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ABSTRACT 

This paper discusses the use of Aspect-Oriented 
Programming (AOP) to support the parallelization of 
scientific code. The idea is to develop parallelism 
concerns in separate aspects so that the weaving process 
can inject the code structures which allow the sequential 
scientific core to be executed in parallel. A series of 
advantages can initially be derived from this aspect-
based approach. As parallelism is modularized into 
separate units, the code-tangling level is reduced. The 
parallel version is developed by reusing the code pieces 
which implement the numerical computation 
sequentially. Moreover, different aspects can be written 
to adapt the application to different high-performance 
environments. This paper describes some experiences 
with the code parallelization using aspects. Specifically, 
the integration of both task and data parallelism in the 
context of two parallel scenarios (i.e. multithreading 
and message-passing) is addressed in a case study. The 
work is an attempt to assess the benefits and limitations 
of applying AOP for these purposes. 
 
INTRODUCTION 

Scientific software frequently exploits parallelism for 
achieving high-performance when tackling large-scale 
and realistic engineering problems. Implementations are 
typically based on parallel programming libraries (e.g. 
PThreads, MPI, PVM) which provide the developer 
with a set of primitives to code parallelism concerns. 
However, code-tangling problems often arise in these 
applications as the statements describing the numerical 
computation are mixed with those expressing 
parallelism. 
 
Aspect-Oriented Programming (Kiczales et al. 1997) 
helps the developer to achieve the separation of 
concerns, especially in those situations when such 
concerns cut across multiple parts (clases, components, 
modules) of a system. The modular management of 
cross-cutting concerns leads to a simpler application 
code which is easier to develop and maintain and has a 
greater potential for reuse. A well-modularized cross-
cutting concern is called an aspect. 

 
The management of high-performance concerns using 
AOP is emerging as a promising line of research. In 
(Harbulot and Gurd 2004), the separation of the parallel 
structure cross-cutting Java scientific applications is 
addressed using the general-purpose language AspectJ 
(Kiczales et al. 2001). The work in (Harbulot and Gurd 
2006) describes an extension of the AspectJ join point 
model aimed at allowing loops to be parallelized 
without re-factoring the base-code. A methodology for 
the modular development of parallel programs which is 
based on the composition of multiple fine-grain aspects 
such as concurrency, partition, distribution and so on, is 
discussed in (Sobral 2006). The proposal in (Díaz et al. 
2005) is focused on a component framework for the 
efficient development of high-performance applications. 
Specific concerns which affect a set of scientific 
components, such as the communication scheme 
underlying the application, are modeled into a special 
type of entities called aspect components. 
 
This paper focuses on the idea that scientific programs 
can (possibly) be written sequentially in a way that 
enables parallelism to be added later, for instance, once 
the code has been tested and debugged. Although the 
parallelization of a scientific program may require many 
changes of diverse nature in different parts of its code, 
we can consider the effects of these changes as the 
result of weaving what we have called parallelization 
aspects into the sequential scientific core (i.e. the part in 
charge of the numerical computation). The bodies of 
these aspects will implement additional functionalities 
such as distribution, communication and 
synchronization, in order to enable the sequential core 
to be executed in parallel. 
 
We can anticipate a series of advantages derived from 
this aspect-based parallelization approach: 
• Parallel statements don’t obscure the mathematical 

model, as the former are isolated into aspects, 
which results in a reduction of code-tangling. 

• The parallel application is set-up by weaving 
aspects into the sequential core, promoting core 
reuse. 

• The applied parallelism model can be replaced 
simply selecting different aspects to be woven. 
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Despite the potential benefits, this approach may also 
lead to some serious shortcomings. The characteristics 
of the aspect-oriented language used determine the type 
of interaction between aspects and base-code. For 
instance, in a general-purpose language such as 
AspectJ, the interactions are mainly based on 
intercepting method calls (pointcuts plus advice code), 
augmenting data structures (introductions), and so on. 
However, the parallelization of code following these 
mechanisms can be very difficult unless the programs 
are written assuming (explicitly) the fact that the code 
pieces which will be parallelized must be accessed and 
managed through valid join points. This leads us to 
consider new sequential designs which include sets of 
interfaces and/or classes aimed at allowing aspects to 
inject parallelism. In some sense, the parallelization 
concern must be somehow considered from the initial 
design of the code. Obviously, this represents an extra 
effort in the development of the sequential scientific 
core. 
 
This work is an attempt to assess the feasibility and 
suitability of the approach. The purpose is to describe a 
real experience which allows us to determine the overall 
advantages and limitations of using aspects for the code 
parallelization. At first, we describe a sequential 
program which computes the 2D-Fast Fourier 
Transform (Briham 1988) of a collection of matrices. 
Then, aspect weaving is used to integrate both task and 
data parallelism into the scientific code. This is carried 
out in the context of two different parallel scenarios: 
multithreading with shared memory, and message-
passing based on MPI. 
 
The implementation is based on the aspect-oriented 
language AspectC++ (Spinczyk et al. 2002). In 
AspectC++, almost all the language elements are 
efficiently implemented at compile-time, which makes 
the tool more suitable for the development of high-
performance concerns than other approaches using 
Java-based dynamic weaving such as AspectJ. 
 
The paper is structured as follows. Section 2 provides 
an overview of AspectC++. The case study is presented 
in section 3, where the sequential solution is described. 
Sections 4 and 5 provide an in-depth description of the 
parallelization using multithread programming and 
MPI, respectively. The paper finishes with some 
conclusions. 
 
 
ASPECTC++ FUNDAMENTALS 

AspectC++ is a general purpose language extension to 
C++ for the support of Aspect-Oriented Programming. 
An aspect can be understood as a modularized unit that 
implements a cross-cutting concern. The points at which 
an aspect can interfere with the base-code are called 
join points. 
 

A pointcut identifies a set of join points. Pointcuts are 
described by means of pointcut expressions, which can 
refer to combinations of static program entities, such as 
classes, functions or namespaces, and other points in the 
control flow of the program. For instance, the 
expression: 

 
execution(“void Dialog::set%(...)”) 

 

refers to the execution of any method of Dialog having 
both a name beginning with set and void as return 
type. In the match expression, % is used as a wildcard 
symbol and ... represents any sequence of arguments. 
A pointcut declaration allows a pointcut to be named so 
that it can be reused in different parts of the program. 
 
The advice is the mechanism which defines the way the 
aspect affects the base-code. An advice declaration 
indicates the block of code to be executed when specific 
join points are reached. The advice code can be 
executed before, after, or both before and after (i.e. 
around) the join point. For instance, the following 
advice can be used to trace the execution of “setter” 
methods in Dialog: 

 
advice execution(“void Dialog::set%(...)”) && that(d) 
  : before(Dialog &d) {       
  cout << “Dialog:” << d.name 
       << “ will be modified.” << endl; 
} 

 

The code in the example above is triggered just before 
the method execution. The function that() binds a 
variable to the object on which the method is invoked 
(i.e. the object referred to by this). Other pointcut 
functions can be used to access information such as the 
arguments of a function and its return value. 
Furthermore, the object tjp (of class JoinPoint) allows 
the programmer to retrieve context information from 
within the advice code. 
 
A different type of advice is that represented by 
introductions, which are used to augment data 
structures. For instance, the following code uses a slice 
element to add data members and methods to the class 
Dialog. A method which is defined this way can access 
even private data members: 

 
advice “Dialog” : slice class { 
  Time creation; 
  int isExpired() { 
    return ((Time::now() - creation) > 3600) ? 1:0; 
  } 
}; 
 

The aspect is the language construction in which all 
these elements are combined for the implementation of 
modularized cross-cutting concerns. In terms of 
syntaxis, an aspect is very similar to a C++ class 
definition. In this sense, aspects can have data members 
and methods, and can inherit from classes and even 
other aspects. The code below shows an aspect which 
implements an “expiration” concern for the class 
Dialog. The functionality consists of preventing the 
modification of any dialog window which has already 



 

 

expired. In an around advice, the original join point 
code can be executed by calling tjp->proceed(): 

 
aspect Expiration { 
  pointcut resetTime() = construction(“Dialog”) || 
    execution(“void Dialog::show(...)”); 
 
  advice resetTime() && that(d) : after(Dialog &d) { 
    d.creation = Time::now(); 
  } 
  advice execution(“void Dialog::set%(...)”)&&that(d) 
    : around(Dialog &d) { 
    if ( !d.isExpired() ) 
      tjp->proceed(); 
  } 
}; 

 
CASE STUDY: THE SEQUENTIAL 2D-FFT 

The Fast Fourier Transform (FFT) is used to produce 
frequency analysis of discrete signals in a wide range of 
application domains: image analysis, signal processing, 
speech recognition, astronomy, etc. The processing of a 
vector of N elements (i.e. complex numbers) involves 
O(N logN) operations. The FFT of a matrix (called 2D-
FFT) consists of using FFT to transform each column, 
and then uses the result to transform each row (again 
using FFT). 
 
This section describes a C++ code for the sequential 
processing of a stream of complex matrices using the 
2D-FFT. The problem has been broken down into four 
main activities (sensor, FFT on columns, FFT on rows, 
writer) which are coupled following a pipeline scheme, 
so that each activity consumes the result of the previous 
one. The class diagram is shown in figure 1. 
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Figure 1: 2D-FFT class diagram 
 
The class FFT2D models the problem as a sequential 
pipeline. The activities inherit from Stage. Data and 
Rect represent, respectively, complex matrices and 
rectangular regions. The implementation of some of the 
methods is described below: 
 
int main(int argc, char **argv) { 
  Pipe *pipe = new FFT2D; 
  pipe->create(); 
  pipe->execute(NUM_MATS, pipe->getStages()); 
  delete pipe; 
} 
 
void FFT2D::create() { 
  Stage *s1 = new Sensor(1); 
  Stage *s2 = new FFTCols(2); 
  ... 
  Rect r(1,DIMX,1,DIMY); 
  linkStages(s1,s2,&r); 
  ... 
  addStage(s1); 
  ... 
} 

 
void Pipe::linkStages(Stage *s1,Stage *s2,Rect *r) { 
  Data *d = new Data(r); 
  s1->setOutputData(d); 
  s2->setInputData(d); 
  ... 
} 
 
void Pipe::execute(int iters,vector<Stage *> *stgs) { 
  ... 
  for (int i=0; i<iters; i++) 
    for (int s=0; s<stgs->size(); s++) { 
      stg = (*stgs)[s]; 
      stg->execute(&(stg->rect)); 
    } 
} 
 
void FFTCols::execute(Rect *r) { 
  ... 
  if ( iter == 0 ) 
    buffer = new Data(r); 
 
  getInputData()->getBlock(buffer);  //input to buffer 
 
  for (int x = r->x0; x<= r->x1; x++) { 
    ...  // FFT on column x using buffer 
  } 
  getOutputData()->setBlock(buffer); //buffer tooutput 
} 
 

Each stage is associated with two Data objects, one of 
them being used as input and the other as output. Each 
time the stage is executed, the input is consulted so that 
its value can be used in the computation. The 
connection between two stages is implemented by 
sharing the same Data instance. This way, the ith stage 
writes the result in the object which is read by the 
(i+1)th stage. In the class FFTCols, the creation of the 
intermediate data buffer is carried out only in the first 
iteration. The computation of the one-dimensional FFT 
entails a series of swapping and floating-point 
operations on the elements of the vector. 
 
Compared to a classical implementation, the solution 
presented here offers some additional elements which 
are atypical in sequential scientific programs. They have 
been considered specifically with the aim of facilitating 
the parallelism integration by means of an AO 
language. Let us enumerate some of the elements:  
• The degree of decomposition in terms of methods, 

interfaces and classes is high, therefore providing a 
rich set of join points to be intercepted. 

• Activities are represented by different classes in the 
system, making the potential use of active elements 
easier (threads, distributed objects, etc.). 

• Stages have to be linked explicitly and the linkage 
is based on sharing an object of class Data. This 
can be used as the basis for communicating active 
elements. 

• Additional arguments in method calls are especially 
useful in two cases: for indicating the list of stages 
in the computation, and for setting the stage 
iteration range through an object of class Rect. The 
arguments can be altered by the aspect code. 

 
Regarding the parallel execution, the solution can 
exploit both task and data parallelism. On the one hand, 
the pipeline can run its stages concurrently, which 
means that up to four matrices can be processed 
simultaneously. On the other hand, the stages 



 

 

computing the FFT, which are the ones with higher 
computational cost, can divide the matrix into several 
blocks for an “embarrassingly” parallel computation. 
The following aspect establishes the degree of 
parallelism by setting both the type of data distribution 
and the number of blocks for every stage. This aspect 
declaration can be reused regardless of the parallelism 
implementation: 
 
aspect Parallelism { 
  advice “Stage” : slice class { 
    int blocks;        // Number of blocks 
    int distribution;  // Type of data distribution 
  }; 
 
  advice construction(“Stage”) && that(s) 
    : after(Stage &s){ 
    switch (s.id) { 
      case 1:s.blocks=1; break; 
      case 2:s.blocks=4;s.distribution=BY_COLS; break; 
      case 3:s.blocks=4;s.distribution=BY_ROWS; break; 
      case 4:s.blocks=1; break; 
    } 
  } 
}; 

 
MULTITHREAD-BASED DESIGN 

The execution of multiple threads is a way to exploit 
parallel hardware, as the operating system is able to run 
each thread on a different processor. Thread interactions 
can be based on variables which are allocated to a 
global memory space. Synchronization mechanisms are 
required to ensure the consistency of the shared data. 
 
We have based the multithread implementation on the 
Adaptive Communication Environment ACE (Schmidt 
2002), an object-oriented framework for the efficient 
development of concurrent communication software. 
The portability of ACE enables the same multithread 
code to be run on top of different interfaces such as 
POSIX PThreads, Solaris threads and Win32 threads. 
 
The application described here uses groups of threads to 
execute the stages in parallel (one group per stage). The 
group size is indicated by the attribute blocks 
introduced in Stage by the aspect Parallelism, as 
stated at the end of the previous section. 
 
Stage Connection 

In the sequential version, the stages were connected by 
sharing a single instance of Data. This is a shortcoming 
in the parallel version since a stage running slower than 
the others will block the preceding ones, which will not 
be able to write in their output Data objects. A way to 
increase the performance is to link the stages using a 
buffer which supports the storage of multiple data 
elements. Figure 2 illustrates the idea. Four threads are 
running the code of FFTCols. Each time a result is 
produced, it is placed into a FIFO buffer from which the 
next stage (FFTRows, using four threads as well) 
retrieves its input data. 
 
A Fifo class with the typical get()/put() methods is 
used for the implementation of the stage connections. 

As the Fifo objects will be accessed by different 
threads, synchronization mechanisms have to be 
considered. In our approach, the synchronization 
concern is developed in a separate aspect to be woven 
into the class Fifo: 
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Figure 2: Stage connection scheme 

 
 
aspect SynchFifo { 
  advice “Fifo” : slice class { 
    ACE_Thread_Mutex *mutex; 
    ACE_Condition<ACE_Thread_Mutex> *notEmpty; 
    ACE_Condition<ACE_Thread_Mutex> *notFull; 
  }; 
 
  advice execution(“void Fifo::get(...)”) && that(f) : 
    around(Fifo &f) { 
    f.mutex->acquire();   // mutex acquired 
    while (f.size() == 0) 
      f.notEmpty->wait(); // Blocks if buffer is empty 
    tjp->proceed();       // Element removal 
    f.notFull->signal();  // The buffer has free space 
    f.mutex->release();   // mutex released 
  } 
  ...  // advice on Fifo::put() 
}; 
 

The second advice introduces code before and after the 
get() operation in order to control the removal of data. 
The body of the advice is accessed in mutual exclusion. 
If the Fifo buffer is empty, the thread is blocked in the 
notEmpty condition variable, waiting for any other 
thread to insert new data. Otherwise, a call to tjp-
>proceed() executes the code of get(). Then, we are 
sure that the buffer is not full, and so the variable 
notFull can be signaled, which will possibly wake up 
other threads which may be blocked in this variable 
because they can not complete a put() operation. 
 
In order to integrate the new connection mechanism, the 
following advice is used to intercept the method 
linkStages(). Instead of sharing a single Data 
instance, adjacent stages will share a synchronized Fifo 
object. 
 
advice “Stage” : slice class { 
  Fifo *inputFifo; 
  Fifo *outputFifo; 
 
  ACE_Barrier *inputBarrier; 
  ACE_Barrier *outputBarrier; 
}; 
 
advice execution(“void Pipe::linkStages(...)”) && 
  args(s1,s2,r) && that(p) 
  : after(Stage *s1,Stage *s2,Rect *r,Pipe &p) { 
  ... 
  Fifo *f = new Fifo(MAX_FIFO_SIZE); 
  s1->outputFifo = f; 
  s2->inputFifo = f;   // s1 and s2 share a FIFO 
  ... 
} 



 

 

 
Thread Creation 

The creation of threads is considered in the following 
advice, which affects the method execute() of Pipe: 
 
advice execution(“void Pipe::execute(...)”) && that(p) 
  && !cflow(execution(“void *work(...)”)) 
  :  around(Pipe &p) { 
  ... 
  Vector<Rect> vr; 
 
  for (int i=0; i<p.getStages()->size(); i++) { 
    Stage *s = *(p.getStages())[i]; // For each stage 
    s->rect.distribute(s->distribution,s->blocks,&vr); 
 
    for (int j=0; j<s->blocks; j++) { //For each block 
      arg = new ThrArg(j,iters,&p,s,&(vr[j])); 
      ACE_Thread_Manager::instance()->spawn( 
        (ACE_THR_FUNC)work,arg, 
        THR_NEW_LWP|THR_JOINABLE);  // Thread launched 
    }    
  } 
  ACE_Thread_Manager::instance()->wait(); //Wait 
} 
 

There is no call to tjp->proceed(), which means that 
the code join point will not be executed in this context. 
For each stage, the iteration range represented by the 
attribute rect is partitioned. Then, the group of threads 
is launched. The number of threads to be started is 
indicated in the attribute blocks. Every thread receives 
information through an object of type ThrArg, which 
includes the block identifier, the number of matrices to 
process, and references to the pipeline, the stage and the 
new iteration range. 
 
Parallel Execution 

The function work() executed by the threads saves the 
ThrArg variable and executes the pipeline using, this 
time, a stage list of only one element. The ACE_TSS 
template implements thread specific storage, which 
allows each thread to manage its own copy of arg: 
 
ACE_TSS<ThrArg> arg; 
static void *work(void *argument) { 
  arg->set((ThrArg *)argument); 
  arg->pipeline->execute(arg->iters,&(arg->stages)); 
} 
 

Finally, data have to be moved from the Fifo buffers to 
the input and output Data objects each time a stage is 
executed. This involves the synchronization of threads: 
 
pointcut invocations() = 
  execution(“void Sensor::execute(...)”)  || 
  execution(“void FFTCols::execute(...)”) || 
  execution(“void FFTRows::execute(...)”) || 
  execution(“void Writer::execute(...)”); 
 
advice invocations() && that(s) : around(Stage &s) { 
  if ((s.getInputData()!= NULL) && (arg->id == 0)) 
    s.inputFifo->get(s.getInputData()); 
  s.inputBarrier->wait();   // Waits to complete input 
 
  Rect **pr = (Rect **)tjp->arg(0); 
  *pr = &(arg->rect);       // Iteration range changed 
 
  tjp->proceed();          // Stage execution 
  s.outputBarrier->wait(); // Waits to end computation 
 
  if ((s.getOutputData()!= NULL) && (arg->id == 0)) 
    s.outputFifo->put(s.getOutputData()); 
} 
 

The pointcut invocations() refers to the execution of 
any of the stages. When the advice code is triggered, the 

thread with id zero retrieves a new matrix from the 
input Fifo buffer and updates the input Data object. 
The other threads assigned to the stage are blocked until 
this operation is complete. Before the call to tjp-
>proceed(), the Rect argument, which denotes the 
iteration range, is replaced with the value stored in the 
variable arg. The threads wait until the code of the 
stage is executed. Then all the parts of the output Data 
object has been correctly updated with new values. The 
thread with id zero is allowed to insert the result into 
the output Fifo buffer. 
 
MPI-BASED DESIGN 

MPI is a collection of routines widely used in the 
development of parallel programs on architectures with 
distributed memory including computer networks. The 
programming model consists of a set of processes 
communicating by means of message-passing. 
 
The aspect presented in this section will transform the 
sequential program into an SPMD application using 
MPI. 
 
Application Set-up 

The following advice ensures that the message-passing 
environment is initialized and terminated correctly: 
 
advice execution(“int main(...)”) && args(ac,av) 
  : around(int ac, char **av) { 
  MPI_Init(&ac,&av); 
  tjp->proceed(); 
  MPI_Finalize(); 
} 
 

Unlike the code in section 4, the group of processes of 
an MPI application is created in a static way when the 
application is started. A specific computation has to be 
assigned to each process in the group. So, 
correspondence between the process rank and the pair 
(stage, iteration range) is required. The association in 
the opposite direction is also needed. The aspect defines 
the methods mpiToProblem() and problemToMpi() in 
order to carry out these mappings. Their codes are quite 
simple as they use the information set by the aspect 
Parallelism. 
 
In the multithread version, the threads accessed data 
using shared memory, so the parallelization aspect was 
mainly focused on the creation and synchronization of 
threads. Owing to the distributed nature of MPI, the 
data flow in the pipeline has to be implemented by 
means of message-passing. The parallelization aspect in 
this section will be mainly focused on communications. 
 
Data distribution must be taken into account in order to 
implement efficient point-to-point communications on 
the stage interactions. Figure 3 depicts this scenario. 
The stage on the left uses four processes, each one 
computing the FFT (on columns). When the result is 
passed to the next stage, data is partitioned to send 
remote processes the exact data pieces they require. In 



 

 

this figure, process 3 has to send specific data to 
processes 5, 6, 7 and 8. As can be noted, the 
information about the data distribution and the number 
of blocks of the stages is essential. New attributes and 
methods are introduced in some classes: 
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Figure 3: Communication between stages 

 
advice “Stage” : slice class { 
  vector<Data *> inputPartition; 
  vector<Data *> outputPartition; 
}; 
 
advice “Data” : slice class { 
  int remote;        // Remote process 
  Stage *preceding;  // Preceding stage 
  Stage *next;       // Next stage 
 
  void send(int p) { // Sends data to process p 
    MPI_Send((void*)ptr,rect.points()*sizeof(complex), 
      MPI_BYTE,p,MYTAG,MPI_COMM_WORLD); 
  } 
  void recv(int p) { // Receives data from process p 
    MPI_Status status; 
    MPI_Recv((void*)ptr,rect.points()*sizeof(complex), 
      MPI_BYTE,p,MYTAG,MPI_COMM_WORLD,&status); 
  } 
}; 
advice execution(“void Pipe::linkStages(...)”) && 
  args(s1,s2,r) : after(Stage *s1,Stage *s2,Rect *r) { 
  s1->getOutputData()->preceding = s1; 
  s2->getInputData()->next = s2; 
} 
 

The meaning of the code is simple. The class Stage is 
augmented with two attributes which represent two data 
partitions used to receive (send) data from (to) other 
processes. For instance, the list outputPartition of the 
process 3 (again in figure 3) will contain four Data 
elements, each one being used to send a specific data 
piece to other process. The class Data is also augmented 
with pointers to the adjacent stages and operations to 
carry out the communication using MPI primitives. 
 
The aspect declares some data members useful for the 
computation, such as myrank, myid, myblock, mystg, 
and mystglist. They are initialized in the following 
advice, which also includes the code needed to set-up 
the two data partition lists of the stage pointed to by 
mystg (this code has been omitted): 
 
advice execution(“void FFT2D::create(...)”) && that(p) 
  : after(Pipe &p) { 
  ... 
  vector<Rect> vr; 
  MPI_Comm_rank(MPI_COMM_WORLD,&myrank);  // My rank 
  mpiToProblem(p.getStages(),myrank,&myid,&myblock); 
 
  mystg = p.getStageById(myid); // This is my stage 
  mystglist.push_back(mystg); // List with one stage 
   
  mystg->rect.distribute(mystg->distribution, 
    mystg->blocks,&vr); 
  myrect.set(&(vr[myblock])); //My iteration sub-range 
  ...// inputPartition and outputPartition are filled 
} 

 
Parallel Execution 

Finally, the following advices ensure that the parallel 
program will be executed correctly:  
 
advice execution(“void Pipe::execute(...)”) :before { 
  vector<Stage *> **stglist = 
    (vector<Stage *> **)(tjp->arg(1)); 
  *stglist = &mystglist;    // Replaces the stage list 
} 
 
advice invocations() && that(stg) : around(Stage &stg) 
{ 
  Data *d; 
  // Receives data from other processes 
  for (i=0; i<stg.inputPartition.size(); i++) { 
    d = stg.inputPartition[i]; 
    d->recv(d->remote); 
    stg.getInputData()->setBlock(d); 
  } 
 
  Rect **pr = (Rect **)(tjp->arg(0)); 
  *pr = &(myrect);  // Iteration range is changed 
 
  tjp->proceed();   // Stage code execution 
 
  // Sends the result to other processes 
  for (i=0; i<stg.outputPartition.size(); i++) { 
    d = stg.outputPartition[i]; 
    stg.getOutputData()->getBlock(d); 
    d->send(d->remote); 
  } 
} 
 

The first advice is needed to replace the original list of 
stages, which is the second argument of execute(), 
with another list containing one stage only. This way, 
the active element (i.e. the process) will address the 
execution of a single stage, instead of the complete 
pipeline. 
 
The second advice uses the pointcut invocations() 
which was described in the previous section. The advice 
code is triggered when execute() is called on any of 
the subclasses of Stage. First, the process has to receive 
new data. More specifically, every object of 
inputPartition receives data from the corresponding 
remote process. These values are used to update the 
input Data object. Before the stage code is executed, the 
iteration range is restricted using the variable myrect. 
When the result is computed, it is sent to the processes 
associated with the next stage. This is done using the 
elements of the attribute outputPartition. 
 
CONCLUSIONS 

The parallelization of sequential scientific programs 
may entail significant changes in the code for tackling 
the creation, communication and synchronization of the 
computational tasks. In addition, the algorithm itself 
may be sufficiently different in the parallel version. 
Once these changes are applied, the resulting code 
probably suffers from code-tangling problems because 
the parallelism concerns obscure the numerical 
computation. Therefore, the applications become more 
difficult to maintain. This paper discuses the use of 
AOP to improve the management of the code 
parallelization. The benefits of the approach, as 
mentioned in section 1, can be expressed in terms of 
code modularization and reuse. It can be very difficult 



 

 

to determine a theoretical result on the advantages and 
disadvantages of this approach. The code parallelization 
is traditionally done ad-hoc, so the process may vary 
significantly from one application to another. Thus, our 
conclusions will be based on the case study presented in 
this paper. 
 
We consider the results to be quite promising. The 
complexity of the case study is moderated as it deals 
with the efficient integration of both task and data 
parallelism. The scientific core that calculates the 2D-
FFT sequentially was successfully adapted to two 
distinct parallel scenarios (multithreading and MPI) 
which are characterized by quite different programming 
models. The only mechanism used in the code 
parallelization was aspect weaving (based on 
AspectC++, in this case). As a result, the new parallel 
applications have the parallelism concerns modularized 
into one or several aspects, and thereby code-tangling is 
reduced. Moreover, the same scientific core can be 
reused in different applications which can exploit very 
different parallelism models. 
 
Regarding the development of the sequential core, the 
mechanisms that allowed the core to be parallelized 
using aspects were not difficult to implement. Basically, 
we have considered a good decomposition in terms of 
classes and interfaces, and we have included some 
elements, such as the iteration range of the stage, as 
additional arguments in some methods. Although this 
paper is focused on a particular case study, we are 
currently applying this approach to other numerical 
applications with more complex parallelism patterns 
successfully. 
 
REFERENCES 

Briham, E.O. 1988. The Fast Fourier Transform and Its 
Applications. Prentice-Hall International. 

Díaz, M. et al. 2005. “An Aspect-Oriented Framework for 
Scientific Component Development”. In Proc. of the 13th 
Euromicro Conference on Parallel, Distributed and 
Network-based Processing PDP05 (Lugano, Switzerland). 
IEEE. 290-296. 

Harbulot, B. and Gurd, J. 2004. “Using AspectJ to Separate 
Concerns in Parallel Scientific Java Code”. In Proc. of the 
3rd International Conference on Aspect-Oriented 
Software Development AOSD04 (Lancaster, UK). ACM. 
122-131. 

Harbulot, B. and Gurd, J. 2006. “A Join Point for Loops in 
AspectJ”. In Proc. of the 5th International Conference on 
Aspect-Oriented Software Development AOSD06 (Bonn, 
Germany). ACM. 63-74. 

Kiczales, G. et al. 1997. “Aspect-Oriented Programming”. In 
Proc. of the European Conference on Object-Oriented 
Programming ECOOP97 (Jyvskyl, Finland). Springer-
Verlag. 220-242. 

Kiczales, G. et al. 2001. “An Overview of AspectJ”. In Proc. 
of the European Conference on Object-Oriented 

Programming ECOOP01 (Budapest, Hungary). Springer-
Verlag. 327-353. 

Schmidt, D. and Huston, S.  2002. C++ Network 
Programming: Mastering Complexity with ACE and 
Patterns. Addison-Wesley. 

Sobral, J.L. 2006. “Incrementally Developing Parallel 
Applications with AspectJ”. In Procs. of the 20th 
International Parallel & Distributed Processing 
Symposium IPDPS06 (Rodhes, Greece). IEEE. 

Spinczyk, O. et al. 2002. “AspectC++: An Aspect-Oriented 
Extension to C++”. In Proc. of the 40th International 
Conference on Technology of Object-Oriented Languages 
and Systems TOOLS02 (Sydney, Australia). Australian 
Computer Society. 53-60. 

 

AUTHOR BIOGRAPHIES 

MANUEL DÍAZ. He received his M.S. and Ph.D. 
degree in Computer Science from the University of 
Málaga in 1990 and 1995, respectively. At present he is 
an Associate Professor in the Department of “Lenguajes 
y Ciencias de la Computación” (LCC) of the University 
of Málaga. He has worked in the areas of distributed 
and parallel programming and in real-time systems. 
 
SERGIO ROMERO. He received his degree in 
Computer Science from the University of Málaga in 
2003. At present he is a PhD student in the University 
of Málaga, where he works on the use of high-level 
software technologies, e.g. component- and aspect-
based approaches, for the development of parallel and 
distributed numerical applications. 
 
BARTOLOMÉ RUBIO. He received his M.S. and 
Ph.D. degree in Computer Science from the University 
of Málaga in 1990 and 1998, respectively. At present he 
is an Associate Professor in the Department of LCC of 
the University of Málaga. He has worked in the areas of 
distributed and parallel programming and coordination 
models and languages. 
 
ENRIQUE SOLER. He received his M.S. and Ph.D. 
degree in Computer Science from the University of 
Málaga in 1990 and 2001, respectively. At present he is 
an Associate Professor in the Department of LCC of the 
University of Málaga. He has worked in the areas of 
distributed and parallel programming, especially in the 
context of high-performance scientific computing. 
 
JOSÉ M. TROYA. He received his M.S. and Ph.D. 
degrees in Computer Science from the University 
Complutense of Madrid in 1975 and 1980, respectively. 
He has been a Full Professor at the Department of LCC 
of the University of Málaga. He has worked on parallel 
algorithms for optimization problems and on software 
engineering for distributed systems. He has been the 
head of the Software Engineering Group since its 
foundation in 1990. 

 


