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Abstract— We present new implementations of BSP/CGM algo-
rithms for the Transitive Closure Problem. Our strategies deal with
size of the message and communication rounds, problems thaause
inefficiency in the implementations of the transitive closwe algorithms.
The algorithms were implemented using LAM/MPI in two Beowulfs.
The implementation results show the efficiency and scalalify of the
presented algorithms, improve the previous results and copare fa-
vorably with other parallel implementations. Besides we sbw that the
presented algorithms can be used to solve real problems.

|. INTRODUCTION

The search for efficient algorithms to compute titaasi-
tive closureof a directed graphdigraph) has been around
for many years. It was first considered in 1959 by in the pa-
per [Roy, 1959]. The best sequential algorithms that solve
this problem havé(mn) time complexity, wheren andn
are the number of edges and vertices of the digraph [Habib
and Rampom, 1993] and [Simon, 1988]. There are other al-
gorithms that are based on matrix multiplication that can be
used for dense digraphs.

Using an approach based on the adjacency matrix of the
digraph [Warshall, 1962] presented ann?) algorithm.
This algorithm can be implemented using an adjacency bit
matrix [Baase, 1978] Witlrj)(”—:) time complexity, wherex
is the size of bits that can be stored in a primitive data.

Another approach to compute the transitive closure is
using digraph traversal. Usinlgreadth first searctBFS
(or depth first searctDFS) we can find all the vertices
that are reachable from a given vertex Applying this
search to each vertex of the digraph we can compute the
transitive closure. A BFS (or DFS) can be computed in
O(n 4+ m)[Cormen et al., 2001] time complexity. Then the
transitive closure can be computed@{n (n + m)) time
complexity.

Parallel algorithms for this problem have been proposed
to the PRAM model [JaJa, 1992, Karp and Ramachandran,
1990] BSP/GCM model [Tiskin, 2001, Caceres et al., 2002,
Alves et al., 2003, Caceres and Vieira, 2004] and other
architectures [Pagourtzis et al., 2001, 2002, Grama et al.,
2003]. Tiskin observes that “is not clear yet whether the
presented algorithm [Tiskin, 2001] is practical”.

Using the BSP/CGM maodel, [Caceres et al., 2002] pre-
sented an algorithm to compute the transitive closure of
acyclic digraph usingpg p+1 communication rounds where
pis the number of processors and u€késwn/p) local com-
putation. This algorithm assumes that the input is an acycli
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digraph and relies on the so-called linear extension lageli
of the input digraph vertices.

Using the ideas of this algorithm and the sequential algo-
rithm of Warshall, [Alves et al., 2003] implemented a tran-
sitive closure algorithm with the MPI library in a Beowulf
with 64 nodes with good speed-up. This implementation
do not compute the linear extension of the digraph, and it
can speng communication rounds in the worst case, and
usesO(n?/p) local computation. They describe the worst
case wherep communication rounds are necessary. With
randomly generated digraphs, in their experiments, the al-
gorithm always found the transitive closure with(log p)
communication rounds. Besides the fact of the good speed
up, in this algorithm, the processors exchange huge amount
of data O(n?/p) in the worst case) in each communication
round. Nevertheless, it is very fast and it obtained better
execution times than the previous ones ([Pagourtzis et al.,
2001, 2002)).

Combining the ideas of [Alves et al., 2003] and [Baase,
1978]. [Caceres and Vieira, 2004] implemented a version of
transitive closure algorithm witd communication rounds

andO(Z—Z) local computation, where whereis the size of
bits that can be stored in a primitive data. Since in this im-
plementation, ag grows, the local computation is very fast,
the total time of the algorithm is bounded by the communi-
cation time.

In this paper we deal with the main problems of the pre-
vious BSP/CGM algorithms for the transitive closure prob-
lem: the size of the messages, the local computation time
and the number of communication rounds. We present four
new implementations. The first and second deal with the
size of the messages and using data compression we can
decrease the amount of data exchanged in each communi-
cation round toO(n/p). The third uses Bit matrix to im-
prove the local computation time. The fourth increases the
amount of memory used by each processor and can solve
the transitive closure with a constant number of communi-
cation rounds. This algorithm uses a graph traversal glyate
to compute the transitive closure of the input digraph.

II. NOTATION AND COMPUTATIONAL MODEL

Let D = (V, E) be an acyclic digraph, = |V| andm =
|E| the number of vertices and edges Bf respectively.
The vertices; € V are labeled withl < ¢ < n. We use
both digraphs representations: adjacency list and adjgcen
matrix.
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Fig. 1. Transitive Closuré? of digraphD.

We denote a path between vertiegsv; € V' as follows:

(i) v — v;, a path consisting of only one edge starting at

vertexv; and ending at vertex;.

(i) v; ~* v;, a path starting at vertex; and ending at
vertexv; with k intermediate vertices:(+ 1 edges).

(iii) v; ~* v;, a path starting at vertex and ending at
vertexv; with vy, va, ..., v;, as intermediate vertices.

When necessary, we denote an edgeE ase;; = v; —

v;. The edge;; is a leaving edge with respecttpand an
incoming edges with respect tg.

Let®, = {¢} +1,.t..,(¢ + 1)} be the set of the;
consecutive vertices that each processor receives in trder
compute the transitive closure.

The transitive closuré’ of a digraphD = (V,E) is
obtained fromD by adding an edggv;, v ) if there is a path
v; ~F v;,0 < k < n,in D. Figure 1 represents a digraph
and its respective transitive closure.

In this paper, we use the BSP/CGM Model (Bulk Syn-
chronous Parallel/Coarse Grained Multicomputer) [Vdlian
1990, Dehne, 1999]. LeW be the input size of the prob-
lem. ABSP/CGM computer consists of a sepgfrocessors

O(n?/p) size. One of the causes is the fact that the “new”
edges are exchanged by the processors during the commu-
nication rounds without any further consideration.

We introduce a very simple technique that shrinks expres-
sively the size of the messages that are exchanged by the
processors. We definesaiper-vertexhe set of all reachable
vertices fromw;, i.e., S,, = {v : v; — v}. When a vertex
v; does not have any leaving edge, we derfjte= .

LetV = {v; : 1 < i < n} the set of vertices oD. We
label the vertices; with labels(v;) = 2~ and we define
Ny, = Z (v).

{veSy, }

The Algorithm 1 shows théV,, computational steps for
a.S,, input and the Algorithm 2 shows the reversé,f to
Sy,)-

Algorithm 1 BuildV,,

Input: S,

Output: N,, =>_5,,.
1. N, <0

2. forall v, € S,, do
3; label@,) «— 2°~!
4. end for
5

6

7

forall v, € S, do
Ny, «— N,,+ label@,)
end for

Itis easy to see that this labeling technique (Algorithm 1)
guarantees a unique representation for each vertex. For ex-

each with local memory and each processor is connected by ample, if S,, = {1,3,4}, then the labels arév;) = 1,
a router that can send/receive messages in a point-to-point(y,) = 4, (v,) = 8 andN,, = 13. There is no other combi-

fashion. A BSP/CGM algorithm consists of alternating local

computation and global communication rounds separated by

a barrier synchronization.

nation of the labels such that the sum is 13.

Algorithm 2 Restore,,

In a computing round, we usually use the best sequen- Input: N,,.
tial algorithm in each processor to process its data locally Output: S,,..

We require that all information sent from a given proces- 1. S,, < O

sor to another processor in one communication round be 2. z 1

packed into one long message, thereby minimizing the mes- 3:  while z < N,, do
sage overhead. In the BSP/CGM model, the communication 4: T+ 21

cost is modeled by the number of communication rounds. 5: end while

Each processor can send/receive at nfo&V/p) data in 6: x5

each communication round. 7:  while N,, > 0do
Finding an efficient algorithm on the BSP/CGM model s: if Ny, —x > 0then
is equivalent to minimizing the number of communication o: N,, — N,, —x
rounds as well as the total local computation time. 10: Sy — Su, U{vz}
11:  endif
I11. THE PARALLEL ALGORITHMS 122 ze2

Now we present the three new BSP/CGM parallel algo- 13: end while
rithms for the transitive closure problem. First we deahwit
the size of the messages that are exchanged between the pro- The restore procedure (Algorithm 2) computes the orig-
cessor. Then we decrease the local computation time andinal values of the vertices, the s&t,. This is done by re-
finally we design an algorithm that does not use communi- peatedly subtractinfy,.) from N,, starting with the great-
cation rounds. est value ofv,,) to the smallest. The loop starting at the line
3 computes the greatest label that was storel,in

In the [Alves et al., 2003] algorithm, each procesgor

receives the sub-matrices[(j — 1)% + 1..j7][1..n] and

A. Dealing with Message Size - |

Analyzing the previous transitive closure algorithms we
observed that the implementation presented by [Alvesetal. D[1..n|[(j — 1)% + 1..3%] and compute the local transi-
2003] and [Caceres and Vieira, 2004] the communication tive closure. Before each procesggrsends the computed
cost is very expressive. In most cases, the messages haveransitivity edges to processpy, we apply algorithm 1, to



the message, creating a super-vertex for each line/column C. Improving the Local Computation Time by Using the Bit

of the sub-matrix, and then send the compressed message

to processop,. After processop, receives a message with
super-vertices from processpy it applies the algorithm 2
restoring the original values of the vertices.

We describe the results of the implementation of this tech-
nique in Section IV. The size of the messages shrunk signif-
icantly decreasing the time of each communication round.

B. Dealing with Message Size - Il
Now we introduce another simple technique that shrinks

Matrix

Representing the digraph with a bits adjacency matrix,
[Caceres and Vieira, 2004] implemented the transitive clo
sure algorithm with expressive results. The implementa-
tion decreased significantly the local computation. Thg onl
drawback is that they us®(n?) local memory. Using
O(n?) local memory we can sequentially compute the lin-
ear extension of the digraph in one processor and assure that
with 1g p+ 1 communication rounds the algorithm computes
the transitive closure. Besides the linear extension cempu

expressively the size of the messages that are exchanged b%ation we can aggregate the ideas of Algorithm 3 and im-

the processors.

For each new edge;;, 0 < i, j, < n, the values of and
j (row and column) must be packed and during the com-
munication rounds processpy. sends the new edges that
are in thel-th vertical strip and-th horizontal strip to the
processop;. This can be done in two ways:

i) Each edge can be represented as a valwéherea
1xn+ 7.

i) We represent each strip with a bit matrix where each
edge can be stored as a bit.

Let Q* be the number of new edges that will be send by
processolpy. Before each communication round we ver-
ify if we will send only the new edges or the whole strips
(vertical and horizontal).

The Algorithm 3 implements the above ideas.

Algorithm 3 Parallel-Warshall-11

Input: D given as am x n matrix W; p the number of
processors; and each procesgon0 < z < p — 1)
stores the submatrid/[(2 + 1..(z + 1)2][1..n] and

Wl.n]lz2 +1..(z+1)7]

n
P

Output: D' represented ad/* distributed by the proces-

sors.
1. repeat
2 fork — {2 +1to(l+1)2—1do
P P
3 fori — 1tondo
4 for j «— 1ton do
5 if wi, =1 andwy; = 1then
6 Wij < 1
7 end if
8 end for
o: end for
10. end for
11: if QF > = then
12: Send/Receive only the edges belongs another pro-
cessor
13:  else
14: Send/Receive the full strips another processor
15:  endif

16: until no new edges are computed
17: return D!

Theorem 1:The Algorithm 3 usesO("Tf) local compu-
tation time with O(p) communication rounds and needs
O("—;) local space.

We describe the results of the implementation of this tech-
nique in Section IV. The size of the messages shrunk signif-
icantly decreasing the time of each communication round.

plement a new version of the [Caceres and Vieira, 2004]
algorithm.
The Algorithm 4 describes the above ideas.

Algorithm 4 PTC-Bit

Input: D given as am x n bit matrix W; p the number
of processors; and each processo(0 < z < p — 1)
stores a copy ofV.

Output: D! represented ad/¢ distributed by they proces-

sors.

1. if z2=0then

2: ComputeL and®g .. ,—1

3. endif

4: repeat

5: forall k£ € ®, in orderdo

6: for i« 1tondo

7: if w;, = 1then

8: for j=1to 2 do

9: Wij < Wij \ Wi

10: end for

11 end if

12: end for

13:  end for

14: if Q¥ > = then

15: Send/Receive only the edges belongs another pro-
cessor

16:  else

17: Send/Receive the full strips another processor

18:  endif

19: until no new edges are computed
20: return D!

Because the vertex distribution to obey a linear exten-
sion of the digraphO(log p) communication rounds are
enough [Caceres et al., 2002].

Theorem 2:The Algorithm 4 uses?(g—i) local compu-
tation time withO(log p) communication rounds and needs
O(n?) local space.

D. Avoiding Communication Rounds

Since the amount of communication spent by the previ-
ous algorithms is very large, and limits the performance,
we tried to trade communication with local space. Using
the Warshall approach, seems that no improvement can be
obtained with more local space. Actually, in most cases,
increasing the local space does not guarantee any improve-
ment to the parallel algorithm.



Using the digraph traversal (BFS or DFS) approach to
compute the transitive closure wit(n?/p) local memory
seems difficult, since parallel algorithms for these sessch
are not efficient. But we devise that if each processor stores
the whole adjacency list of the digraph, each processor can
apply sequential BFS or DFS to itg'p vertices. Then, pro-
cessorp; computes the transitive closure of the vertices in
®d;, without any communication with other processors.

Let IV be the spanning tree obtained by the breadth first
search in the digrapP starting at the vertex;, the Algo-
rithm 5 presents the steps for computing the transitive clo-
sureD?.

Algorithm 5 TCP-BFS
Input: adjacency list) of D

Output: D!

1. forall v; € ®;do

2: Q!+~ NULL

3: Computel™.

4: Build the edgey! ; = {(vi,v;) : j € '}
5. end for

distributed by the processors.

Theorem 3:The BSP/CGM Algorithm 5 computes the
transitive closureD? of the input digraphD with O(%(n +
m)) local computation)(n/p+m) local space and without
any communication rounds.

Besides the fact that different processors can compute

rounds), the implementation of the algorithm showed an ex-
pressive performance when compared with the algorithms
that use Warshall's approach.

IV. THE IMPLEMENTATION RESULTS

The digraphs used in the tests were generated randomly
with probabilities varying from 15% to 20% of existing an
edge between any two graph vertices.

TABLE I |-Execution times of [1]|l -Execution times of the
Super-Vertex Algorithm andl -Execution times of the BFS Algorithm.

*(Alg.A with 1920 x 1920)
512 x 512 1024 x 1024 2048 x 2048
Procs. I I M I I M I I M
1 254 | 106 | 3.71 | 143 | 84.7 | 30 1614 | 679 232
2 9.3 5.3 1.87 | 123 | 427 | 15 603 341 116
4 8.3 2.8 093 | 844 | 21.7| 7.6 257 171 | 58.2
8 3.9 15 0.47 | 36.4 | 11.3 | 3.8 123 87.7 | 29.1
16 26 | 1.3 | 024 | 180 | 6.0 | 1.9 | 69 | 456 | 145
32 19 | 09 [ 012 | 156 | 65 | 0.9 | 68 | 244 | 7.2
64 33 | 07 | 006 | 121 | 7.5 | 0.4 | 49 | 244 36

We implemented the algorithms on two Beowulfs (clus-
ters).

The first one with 64 nodes consisting of low cost micro-
computers with 256MB RAM, 256MB swap memory, CPU
Intel Pentium 11l 448.956 MHz, 512KB cache, in addition
to two access nodes consisting of two microcomputers each
with 512MB RAM, 512MB swap memory, CPU Pentium
4 2.00 GHz, and 512KB cache. The cluster is divided into
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Fig. 2. Execution times of the BFS Algorithm

the access nodes is connected to the switch that connects
the block of nodes and the two switches are connected. This
cluster is the same used in [Alves et al., 2003].

The second cluster is composed by 12 nodes consisting of
At the end of the algorithm, the transitive closure will be 6 CPU Intel Pentium IV of 1.7Ghz and 6 CPU AMD Athlon
de 1.6GHz. The nodes are connected by a 1Gb fast-Ethernet

switch.

Our code is written in standard ANSI C++ using the
LAM-MPI library. The execution times are expressed in

seconds.

The Table IV presents a comparison between the imple-
the same transitivity edge (we do not have communication Mentation presented by [Alves et al., 2003] and our imple-

mentations.

The column Il describe the times that uses Algorithm 1 an
Algorithm 2 (super-vertex strategy). Its implementatian g
better execution times than the results presented by [Alves
et al., 2003]. With the super-vertex strategy, actually we d
a compression on the messages that are exchanged by the
processors. In our tests we represemgdwith a data type
with o = 32 bits. The column IIl uses Algorithm 5, the
breadth first search approach. The implementations were
executed in digraphs with 512, 1.024, 2.048 and 4096 ver-
tices and 50.000, 210.000, 800.000 and 3.300.000 edges,

respectively.

The Table IV describes the results of [Alves et al., 2003]
(), and our implementation of Algorithm 3 (lI-11l). The Ta-
ble IV describe the results of [Caceres and Vieira, 2004] (I
and our implementation (II-111). Our results are much faste
than the previous implementations.

The implementations were executed in digraphs with
1.024, 2.048 and 4.096 vertices and 210.000, 800.000 and
3.300.000 edges, respectively.

The Figure 3 shows the curves of Table IV.

The Figure 4 shows the curves of Table IV.

The Figure 5 shows the comparison of the communica-
tion times with/without using bit arrays sending/rece@vin
messages in the two clusters.

V. CONCLUSIONS

We presented four new implementations of BSP/CGM
two blocks of 32 nodes each. The nodes of each block are parallel algorithm for the transitive closure. The first and
connected through a 100 Mb fast-Ethernet switch. Each of second deal with the size of the messages that are exchanged
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