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Abstract— Heterogeneous administrative domains, operating sys-
tems (OS), and libraries make it difficult for computational scientists
to fully utilize metacomputers and grids. Dealing with the presence or
absence of features on, say, different clusters, adds complexity. How
can a user or high-performance computing (HPC) application abstract
out the heterogeneity?

One possible solution is to use a virtual machine (VM) environment
that supports guest operating systems and virtual disks. But, over the
decades, VMs have sometimes suffered from performance overheads
and limited platforms on which they can run. Through a simple quan-
titative study, we show that recent improvements in software and hard-
ware support reduces the overheads for HPC applications (e.g., GRO-
MACS, BLAST, HMMer) to under 6% for compute-intensive jobs, but
9.7% or higher for more I/O-intensive jobs, on our x86-based platform.
We also argue for qualitative and pragmatic benefits of using VMs for
HPC, including ease of deployment, improved functionality, and the
ability to run jobs on more systems than would normally be accessible.
While not perfect, VMs are emerging as a pragmatic tool in HPC.

Keywords—metacomputing, grid computing, virtual machine (VM),
bioinformatics, GROMACS (molecular dynamics simulation), bench-
marking, file systems

I. INTRODUCTION

Heterogeneity, in various forms, is often a pragmatic bar-
rier to users taking advantage of different computer systems
for a high-performance computing (HPC) workload. For ex-
ample, many scientific computations in HPC consist of a set
of similar jobs (sequential or parallel; we mainly focus on
sequential jobs in this discussion) for a parameter sweep,
such as exploring the forces between two molecules as the
relative position of the molecules change [Su and Xu, 2005].
Ideally, the scientist should be able to aggregate the research
group’s workstations, the department’s cluster, and the uni-
versity’s HPC consortia to run different, independent jobs
from the workload. But, if the systems have different secu-
rity infrastructure, run different operating systems (OS), or
have different versions of software libraries, then there is a
(potentially) complex process of porting and re-configuring
the application and jobs for each system.

A. Background

Grid computing [Foster et al., 2002] attempts to solve
some of the heterogeneity problems by mandating a class
of software that needs to be installed on all systems. For ex-
ample, if one installs the Grid Security Infrastructure (GSI)
on all the systems, it becomes possible to support a com-
mon security model on the grid, regardless of the existing,
heterogeneous security mechanisms. In essence, grid com-
puting achieves homogeneity by defining a new, homoge-

neous software platform. Other projects [Lu et al., 2006],
[Pinchak et al., 2003], [Anderson, 2004] partly address het-
erogeneity by exploiting existing software systems that are
already (nearly) universally deployed (e.g., Secure Shell for
security, or basic TCP/IP for client-server interactions) and
minimizing the new software required for HPC workloads.

Among the remaining barriers to the mainstream use
of diverse computational resources is the heterogeneity of
OSes and libraries. It is not an explicit design goal of (most)
grid computing nor metacomputing systems to abstract out
the differences between OSes for the applications. Java,
Javascript, and Flash can be described as homogeneous plat-
forms for the World Wide Web that make it unnecessary (in
theory, impossible) for applications to access the OS, thus
making heterogeneous OSes less of an issue. But, existing
applications have to be re-written for these platforms. And,
for example, the Globus Toolkit deals with the heterogene-
ity of libraries (and other software or hardware) by provid-
ing tools to automate resource discovery (i.e., finding the
platforms that have the right resources and right versions of
those resources). However, resource discovery does not ac-
tually increase the number of usable systems; resource dis-
covery locates the subset of resources that can be used.

B. Virtual Machines

How can existing, unmodified applications be supported
across different platforms, regardless of what OS and li-
braries, or version of libraries, are available on the host
system? One possible answer is through virtual machines
(VM) that virtualize the physical hardware, such as VMware
[Adams and Agesen, 2006] (www.vmware.com), Par-
allels (www.parallels.com), and, historically, IBM’s
System/360 VM. (Note that Parallels is the name of the
commercial product and is not specifically referring to par-
allelism in HPC.) Unlike Java VMs, VMware (and similar
systems) virtualize the hardware without changing the in-
struction set of the processor or the standard ways of inter-
facing to input/output (I/O) devices. There are a number
of other approaches to virtualization, including Xen’s par-
avirtualization [Barham et al., 2003], KVM’s Linux kernel-
based approach [Qumranet, 2006], and the forthcoming
Windows-based strategy from Microsoft. For this study, we
focus on VMware because of its relative maturity and cur-
rent wide availability. A comparison between different VMs
and strategies is the subject of future work.

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)



By virtualizing the hardware, a host server and host OS
can host the VM, which in turn can run a guest OS. On top of
the guest OS, an unmodified version of the application can
execute as if it was running on bare hardware with the ap-
propriate OS. Note that we use the term “bare hardware” (as
opposed to “virtualized hardware”) to refer to the combina-
tion of hardware and a (host) OS throughout this discussion.

For example, consider an instance of the GROMACS
application (a molecular dynamics (MD) simulator) [Lin-
dahl et al., 2001] that is normally executed on an x86-
based server, running a Linux 2.4-based distribution, with
libraries from the year 2005. VMware allows the creation
of a VM (i.e., a set of files containing the contents of vir-
tual disks) that contains Linux 2.4, the necessary libraries,
and GROMACS itself. The resulting VM can run on a host
system that consists of, say, x86-based hardware and run-
ning Microsoft Windows XP. Furthermore, VMware can run
the same VM on a variety of guest OSes, including Linux
(whether 2.4-based or 2.6-based), Mac OS X, and other ver-
sions of Windows. By packaging a VM with GROMACS,
Linux 2.4, and libraries, it should be possible to run multi-
ple instances of the same VM on heterogeneous host OSes,
with different versions of the same OS, and with different
versions of their required libraries.

However, the VM-based approach does have some disad-
vantages:
1. It is non-trivial to create a VM for a scientific application.
Packaging the OS, libraries, as well as the application itself
requires more expertise (and effort) than is typical of most
computational scientists.
2. Contemporary VM products, such as VMware, are lim-
ited to x86-based hardware platforms.
3. Virtualization has overheads [Adams and Agesen, 2006].
Emulating different I/O devices and dealing with the issues
of privilege (in the traditional sense for OSes) results in a
loss of some performance, compared to running directly on
a host OS and hardware.

The goal of this paper is to evaluate virtualization over-
heads, in the context of HPC applications, to consider some
of the pragmatic issues related to VMs, and to draw some
appropriate conclusions about the advantages and disadvan-
tages of VMs for HPC. After a set of simple, quantitative
experiments, we conclude that VMs are promising tools for
compute-intensive applications, and are less well-suited for
I/O-intensive applications.

II. THE PRAGMATICS OF VMS

A number of arguments have been made in favour of
using VMs on grids and similar environments [Figueiredo
et al., 2003]. In this section, we focus on three main prag-
matic reasons to consider VMs. In the next section, we con-
sider the performance of full-sized applications.

Pragmatics 1: Virtual Appliances: Although creat-
ing a VM from scratch does require expertise, a growing
trend with VMs is to create so-called virtual appliances.
For example, a Linux 2.6-based distribution (be it Gentoo,
Debian, Scientific Linux, or any other) can be packaged
into a VM and distributed as a unit, analogous to shrink-
wrapped consumer software. In particular, VMware now
supports an online user community where dozens of pre-

packaged appliances have been created and are available for
download (http://www.vmware.com/vmtn/). Ex-
amples of appliances include self-contained mail servers,
network firewalls, and distributed file systems [Closson
and Lu, 2005]. And, the virtual appliances can be used
with VMware’s free-to-use versions of their VM, known
as VMware Player (analogous to the free-to-use version of
Adobe Acrobat, known as Acrobat Reader) and VMware
Server (which is different than the non-free VMware ESX
Server).

Due to the open-source licence of Linux and related soft-
ware, users can install their applications on the VM, and the
resulting appliance can also be redistributed. One can imag-
ine GROMACS being installed on top of an existing Linux-
based virtual appliance to create, say, a GROMACS appli-
ance. Therefore, most computational scientists do not have
to become experts in installing and configuring Linux; they
install their software on the VM in the same way they install
their applications on their Linux cluster. Or, they download
a pre-made application-specific appliance.

Whether packaging one’s own VM or using a pre-made
appliance, the result is a system that can be used without
changes on a variety of host OSes, regardless of what ver-
sion of the OS or libraries are on the host. That is a sig-
nificant reduction in the amount of heterogeneity that the
computational scientist has to be concerned about.

We have built a virtual appliance of our own, the Trel-
lis NAS Bridge Appliance (Trellis NBA or TNBA). It is a
virtual appliance that provides “bridged” file access [Clos-
son and Lu, 2005] across administrative domains using
Secure Shell as the basic security mechanism [Lu et al.,
2006]. In HPC, explicit stage-in/stage-out of data is com-
mon, tedious, and error-prone. Using a combination of
Samba (www.samba.org) and technology from the Trel-
lis Project, TNBA allows unmodified binary applications
to access files (using open, read, write, and close, as per
a file system) instead of via copying or file transfer. We
believe that the packaging of virtual appliances with a dis-
tributed file system will provide a useful platform for HPC,
especially if the performance overheads are negligible (Sec-
tion III-E).

Pragmatics 2: x86 Platform: Although VMware and
most contemporary VMs are limited to x86-based hardware
platforms, it is such an ubiquitous platform that it is still
meaningful to consider the VM-based approach. Further-
more, a virtual appliance can be run on (almost) any x86-
based system running Microsoft Windows, Linux, and Mac
OS X. Therefore, in some situations, the number of actual
servers that are usable with the VM can grow in some ways
(i.e., more OSes) while shrinking in other ways (i.e., non-
x86 servers).

Pragmatics 3: Overheads: Perhaps the most worrisome
aspect of VMs is the potential loss of performance. In HPC,
a great deal of money and effort is spent to increase perfor-
mance by a few percent. How much of an overhead does
the VM incur? Why would anyone be willing to use an ap-
proach that had any additional overhead?

This paper attempts to quantify the basic overheads of
the VM approach. Using the GMX benchmarks distributed
with GROMACS, we measure the overhead to be less than



6% (Section III-C, Figure 3) for the more compute-intensive
workloads. For more I/O-intensive workloads, we measured
overheads as high as 9.7% when comparing the VM against
bare hardware. Therefore, the VM-based approach may not
be ideal for all scientific HPC applications. But, if one’s
application is similar to GROMACS, then for about a 6%
reduction in performance, one can gain the benefits of a
portable virtual appliance (to deal with heterogeneity) that
can potentially run on many different x86-based OSes.

III. EXPERIMENTS

The goal of the experiments is to answer the question:
Can the current generation of VMs, as represented by
VMware, be competitive enough with bare hardware to war-
rant consideration for throughput-oriented HPC workloads?

To measure the overheads of running scientific appli-
cations, three widely used scientific applications related
to bioinformatics and biological simulation are measured
on hardware and under VMware on the same platform.
The benchmarks are BLAST [Altschul et al., 1990] (se-
quence matching in bioinformatics), HMMer [Eddy, 1998]
(machine-learned pattern matching), and GROMACS [Lin-
dahl et al., 2001] (molecular dynamics simulation). These
benchmarks are in wide use and often run on clusters with
a batch scheduler. Also, GROMACS and HMMer have
both been included in the recently released SPEC CPU 2006
benchmarks.

All real-time data points are the averages of five runs, as
measured using gettimeofday(), where the observed
standard deviation of times is very low. There is some con-
cern about the use of gettimeofday() inside VMs, so
we also experimented with using the timestamps on network
ping packets to measure real time [VMware, Inc., 2006].
We found differences of less than 1% in the timings between
gettimeofday() and ping for our runs.

Our test machines are dual Opteron (model 248, running
at 2.2 GHz) Linux servers with 4 GB of RAM and a 250
GB disk. The virtual environment is run under VMware
Server version 1.0.1, which is free-to-use after registering.
Note that we did not use the higher-performance VMware
ESX Server, which has an associated licencing fee. Bench-
marks using VMware ESX Server would be of interest, but
for practical reasons, those experiments are left for future
work.

Virtual machines were configured with 2 GB of RAM,
which is sufficient for all of the non-I/O-related needs of the
benchmarks. For our experiments, the memory allocated
to a VM is less than the total physical memory of the host
hardware. We used 2 GB of RAM in the VM even though
the server had 4 GB of RAM since our applications did not
require all of the memory, and to eliminate any issues re-
lated to overcommitting memory and paging. In general,
the amount of useful memory for the VM will be less than
the total physical memory, which is one of the trade-offs in
the VM-based approach.

Except where it is noted in the results, the virtual ma-
chines were configured to use two processors. The oper-
ating system on the servers (“host OS”) is Scientific Linux
4.4 (Linux Kernel 2.6). Our “guest OS” inside the virtual
machines is Gentoo Linux 2006.1 (Linux Kernel 2.6). Our

experience is that there are no significant performance dif-
ferences between the two Linux distributions; we chose both
Scientific Linux and Gentoo to emphasize how VMs allow
for different guest and host OSes. Each virtual machine has
two 16 GB virtual disks. Growable disks are used for all
experiments, but we also report on performance with preal-
located disks in selected situations (Section III-D). One disk
is used for system data and the second is used exclusively to
run the experiments.

In the first part of our study, we compare applications run-
ning under a virtual machine, VMware Server, versus run-
ning on bare hardware. In this experiment, both the host and
guest OSes are 64-bit versions. In the second part of our
study, the GROMACS and BLAST applications run within
a virtual machine. The virtual machine in this experiment
is the current version of our Trellis NAS Bridge Appliance
(TNBA) (with the Trellis File System) (Section II), which is
packaged with a 32-bit version of Gentoo as the guest OS.
The ability to run a 32-bit guest OS on a 64-bit host OS
is another example of how VMs can abstract heterogeneity
(Section III-F). We ran benchmarks with the data located
outside the virtual machine on a different machine on the
local network and brought in “on demand”. The machines
are connected with gigabit Ethernet across a switch. We
compare two techniques for accessing the remote data: the
Trellis File System and stage-in/stage-out.

A. BLAST

BLAST (Basic Local Alignment Search Tool) is a widely
used tool for finding similar nucleotide or protein sequences.
A typical input is a single sequence which is compared
against a database of known sequences. The most statis-
tically similar sequences are computed and returned. The
BLAST tests were taken from two sources: (1) the Bioin-
formatics Benchmark System (BBS) benchmark (version 3)
and (2) the Pathway Analyst project here at the University
of Alberta. For our experiments, we used BLAST version
2.2.15.

The BBS BLAST benchmarks were used in the first
part of our study, along with the FASTA NR and PATNT
databases from NCBI dated December 12, 2006. The BBS
benchmark tests three different programs in the BLAST
suite. Using vmstat, we did a rough characterization of
the I/O intensity of the different programs and found that
they required averages of 8,600 blocks per second (bps),
1,016 bps, and 219 bps (of 4 kilobyte blocks) of I/O for the
single CPU versions of blastn, blastx and tblastx, respec-
tively. The algorithmic differences between these programs
are beyond the scope of this paper, but each varies in its
input, comparison method, and measured I/O intensity.

The Pathway Analyst BLAST test (Table I) was used in
the second part of our study. For the Pathway Analyst test,
the proteome (all proteins) of E. coli was compared against
43 organisms, including itself, from the KEGG dataset
downloaded on September 28, 2006. In total, 18,841 se-
quences were searched for against 289,770 sequences in the
database. The program blastp is used in the Pathway An-
alyst benchmark. blastp compares an amino acid query
sequence against a protein sequence dataset.
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Fig. 1. Performance of the BBS BLAST Benchmark under VMware Server and on hardware. Percentage overhead versus hardware shown above the bar:
VM with growable disks and VM with preallocated disks.
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Fig. 2. Performance of the BBS HMMer Benchmark under VMware Server and on hardware. Percentage overhead versus hardware shown above the bar:
VM with growable disks and VM with preallocated disks. Datapoints are without (0 to 5) and with (6 and 7) the NR database.

B. HMMer

HMMer (pronounced “Hammer”) is a profile hidden
Markov model (HMM) implementation that generates sta-
tistical descriptions of sequence families and searches
databases for similar sequences. Similar to our BLAST
benchmarks, the inputs for HMMer were taken from the
BBS. Version 2.3.2 of HMMer was used for the tests. The
HMMer benchmark includes HMM training applications
and search applications. HMM training (labeled hmmer-
no-nr in the graphs) are compute-intensive with little I/O.
The HMM search applications (labeled hmmer-with-nr in
the graph) are a database search and so are I/O-intensive, as
confirmed by vmstat. For the HMM search, the FASTA
NR database mentioned above was used as the database to
search against.

C. GROMACS

GROMACS is a suite of applications used for molecular
dynamics (MD) simulations. It generates the trajectories of
the atoms in a molecule, in water, over a period of time, typ-
ically on the order of picoseconds or nanoseconds. For this
study, we measure the runtime of the computationally inten-
sive mdrun program that actually performs the simulation.
GROMACS v3.2.1 was used with the FFTW v2.2.15 library.
We used GROMACS v3.2.1 as it is the version used by com-
putational biologists that we collaborate with. The newer
GROMACS v3.3.1 has had issues with different versions of
the GNU C compiler (gcc) that has kept our collaborators
from using it. As input, we used the GROMACS bench-
marking system gmxbench that consists of four molecules
published by the GROMACS group. The four molecules in
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gmxbench are d.dppc, d.lzm, d.poly-ch2, and d.villin. This
benchmark is used in both Sections III-D and III-E.

D. Results

Figure 1 shows the results for the BBS BLAST bench-
mark, with one and two processors via shared-memory par-
allelism. Each set of bars compare the same benchmark run
under VMware versus being run on hardware. Both grow-
able and preallocated disks are evaluated. The percentages
above the bars are the percentage overheads in runtime un-
der virtualization.

For growable disks (i.e., virtual disks that allocate storage
on demand, instead of at time of creation), the overheads
vary from 0.2% to up 9.7% for substantial runs, with a high
of 20.9% overhead for a small dataset run. The standard
deviation on the average of five runs for each data point is
approximately 4%. There are data points (in most of the ex-
periments discussed in this section) in which the VM and
hardware times are almost identical, or where the VM times
are nominally “faster” than on real hardware by a small
amount. However, we focus on the cases where the dif-
ferences are significant to better understand the worst-case
scenarios. For space reasons, all BBS benchmarks are num-
bered, with the names given in the legend.

Whereas growable disks use less storage for sparsely pop-
ulated virtual disks, preallocated disks have lower perfor-
mance overheads [VMware, Inc., 2006]. Our experiments
support this tuning guideline as the runtime overheads for
BLAST are reduced to between 0% to 5.6% when using
preallocated disks. Therefore, if storage efficiency is key,
then growable disks can be used, but preallocated disks of-
fer higher performance for BLAST.

Figure 2 shows the results of the BBS HMMer bench-
marks run in a similar manner to the BLAST benchmarks.
The overheads are shown to be as low as minus 1.2% with
growable disks (which is within the standard deviation of the
data point). The lower overheads are on the HMMer train-
ing benchmarks (i.e., without the NR database, datapoints 0
to 5). The two sets of bars to the right of the graph (labeled
6 and 7) are the HMM searches with overheads as high as

7.7%, with growable disks. These datapoints have higher
I/O rates (measured via vmstat to be up to 335 bps on av-
erage) as they must search the NR database, which is 11 GB
in size. With preallocated disks, the overheads drop to 5.6%
and 2.5% for the single and dual CPU versions, respectively.

The results of the GROMACS gmxbench benchmark are
shown in Figure 3. The overheads for gmxbench are from
minus 0.60% to 5.86%. The mdrun program generates four
output files that describe the simulated molecular dynamics
of the input molecules. These files vary from 200 KB for
d.poly-ch2 to over 2 MB for d.dppc, which are small by cur-
rent standards. As used in gmxbench, GROMACS is known
to be compute-intensive and is representative of a large class
of simulation-based applications.

E. Using Trellis File System for Remote Data Access

As an example of the pragmatic benefits of packaging
and virtual appliances (Pragmatics 1, Section II), the Trel-
lis File System can be pre-installed and configured in the
VM, along with the application itself. Normally, deploy-
ing a distributed file system is either prohibitively complex
for most computational scientists or the file system requires
privileged access to install. With the VM-based approach,
the Trellis File System can be made available as a virtual
appliance. The scientist can then co-install their application
with the appliance and use it. Running the VM-based appli-
ance and application on a compute node requires no special
privilege, since all of the privileged steps are encapsulated
inside the VM.

Efficient remote data access is also important in being
able to leverage virtualization in metacomputers. Two tech-
niques for accessing remote data were measured in this part
of the study. The first is the common practice of using
scripts to stage the data in and out of a compute node (in
our case the VM). The second is using the Trellis File Sys-
tem to access the data. The Trellis File System accesses the
remote nodes and exports a file system interface through a
Samba server running inside the virtual machine. For this
part of our study, we used the gmxbench benchmark and the
BLAST search from the Pathway Analyst project (Table I).



Benchmark Trellis NAS Bridge Appliance Stage-in/Stage-out
Total (% overhead vs. stage-in/out) Total = computation + scp

GROMACS d.dppc 4,412.7 (2.6%) 4,307.1 4,300.8 6.3
d.lzm 607.35 (0.6%) 603.7 601.2 2.5

d.poly-ch2 102.7 (1.2%) 101.4 99.4 2.0
d.villin 89.7 (2.5%) 87.5 85.9 1.6

Pathway Analyst BLAST 15,005.5 (5.5%) 14,218.5 14,182.0 36.5

TABLE I: Remote data access from within a virtual machine: Trellis NBA v. Stage-in/Stage-out for GROMACS and BLAST (times are in seconds).

For both remote access methods, the benchmark application
is running within the VM and the data is stored on a different
node in the same cluster.

There is a row for each of the GROMACS gmxbench
molecules and the last row is for the Pathway Analyst
BLAST run (Table I). The second column is real time in
seconds of the benchmark using Trellis NBA to access the
remote data and store the results back to the home node.
The GROMACS and BLAST applications are unmodified
and use the Trellis File System via pre-configured mount
points inside the VM. The percentage overhead of Trellis
NBA versus stage-in/stage-out is in parentheses. For stage-
in/stage-out, the total times are given as well as a breakdown
of the time between computation (mdrun for GROMACS
and blastp for BLAST) and explicit data movement via
Secure Copy (scp).

The additional overheads of TNBA vary from 0.6% to
2.6% for GROMACS and the overhead is 5.5% for the
BLAST job from Pathway Analyst. The overheads are due
to the use of Samba and Trellis (i.e., extra software layers)
within the virtual appliance. For future work, we plan on
optimizing the software and improving performance. Cur-
rently, for a trade-off of less than 6% in additional overhead,
the Trellis NAS Bridge Appliance can provide a distributed
file system that does not require any special privilege to in-
stall and use, other than installing VMware Server itself.

F. 32-bit vs. 64-bit Assembler Optimizations

When running the GROMACS application in Section III-
E (Table I), we observed that the runtimes were lower than
both the hardware and VM times from Section III-D (e.g.,
4,412.7 seconds in Table I versus 5,340 seconds, which is
the left-most hardware bar in Figure 3 for d.dppc). Af-
ter some investigation, we realized that running in the 32-
bit Trellis NAS Bridge Appliance VM (Table I) was the
cause of the difference. The VM hid the fact that the phys-
ical processor was an 64-bit Opteron (x86-64) and so the
guest OS and GROMACS detected a 32-bit i686 proces-
sor. The GROMACS configuration then compiled highly-
optimized i686 assembler loops into the GROMACS ap-
plication. These optimized assembler loops resulted in the
much lower runtime. The version of GROMACS (version
3.2.1) we were running did not support the same optimiza-
tions under x86-64, so the GROMACS in Section III-D was
slower. After tracking down the cause, we also found that
the i686 optimizations could not be compiled on the host
64-bit OS. More recent versions of GROMACS (e.g., ver-
sion 3.3.1) do have the optimized loops for 64-bit OSes.

A full comparison of 32-bit versus 64-bit issues is beyond
the scope of this paper. And, this anomaly is likely transi-
tory. But, as discussed above, the ability to run a 32-bit guest
OS on a 64-bit host OS is another example of how VMs can
abstract heterogeneity.

IV. RELATED WORK AND COMMENTS

Other researchers have studied the overheads of VMs
[Adams and Agesen, 2006] and the strategy of using VMs to
encapsulate HPC jobs [Figueiredo et al., 2003], [Santhanam
et al., 2005]. Our study extends and updates those studies by
choosing full-sized applications (e.g., GROMACS, BLAST,
HMMer) that are in wide use in our HPC community, and
our research group (e.g., the Proteome and Pathway Ana-
lyst projects in our department use BLAST and HMMer),
instead of relying on industry-standard (but generic) bench-
marks such as SPEC [Adams and Agesen, 2006].

The use of virtual machines in distributed environments
has been studied before. As part of the In-VIGO system,
Figueiredo et al. [Figueiredo et al., 2003] examine using
virtual machines for distributed computation within a grid
framework. They also use VMware. To measure overheads,
the authors used two compute-intensive SPEC benchmarks.
They report overheads of 1-4% which are lower but con-
sistent with our findings for compute-intensive applications.
Their paper did not analyze I/O-intensive applications, but
they did measure the impact of other factors such as com-
peting processes. Zhao et al. [Zhao et al., 2004], also part
of In-VIGO, designed the grid virtual file system (GVFS),
a distributed file system for efficiently moving virtual ma-
chines across the wide-area network and providing data ac-
cess within VMs. Network latency for VM images and
application data are not separated in their experiments, so
the overheads specifically from virtualization are not clear.
The conclusions in both papers from In-VIGO are similar to
ours: the overheads of virtual machines are acceptable for
the benefit they provide in abstracting heterogeneous envi-
ronments.

Santhanam et al. [Santhanam et al., 2005] examine run-
ning Condor computations within a virtual environment.
The focus is similar to our Pragmatics 1 (Section II) in us-
ing VMs as sandboxes for the grid. They focus on running
computations in four different configurations of Xen virtual
machines. The variations involve the location of data and
network connectivity of the VM. Their experiments mea-
sure data-intensive microbenchmarks involving thousands
of concurrent reads and network operations. They charac-
terize the impact that different data access methods, such as



remote I/O and whole-file caching, have on performance.
Their baseline for comparison of the VMs is the Condor
Vanilla and Standard Universes [Litzkow et al., 1988]. Con-
dor runs batch jobs in distributed, heterogeneous environ-
ments. The Condor Vanilla Universe is the closest to our
hardware experiments. As expected, their experiments re-
veal I/0 overheads under virtualization. However, due to
their exclusive use of microbenchmarks, it is not clear what
overheads can be expected for applications.

Our quantitative evaluation uses full-sized HPC applica-
tions instead of microbenchmarks. Moreover, our use of the
commercial, widely-available VMware, instead of the more
research-oriented Condor and Xen combination [Santhanam
et al., 2005], is arguably more applicable for our production
environments.

V. CONCLUDING REMARKS

Although virtual machines have been around for decades,
recent developments in VMs for x86-based platforms have
re-opened the VM debate. A variety of VMs are now avail-
able commercially (e.g., VMware, Parallels) and as open-
source software (with commercial support) (e.g., Linux
KVM, Xen). Pragmatically, VMs are a convenient way to
package and deploy scientific applications across heteroge-
neous system. For example, applications can be packaged
with their required libraries and support programs, including
(perhaps) a distributed file system (e.g., Trellis NAS Bridge
Appliance) that would otherwise be difficult or impossible
to install without special privilege.

However, an important concern about VMs is whether
or not the associated overheads are too onerous. In our
simple, quantitative study, we show that the overheads for
a compute-intensive application, such as GROMACS, can
be under 6%. For more I/O-intensive applications (e.g.,
BLAST, HMMer with NR database), the overheads can be
as high as 9.7%. The overheads will vary depending on the
application itself, which is why we chose to do a contempo-
rary evaluation of well-known scientific applications (i.e.,
BLAST, GROMACS, HMMer) using a modern VM (i.e.,
VMware). A performance comparison of different VMs and
with a broader range of sequential and parallel applications
is the subject of future work.

There will always be reasons to not give up any perfor-
mance at all. But, for the convenience and other bene-
fits of VMs, there may be other situations where the cost-
performance trade-off is worth re-visiting.
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