
BSP/CGM Algorithms for the Transitive Closure
Problem

Edson Norberto Cáceres
Cristiano Costa Argemom Vieira

Federal University of Mato Grosso do Sul
Dept. de Computação e Estatı́stica

Campo Grande - MS, Brazil
E-mail:{edson,ccav}@dct.ufms.br

Abstract— We present new implementations of BSP/CGM algo-
rithms for the Transitive Closure Problem. Our strategies deal with
size of the message and communication rounds, problems thatcause
inefficiency in the implementations of the transitive closure algorithms.
The algorithms were implemented using LAM/MPI in two Beowulfs.
The implementation results show the efficiency and scalability of the
presented algorithms, improve the previous results and compare fa-
vorably with other parallel implementations. Besides we show that the
presented algorithms can be used to solve real problems.

I. I NTRODUCTION

The search for efficient algorithms to compute thetransi-
tive closureof a directed graph (digraph) has been around
for many years. It was first considered in 1959 by in the pa-
per [Roy, 1959]. The best sequential algorithms that solve
this problem haveO(mn) time complexity, wherem andn
are the number of edges and vertices of the digraph [Habib
and Rampom, 1993] and [Simon, 1988]. There are other al-
gorithms that are based on matrix multiplication that can be
used for dense digraphs.

Using an approach based on the adjacency matrix of the
digraph [Warshall, 1962] presented anO(n3) algorithm.
This algorithm can be implemented using an adjacency bit
matrix [Baase, 1978] withO(n3

α
) time complexity, whereα

is the size of bits that can be stored in a primitive data.
Another approach to compute the transitive closure is

using digraph traversal. Usingbreadth first searchBFS
(or depth first searchDFS) we can find all the vertices
that are reachable from a given vertexv. Applying this
search to each vertex of the digraph we can compute the
transitive closure. A BFS (or DFS) can be computed in
O(n + m)[Cormen et al., 2001] time complexity. Then the
transitive closure can be computed inO(n (n + m)) time
complexity.

Parallel algorithms for this problem have been proposed
to the PRAM model [JáJá, 1992, Karp and Ramachandran,
1990] BSP/GCM model [Tiskin, 2001, Cáceres et al., 2002,
Alves et al., 2003, Cáceres and Vieira, 2004] and other
architectures [Pagourtzis et al., 2001, 2002, Grama et al.,
2003]. Tiskin observes that “is not clear yet whether the
presented algorithm [Tiskin, 2001] is practical”.

Using the BSP/CGM model, [Cáceres et al., 2002] pre-
sented an algorithm to compute the transitive closure of
acyclic digraph usinglog p+1 communication rounds where
p is the number of processors and usesO(mn/p) local com-
putation. This algorithm assumes that the input is an acyclic

Partially supported by CNPq, FUNDECT-MS and CAPES

digraph and relies on the so-called linear extension labeling
of the input digraph vertices.

Using the ideas of this algorithm and the sequential algo-
rithm of Warshall, [Alves et al., 2003] implemented a tran-
sitive closure algorithm with the MPI library in a Beowulf
with 64 nodes with good speed-up. This implementation
do not compute the linear extension of the digraph, and it
can spendp communication rounds in the worst case, and
usesO(n3/p) local computation. They describe the worst
case wherep communication rounds are necessary. With
randomly generated digraphs, in their experiments, the al-
gorithm always found the transitive closure withO(log p)
communication rounds. Besides the fact of the good speed
up, in this algorithm, the processors exchange huge amount
of data (O(n2/p) in the worst case) in each communication
round. Nevertheless, it is very fast and it obtained better
execution times than the previous ones ([Pagourtzis et al.,
2001, 2002]).

Combining the ideas of [Alves et al., 2003] and [Baase,
1978]. [Cáceres and Vieira, 2004] implemented a version of
transitive closure algorithm withp

α
communication rounds

andO(n3

αp
) local computation, where whereα is the size of

bits that can be stored in a primitive data. Since in this im-
plementation, asp grows, the local computation is very fast,
the total time of the algorithm is bounded by the communi-
cation time.

In this paper we deal with the main problems of the pre-
vious BSP/CGM algorithms for the transitive closure prob-
lem: the size of the messages, the local computation time
and the number of communication rounds. We present four
new implementations. The first and second deal with the
size of the messages and using data compression we can
decrease the amount of data exchanged in each communi-
cation round toO(n/p). The third uses Bit matrix to im-
prove the local computation time. The fourth increases the
amount of memory used by each processor and can solve
the transitive closure with a constant number of communi-
cation rounds. This algorithm uses a graph traversal strategy
to compute the transitive closure of the input digraph.

II. N OTATION AND COMPUTATIONAL MODEL

Let D = (V, E) be an acyclic digraph,n = |V | andm =
|E| the number of vertices and edges ofD, respectively.
The verticesvi ∈ V are labeled with1 ≤ i ≤ n. We use
both digraphs representations: adjacency list and adjacency
matrix.

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

8

53

7

3

8

5

Gt

6

G

2

6

2

4 14 1

7

Fig. 1. Transitive ClosureDt of digraphD.

We denote a path between verticesvi, vj ∈ V as follows:
(i) vi → vj , a path consisting of only one edge starting at
vertexvi and ending at vertexvj .
(ii) vi

k vj , a path starting at vertexvi and ending at
vertexvj with k intermediate vertices (k + 1 edges).
(iii) vi

...k vj , a path starting at vertexvi and ending at
vertexvj with v1, v2, ..., vk as intermediate vertices.

When necessary, we denote an edgee ∈ E aseij = vi →
vj . The edgeeij is a leaving edge with respect tovi and an
incoming edges with respect tovj .

Let Φq = {q n
p

+ 1, .t.., (q + 1)n
p
} be the set of then

p

consecutive vertices that each processor receives in orderto
compute the transitive closure.

The transitive closureDt of a digraphD = (V, E) is
obtained fromD by adding an edge(vi, vj) if there is a path
vi

k vj , 0 < k ≤ n, in D. Figure 1 represents a digraph
and its respective transitive closure.

In this paper, we use the BSP/CGM Model (Bulk Syn-
chronous Parallel/Coarse Grained Multicomputer) [Valiant,
1990, Dehne, 1999]. LetN be the input size of the prob-
lem. A BSP/CGM computer consists of a set ofp processors
each with local memory and each processor is connected by
a router that can send/receive messages in a point-to-point
fashion. A BSP/CGM algorithm consists of alternating local
computation and global communication rounds separated by
a barrier synchronization.

In a computing round, we usually use the best sequen-
tial algorithm in each processor to process its data locally.
We require that all information sent from a given proces-
sor to another processor in one communication round be
packed into one long message, thereby minimizing the mes-
sage overhead. In the BSP/CGM model, the communication
cost is modeled by the number of communication rounds.
Each processor can send/receive at mostO(N/p) data in
each communication round.

Finding an efficient algorithm on the BSP/CGM model
is equivalent to minimizing the number of communication
rounds as well as the total local computation time.

III. T HE PARALLEL ALGORITHMS

Now we present the three new BSP/CGM parallel algo-
rithms for the transitive closure problem. First we deal with
the size of the messages that are exchanged between the pro-
cessor. Then we decrease the local computation time and
finally we design an algorithm that does not use communi-
cation rounds.

A. Dealing with Message Size - I

Analyzing the previous transitive closure algorithms we
observed that the implementation presented by [Alves et al.,
2003] and [Cáceres and Vieira, 2004] the communication
cost is very expressive. In most cases, the messages have

O(n2/p) size. One of the causes is the fact that the “new”
edges are exchanged by the processors during the commu-
nication rounds without any further consideration.

We introduce a very simple technique that shrinks expres-
sively the size of the messages that are exchanged by the
processors. We define asuper-vertexthe set of all reachable
vertices fromvi, i.e.,Svi

= {v : vi → v}. When a vertex
vi does not have any leaving edge, we denoteSvi

= ∅.
Let V = {vi : 1 ≤ i ≤ n} the set of vertices ofD. We

label the verticesvi with labels(vi) = 2i−1 and we define

Nvi
=

∑

{v∈Svi
}

(v).

The Algorithm 1 shows theNvi
computational steps for

a Svi
input and the Algorithm 2 shows the reverse (Nvi to

Svi
).

Algorithm 1 BuildNvi

Input: Svi

Output: Nvi
=

∑
Svi

.
1: Nvi

← 0
2: for all vx ∈ Svi

do
3: label(vx)← 2x−1

4: end for
5: for all vx ∈ Svi

do
6: Nvi

← Nvi
+ label(vx)

7: end for

It is easy to see that this labeling technique (Algorithm 1)
guarantees a unique representation for each vertex. For ex-
ample, if Svi

= {1, 3, 4}, then the labels are(v1) = 1,
(v3) = 4, (v4) = 8 andNvi

= 13. There is no other combi-
nation of the labels such that the sum is 13.

Algorithm 2 RestoreSvi

Input: Nvi
.

Output: Svi
.

1: Svi
← O

2: x← 1
3: while x < Nvi

do
4: x← 2x
5: end while
6: x← x

2

7: while Nvi
> 0 do

8: if Nvi
− x ≥ 0 then

9: Nvi
← Nvi

− x
10: Svi

← Svi
∪ {vx}

11: end if
12: x← x

2

13: end while

The restore procedure (Algorithm 2) computes the orig-
inal values of the vertices, the setSvi

. This is done by re-
peatedly subtracting(vx) from Nvi

, starting with the great-
est value of(vx) to the smallest. The loop starting at the line
3 computes the greatest label that was stored inNvi

.
In the [Alves et al., 2003] algorithm, each processorpi

receives the sub-matricesD[(j − 1)n
p

+ 1..j n
p
][1..n] and

D[1..n][(j − 1)n
p

+ 1..j n
p
] and compute the local transi-

tive closure. Before each processorpi sends the computed
transitivity edges to processorpj , we apply algorithm 1, to

the message, creating a super-vertex for each line/column
of the sub-matrix, and then send the compressed message
to processorpj. After processorpj receives a message with
super-vertices from processorpi it applies the algorithm 2
restoring the original values of the vertices.

We describe the results of the implementation of this tech-
nique in Section IV. The size of the messages shrunk signif-
icantly decreasing the time of each communication round.

B. Dealing with Message Size - II

Now we introduce another simple technique that shrinks
expressively the size of the messages that are exchanged by
the processors.

For each new edgewij , 0 ≤ i, j, < n, the values ofi and
j (row and column) must be packed and during the com-
munication rounds processorpk sends the new edges that
are in thel-th vertical strip andl-th horizontal strip to the
processorpl. This can be done in two ways:
i) Each edge can be represented as a valuea wherea =
i ∗ n + j.
ii) We represent each strip with a bit matrix where each
edge can be stored as a bit.

Let Qk be the number of new edges that will be send by
processorpk. Before each communication round we ver-
ify if we will send only the new edges or the whole strips
(vertical and horizontal).

The Algorithm 3 implements the above ideas.

Algorithm 3 Parallel-Warshall-II
Input: D given as ann × n matrix W ; p the number of

processors; and each processorpz (0 ≤ z ≤ p − 1)
stores the submatrixW [(z n

p
+ 1..(z + 1)n

p
][1..n] and

W [1..n][z n
p

+ 1..(z + 1)n
p
]

Output: Dt represented asW t distributed by thep proces-
sors.

1: repeat
2: for k ← l n

p
+ 1 to (l + 1)n

p
− 1 do

3: for i← 1 to n do
4: for j ← 1 to n do
5: if wik = 1 and wkj = 1 then
6: wij ← 1
7: end if
8: end for
9: end for
10: end for
11: if Qk > n2

c
then

12: Send/Receive only the edges belongs another pro-
cessor

13: else
14: Send/Receive the full strips another processor
15: end if
16: until no new edges are computed
17: return Dt

Theorem 1:The Algorithm 3 usesO(n3

p
) local compu-

tation time with O(p) communication rounds and needs
O(n2

p
) local space.

We describe the results of the implementation of this tech-
nique in Section IV. The size of the messages shrunk signif-
icantly decreasing the time of each communication round.

C. Improving the Local Computation Time by Using the Bit
Matrix

Representing the digraph with a bits adjacency matrix,
[Cáceres and Vieira, 2004] implemented the transitive clo-
sure algorithm with expressive results. The implementa-
tion decreased significantly the local computation. The only
drawback is that they useO(n2) local memory. Using
O(n2) local memory we can sequentially compute the lin-
ear extension of the digraph in one processor and assure that
with lg p+1 communication rounds the algorithm computes
the transitive closure. Besides the linear extension compu-
tation we can aggregate the ideas of Algorithm 3 and im-
plement a new version of the [Cáceres and Vieira, 2004]
algorithm.

The Algorithm 4 describes the above ideas.

Algorithm 4 PTC-Bit
Input: D given as ann × n bit matrix W ; p the number

of processors; and each processorpz (0 ≤ z ≤ p − 1)
stores a copy ofW .

Output: Dt represented asW t distributed by thep proces-
sors.

1: if z=0 then
2: ComputeL andΦ0,...,p−1

3: end if
4: repeat
5: for all k ∈ Φz in orderdo
6: for i← 1 to n do
7: if wik = 1 then
8: for j = 1 to n

α
do

9: wij ← wij ∨ wkj

10: end for
11: end if
12: end for
13: end for
14: if Qk > n2

c
then

15: Send/Receive only the edges belongs another pro-
cessor

16: else
17: Send/Receive the full strips another processor
18: end if
19: until no new edges are computed
20: return Dt

Because the vertex distribution to obey a linear exten-
sion of the digraph,O(log p) communication rounds are
enough [Cáceres et al., 2002].

Theorem 2:The Algorithm 4 usesO(n3

pα
) local compu-

tation time withO(log p) communication rounds and needs
O(n2) local space.

D. Avoiding Communication Rounds

Since the amount of communication spent by the previ-
ous algorithms is very large, and limits the performance,
we tried to trade communication with local space. Using
the Warshall approach, seems that no improvement can be
obtained with more local space. Actually, in most cases,
increasing the local space does not guarantee any improve-
ment to the parallel algorithm.

Using the digraph traversal (BFS or DFS) approach to
compute the transitive closure withO(n2/p) local memory
seems difficult, since parallel algorithms for these searches
are not efficient. But we devise that if each processor stores
the whole adjacency list of the digraph, each processor can
apply sequential BFS or DFS to itsn/p vertices. Then, pro-
cessorpl computes the transitive closure of the vertices in
Φl, without any communication with other processors.

Let Γi be the spanning tree obtained by the breadth first
search in the digraphD starting at the vertexvi, the Algo-
rithm 5 presents the steps for computing the transitive clo-
sureDt.

Algorithm 5 TCP-BFS
Input: adjacency listQ of D
Output: Dt

l

1: for all vi ∈ Φl do
2: Qt

i ← NULL
3: ComputeΓi.
4: Build the edgeqt

i,j = {(vi, vj) : j ∈ Γi}
5: end for

At the end of the algorithm, the transitive closure will be
distributed by the processors.

Theorem 3:The BSP/CGM Algorithm 5 computes the
transitive closureDt of the input digraphD with O(n

p
(n +

m)) local computation,O(n/p+m) local space and without
any communication rounds.

Besides the fact that different processors can compute
the same transitivity edge (we do not have communication
rounds), the implementation of the algorithm showed an ex-
pressive performance when compared with the algorithms
that use Warshall’s approach.

IV. T HE IMPLEMENTATION RESULTS

The digraphs used in the tests were generated randomly
with probabilities varying from 15% to 20% of existing an
edge between any two graph vertices.

TABLE I : I -Execution times of [1],II -Execution times of the

Super-Vertex Algorithm andIII -Execution times of the BFS Algorithm.
⋆(Alg.A with 1920 x 1920)

512 x 512 1024 x 1024 2048 x 2048⋆

Procs. I II III I II III I II III
1 25.4 10.6 3.71 143 84.7 30 1614 679 232
2 9.3 5.3 1.87 123 42.7 15 603 341 116
4 8.3 2.8 0.93 84.4 21.7 7.6 257 171 58.2
8 3.9 1.5 0.47 36.4 11.3 3.8 123 87.7 29.1
16 2.6 1.3 0.24 18.0 6.0 1.9 69 45.6 14.5
32 1.9 0.9 0.12 15.6 6.5 0.9 68 24.4 7.2
64 3.3 0.7 0.06 12.1 7.5 0.4 49 24.4 3.6

We implemented the algorithms on two Beowulfs (clus-
ters).

The first one with 64 nodes consisting of low cost micro-
computers with 256MB RAM, 256MB swap memory, CPU
Intel Pentium III 448.956 MHz, 512KB cache, in addition
to two access nodes consisting of two microcomputers each
with 512MB RAM, 512MB swap memory, CPU Pentium
4 2.00 GHz, and 512KB cache. The cluster is divided into
two blocks of 32 nodes each. The nodes of each block are
connected through a 100 Mb fast-Ethernet switch. Each of

0

50

100

150

200

0 10 20 30 40 50 60

T
im

e
(I

n
S

ec
on

ds
)

No. CPUs

(a)

512
1024
2048

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 10 20 30 40 50 60

T
im

e
(I

n
S

ec
on

ds
)

No. CPUs

(b)

4096
6144

Fig. 2. Execution times of the BFS Algorithm

the access nodes is connected to the switch that connects
the block of nodes and the two switches are connected. This
cluster is the same used in [Alves et al., 2003].

The second cluster is composed by 12 nodes consisting of
6 CPU Intel Pentium IV of 1.7Ghz and 6 CPU AMD Athlon
de 1.6GHz. The nodes are connected by a 1Gb fast-Ethernet
switch.

Our code is written in standard ANSI C++ using the
LAM-MPI library. The execution times are expressed in
seconds.

The Table IV presents a comparison between the imple-
mentation presented by [Alves et al., 2003] and our imple-
mentations.

The column II describe the times that uses Algorithm 1 an
Algorithm 2 (super-vertex strategy). Its implementation got
better execution times than the results presented by [Alves
et al., 2003]. With the super-vertex strategy, actually we do
a compression on the messages that are exchanged by the
processors. In our tests we representedNv with a data type
with α = 32 bits. The column III uses Algorithm 5, the
breadth first search approach. The implementations were
executed in digraphs with 512, 1.024, 2.048 and 4096 ver-
tices and 50.000, 210.000, 800.000 and 3.300.000 edges,
respectively.

The Table IV describes the results of [Alves et al., 2003]
(I), and our implementation of Algorithm 3 (II-III). The Ta-
ble IV describe the results of [Cáceres and Vieira, 2004] (I)
and our implementation (II-III). Our results are much faster
than the previous implementations.

The implementations were executed in digraphs with
1.024, 2.048 and 4.096 vertices and 210.000, 800.000 and
3.300.000 edges, respectively.

The Figure 3 shows the curves of Table IV.
The Figure 4 shows the curves of Table IV.
The Figure 5 shows the comparison of the communica-

tion times with/without using bit arrays sending/receiving
messages in the two clusters.

V. CONCLUSIONS

We presented four new implementations of BSP/CGM
parallel algorithm for the transitive closure. The first and
second deal with the size of the messages that are exchanged

TABLE II : I -Execution times of [1],II -Execution times of the PTC-Edge

Insertions Algorithm on the first cluster andIII -Execution times of the

PTC-Edge Insertions Algorithm on the second cluster.⋆(I - with 1920 x

1920)

1024 x 1024 2048 x 2048 4096 x 4096
Procs. I II III I II III II III

1 143 86 23 1614 688 190 5300 1521
2 123 44 12 603 348 100 2780 788
4 84 22 6 257 176 50 1427 407
8 36 12 3 123 91 27 723 206
16 18 6 - 69 48 - 377 -
32 15 5 - 68 26 - 205 -

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30

T
im

e
(I

n
S

ec
on

ds
)

No. CPUs

Alg I − 1024
Alg II − 1024

Alg III − 1024
Alg I − 1920

Alg II − 2048
Alg III − 2048

Fig. 3. Curves of Table IV

between processor. We introduced the techniques of of
super-vertex and bit arrays that shrink the messages size.
With these simple techniques we obtained a better perfor-
mance implementing a BSP/CGM transitive closure algo-
rithm. Then we notice that in the Cáceres and Vieira one
processor could compute the linear extension of the input di-
graph and apply the same idea of the first implementation to
decrease the size of the messages. Finally we implemented
a BSP/CGM algorithm that uses a BFS search to compute
the transitive closure of a digraph instead of the Warshall
approach.

We implemented the algorithms in two Beowulfs with 64
and 12 nodes, respectively, using LAM-MPI. Since the BFS
Algorithm does not use communication rounds it has the
best performance between the proposed algorithms. The im-
plementation results show the efficiency and scalability of
the presented algorithms, improve the previous results and
compare favorably with other parallel implementations.

TABLE III : I -Execution times of [4],II -Execution times of the PTC-BIT

Algorithm on the first cluster. andIII -Execution times of the PTC-BIT

Algorithm on the second cluster

1024 x 1024 2048 x 2048 4096 x 4096
Procs. I II III I II III II III

1 7.7 7.6 2.1 63.3 61.6 17.5 505.3 134.6
2 5.2 3.9 1.2 36.4 31.3 9.9 254.4 77.8
4 4.0 1.9 0.7 23.7 15.8 5.1 127.9 39.5
8 3.4 1.0 0.3 17.4 8.1 2.6 64.7 20.5
16 3.7 0.5 - 18.3 4.4 - 33.2 -
32 3.5 0.4 - 15.2 2.5 - 17.9 -

0

10

20

30

40

50

60

0 5 10 15 20 25 30

T
im

e
(I

n
S

ec
on

ds
)

No. CPUs

Alg I − 1024
Alg II − 1024

Alg III − 1024
Alg I − 2048

Alg II − 2048
Alg III − 2048

Fig. 4. Curves of Table IV

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

T
im

e
(I

n
S

ec
on

ds
)

No. CPUs

I−FC
I−SC
II−FC
II−SC

Fig. 5. I-FC: Alves et. al. Algorithm on the First Cluster, I-SC: Alves
et. al. Algorithm on the Second Cluster, II-FC: Algorithm 3 on the First
Cluster, II-SC: Algorithm 3 on the Second Cluster.

REFERENCES

C. E. R. Alves, E. N. Cáceres, A.A. Castro Jr., S. W. Song,
and J.L. Szwarcfiter. Efficient parallel implementation of
transitive closure of digraphs.Lecture Notes in Computer
Science, 2840:126–133, 2003.
S. Baase.Computer Algorithms: Introduction to Design and
Analysis. Addison-Wesley, 2nd edition, 1978.
E. N. Cáceres and C. C. A. Vieira. Revisiting a bsp/cgm
transitive closure algorithm.SBAC, pages 174–179, 2004.
E. N. Cáceres, S. W. Song, and J.L. Szwarcfiter. A par-
allel algorithm for transitive closure.Proceedings of the
14th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems - PDCS 2002, Cambridge,
USA, November 4-6, pages 116–118, 2002.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. McGraw-Hill, 2nd edition,
2001.
F. Dehne. Coarse grained parallel algorithms.Algorithmica,
24(3/4):173–426, 1999.
A. Grama, V. Kumar, A. Gupta, and G. Karypis.An In-
troduction to Parallel Computing: Design and Analisys of
Algorithms. Addison-Wesley, 2nd edition, 2003.
M. Habib, M.and Morvan and J. Rampom. On the calcula-
tion of transitive reduction-closureof orders.Discrete Math-
ematics, 111:289–303, 1993.
J. JáJá.An Introduction to Parallel Algorithms. Addison-
Wesley, 1992.
R. M. Karp and V. Ramachandran.Parallel Algorithms for

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

T
im

e
(I

n
S

ec
on

ds
)

No. CPUs

I−FC
I−SC
II−FC
II−SC

Fig. 6. I-FC: Cáceres and Vieira Algorithm on the First Cluster, I-SC:
Cáceres and Vieira Algorithm on the Second Cluster, II-FC:Algorithm4
on the First Cluster, II-SC: Algorithm4 on the Second Cluster....

Shared-Memory Machines - Handbook of Theoretical Com-
puter Science, volume A, chapter 17, pages 869–941. The
MIT PRESS/Elsevier, 1990.
A. Pagourtzis, I. Patapov, and W. Rytter. Pvm computation
of the transitive closure: The dependency graph approach.
Lectures Notes in Computer Science, 2131:249–256, 2001.
A. Pagourtzis, I. Patapov, and W. Rytter. Observations on
parallel computation of transitive and max-closure prob-
lems. Lectures Notes in Computer Science, 2474:217–225,
2002.
R. Roy. Transitivité et connexité.C.R. Acad. Sci. Paris, 249:
216–218, 1959.
K. Simon. An improved algorithm for transitive closure on
acyclic digraphs.Theoretical Computer Science, 58:325–
346, 1988.
A. Tiskin. All-pairs shortest paths computation in the bsp
model.Lectures Notes in Computer Science, 2076:178–189,
2001.
L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33:103–111, 1990.
S. Warshall. A theorem on boolean matrices.Journal of the
ACM, 9(1):11–12, 1962.

AUTHOR BIOGRAPHIES
EDSON N. CÁCERES is a professor of computer science at the Uni-

versidade Federal de Mato Grosso do Sul. His research interests are par-
allel algorithms, cluster and grid computing, and peer-to-peer computing.
Cáceres received a DSc from the Universidade Federal do Riode Janeiro.
He is Director of Education of the Brazilian Computer Society and he is a
member of the IEEE Computer Society and ACM.

CRISTIANO C.A. VIEIRA is a assistant professor of computer sci-
ence at the Universidade Federal de Mato Grosso do Sul. His research
interests are cluster and grid computing and distance learning. Vieira re-
ceived a MSc from Universidade Federal de Mato Grosso do Sul.

