each one being used to send a specific data
piece to other process. The class Data is also augmented
with pointers to the adjacent stages and operations to
carry out the communication using MPI primitives.

The aspect declares some data members useful for the
computation, such as myrank, myid, myblock, mystg,
and mystglist. They are initialized in the following
advice, which also includes the code needed to set-up
the two data partition lists of the stage pointed to by
mystg (this code has been omitted):

advice execution(“void FFT2D::create(...)”) && that(p)
 : after(Pipe &p) {
 ...
 vector<Rect> vr;
 MPI_Comm_rank(MPI_COMM_WORLD,&myrank); // My rank
 mpiToProblem(p.getStages(),myrank,&myid,&myblock);

 mystg = p.getStageById(myid); // This is my stage
 mystglist.push_back(mystg); // List with one stage

 mystg->rect.distribute(mystg->distribution,
 mystg->blocks,&vr);
 myrect.set(&(vr[myblock])); //My iteration sub-range
 ...// inputPartition and outputPartition are filled
}

Parallel Execution

Finally, the following advices ensure that the parallel
program will be executed correctly:

advice execution(“void Pipe::execute(...)”) :before {
 vector<Stage *> **stglist =
 (vector<Stage *> **)(tjp->arg(1));
 *stglist = &mystglist; // Replaces the stage list
}

advice invocations() && that(stg) : around(Stage &stg)
{
 Data *d;
 // Receives data from other processes
 for (i=0; i<stg.inputPartition.size(); i++) {
 d = stg.inputPartition[i];
 d->recv(d->remote);
 stg.getInputData()->setBlock(d);
 }

 Rect **pr = (Rect **)(tjp->arg(0));
 *pr = &(myrect); // Iteration range is changed

 tjp->proceed(); // Stage code execution

 // Sends the result to other processes
 for (i=0; i<stg.outputPartition.size(); i++) {
 d = stg.outputPartition[i];
 stg.getOutputData()->getBlock(d);
 d->send(d->remote);
 }
}

The first advice is needed to replace the original list of
stages, which is the second argument of execute(),
with another list containing one stage only. This way,
the active element (i.e. the process) will address the
execution of a single stage, instead of the complete
pipeline.

The second advice uses the pointcut invocations()
which was described in the previous section. The advice
code is triggered when execute() is called on any of
the subclasses of Stage. First, the process has to receive
new data. More specifically, every object of
inputPartition receives data from the corresponding
remote process. These values are used to update the
input Data object. Before the stage code is executed, the
iteration range is restricted using the variable myrect.
When the result is computed, it is sent to the processes
associated with the next stage. This is done using the
elements of the attribute outputPartition.

CONCLUSIONS

The parallelization of sequential scientific programs
may entail significant changes in the code for tackling
the creation, communication and synchronization of the
computational tasks. In addition, the algorithm itself
may be sufficiently different in the parallel version.
Once these changes are applied, the resulting code
probably suffers from code-tangling problems because
the parallelism concerns obscure the numerical
computation. Therefore, the applications become more
difficult to maintain. This paper discuses the use of
AOP to improve the management of the code
parallelization. The benefits of the approach, as
mentioned in section 1, can be expressed in terms of
code modularization and reuse. It can be very difficult

to determine a theoretical result on the advantages and
disadvantages of this approach. The code parallelization
is traditionally done ad-hoc, so the process may vary
significantly from one application to another. Thus, our
conclusions will be based on the case study presented in
this paper.

We consider the results to be quite promising. The
complexity of the case study is moderated as it deals
with the efficient integration of both task and data
parallelism. The scientific core that calculates the 2D-
FFT sequentially was successfully adapted to two
distinct parallel scenarios (multithreading and MPI)
which are characterized by quite different programming
models. The only mechanism used in the code
parallelization was aspect weaving (based on
AspectC++, in this case). As a result, the new parallel
applications have the parallelism concerns modularized
into one or several aspects, and thereby code-tangling is
reduced. Moreover, the same scientific core can be
reused in different applications which can exploit very
different parallelism models.

Regarding the development of the sequential core, the
mechanisms that allowed the core to be parallelized
using aspects were not difficult to implement. Basically,
we have considered a good decomposition in terms of
classes and interfaces, and we have included some
elements, such as the iteration range of the stage, as
additional arguments in some methods. Although this
paper is focused on a particular case study, we are
currently applying this approach to other numerical
applications with more complex parallelism patterns
successfully.

REFERENCES

Briham, E.O. 1988. The Fast Fourier Transform and Its
Applications. Prentice-Hall International.

Díaz, M. et al. 2005. “An Aspect-Oriented Framework for
Scientific Component Development”. In Proc. of the 13th
Euromicro Conference on Parallel, Distributed and
Network-based Processing PDP05 (Lugano, Switzerland).
IEEE. 290-296.

Harbulot, B. and Gurd, J. 2004. “Using AspectJ to Separate
Concerns in Parallel Scientific Java Code”. In Proc. of the
3rd International Conference on Aspect-Oriented
Software Development AOSD04 (Lancaster, UK). ACM.
122-131.

Harbulot, B. and Gurd, J. 2006. “A Join Point for Loops in
AspectJ”. In Proc. of the 5th International Conference on
Aspect-Oriented Software Development AOSD06 (Bonn,
Germany). ACM. 63-74.

Kiczales, G. et al. 1997. “Aspect-Oriented Programming”. In
Proc. of the European Conference on Object-Oriented
Programming ECOOP97 (Jyvskyl, Finland). Springer-
Verlag. 220-242.

Kiczales, G. et al. 2001. “An Overview of AspectJ”. In Proc.
of the European Conference on Object-Oriented

Programming ECOOP01 (Budapest, Hungary). Springer-
Verlag. 327-353.

Schmidt, D. and Huston, S. 2002. C++ Network
Programming: Mastering Complexity with ACE and
Patterns. Addison-Wesley.

Sobral, J.L. 2006. “Incrementally Developing Parallel
Applications with AspectJ”. In Procs. of the 20th
International Parallel & Distributed Processing
Symposium IPDPS06 (Rodhes, Greece). IEEE.

Spinczyk, O. et al. 2002. “AspectC++: An Aspect-Oriented
Extension to C++”. In Proc. of the 40th International
Conference on Technology of Object-Oriented Languages
and Systems TOOLS02 (Sydney, Australia). Australian
Computer Society. 53-60.

AUTHOR BIOGRAPHIES

MANUEL DÍAZ. He received his M.S. and Ph.D.
degree in Computer Science from the University of
Málaga in 1990 and 1995, respectively. At present he is
an Associate Professor in the Department of “Lenguajes
y Ciencias de la Computación” (LCC) of the University
of Málaga. He has worked in the areas of distributed
and parallel programming and in real-time systems.

SERGIO ROMERO. He received his degree in
Computer Science from the University of Málaga in
2003. At present he is a PhD student in the University
of Málaga, where he works on the use of high-level
software technologies, e.g. component- and aspect-
based approaches, for the development of parallel and
distributed numerical applications.

BARTOLOMÉ RUBIO. He received his M.S. and
Ph.D. degree in Computer Science from the University
of Málaga in 1990 and 1998, respectively. At present he
is an Associate Professor in the Department of LCC of
the University of Málaga. He has worked in the areas of
distributed and parallel programming and coordination
models and languages.

ENRIQUE SOLER. He received his M.S. and Ph.D.
degree in Computer Science from the University of
Málaga in 1990 and 2001, respectively. At present he is
an Associate Professor in the Department of LCC of the
University of Málaga. He has worked in the areas of
distributed and parallel programming, especially in the
context of high-performance scientific computing.

JOSÉ M. TROYA. He received his M.S. and Ph.D.
degrees in Computer Science from the University
Complutense of Madrid in 1975 and 1980, respectively.
He has been a Full Professor at the Department of LCC
of the University of Málaga. He has worked on parallel
algorithms for optimization problems and on software
engineering for distributed systems. He has been the
head of the Software Engineering Group since its
foundation in 1990.

