
KEYWORDS
Genomic sequence, search, algorithm, compression,
bioinformatics, database

ABSTRACT

Biological databases are growing significantly, as are
the number of queries directed at them. In 2005, the
genomic databases at the National Center for
Biotechnology Information (NCBI) received about 50
million web hits per day, at peak rates of about 1,900
hits per second. As these databases become more
popular, there is increased demand to make them faster
and more efficient. In this paper, we propose a method
for compressing and searching selected genome
databases using techniques appropriate for computers of
virtually any size. This search technique is expected to
produce its best results with large search sequences
against large DNA databases, and lends itself to parallel
computation techniques with little communication
overhead required. Because the compression algorithm
uses a lossless binary encoding format, search results
are exact – not approximate. Furthermore, searches take
place on the compressed data, obviating the need for
decompression prior to executing a search.

INTRODUCTION

Biological databases are growing significantly as
organisms are being sequenced. These genomic
databases help biologists understand the underlying
structure of organisms and aid research in the area of
genomic sciences. Publicly available databases can be
used by biologists to compare organisms, find related
species, etc.

To retrieve information, users run queries against one
of these databases, such as a search for a nucleotide
sequence from a nucleotide database. A typical search
involves matching a query nucleotide sequence with all
the sequences available in the database. If a database is
large in size, several comparisons are required until a
match is found. Efficiency is critical in such a database
system. The user desires to find the exact or most
similar result in the shortest amount of time. A database
search can be viewed as finding the longest common
subsequence(s) between the query sequence and a
database sequence. A longest common subsequence
indicates the similarity between the query and the
database sequence.

Genomic sequences are fairly large in size ranging
from several thousand to million character long
sequences. Searching against a large database can be
time consuming therefore there is a need to make
database access faster and better.

 A typical search may involve comparing a string of
200K characters against a database that may contain
millions of sequences of similar or larger sizes. A user
who may be trying to search against a large database
may require several minutes to get the reply. Added to
that a PC has limited resources and searching against a
large database can be quite time consuming. Querying a
database involves several factors such as the speed of
the tool, accuracy of the match, etc. An ideal tool for
such querying should satisfy these requisites.

Since large databases have huge memory
requirements, a method to compress data can be
beneficial. Compression of data can greatly reduce the
processing time. For example, if the data is compressed
five-fold, then a 200,000 character sequence now
becomes a 40,000 character sequence. The same query
search now involves comparison with smaller sequences
making the search faster.

DNA data is sensitive to changes, such as
replacements, insertions, deletions. A compression
technique that permits full recovery of the genome
sequences is required. For example, consider two
sequences:

Sequence 1:

ACTTACGTATCGCCCCC

Sequence 2:

ACTTACGTATCGCCACC

Sequence 1 and 2 are similar in that there is only one

character difference between them. An ideal
compression technique should maintain the similarity
relationship between the two sequences after
compression. In the above case the compressed data
should also have a distance of 1.

The research in this paper focuses on providing fast
search, fast retrieval speed from disk, efficient memory
utilization, and easily parallelizable implementation for
even faster searches and/or distributed deployment. A

AN EFFICIENT METHOD FOR COMPRESSING AND SEARCHING
GENOMIC DATABASES

Jeffrey B. Wallace, Gregory L. Vert, Sara Nasser
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, NV 89557

E-mail: jwallace@tmcc.edu, {gvert,sara}@cse.unr.edu

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

lossless compression technique is proposed that allows
full recovery of data. The next section presents the
background, followed by the proposed algorithm in the
following section. In the following section we analyze
the technique and conclude with future work in the last
section.

BACKGROUND

In this section we discuss some of the existing tools
for sequence alignment. We also discuss some of the
earlier methods propose to improve sequence alignment.

Sequence alignment is an important field in
bioinformatics. Sequence alignment provides method to
compare new sequences with previously completed or
assemble sequences. The completed sequences are
stored in databases.

Genomic database servers process tens of thousands
of queries a day. GenBank is one such database
maintained by National Center for Biotechnology
Information (NCBI). GenBank has over 55 million
sequence entries from at least 200,000 different
organisms (GenBank 2005). GenBank’s search tool is
known as BLAST. In 2005, NCBI received about 50
million web hits per day, at peak rates of about 1,900
hits per second, and about 400,000 BLAST searches per
day from about 2.5 million users (Astell 2005).

BLAST is a de facto standard tool used for measuring
similarity between sequences (Altschul 1990, 1997).
BLAST is popular for its efficiency, and has undergone
several updates for efficiency and speed. Mega BLAST
is a greedy search method that works on BLAST data
for DNA sequence alignment search and is known to be
faster than BLAST. Mega BLAST uses a greedy
algorithm for nucleotide sequence alignment search
(Zhang 2000). This program is optimized for aligning
sequences that differ slightly and can align much longer
sequences than BLAST. Mega BLAST can only work
with DNA sequences.

The Institute for Genomic Research (TIGR) is another
center for deciphering and analyzing genomes. TIGR's
Genome Project contains a collection of curated
databases containing DNA and protein sequence, gene
expression, cellular role, protein family, and taxonomic
data for microbes, plants and humans (IGR 2007).

BLAST is a tool that does an exhaustive search.
FASTA is another tool that does an exhaustive search.
An exhaustive search is costly in terms of speed. A
query string does not have to be compared to the entire
database. Heuristics can be added to a search process to
make it faster and accurate. Keyword based searches are
one such example of non-exhaustive search. Keyword-
based search has been popularized by Internet search
engines and is not generally provided by traditional

databases (Agrawal 2002). An example of keyword-
based search over structured databases is EKSO (Su
2005). EKSO indexes interconnected textual content in
relational databases, providing intuitive and highly
efficient keyword search capabilities over this content.
It trades storage space and offline indexing time to
significantly reduce query time computation.

There are several other search tools such as Flash,
SST and CAFÉ (Cao 2005, Baxevanis 2005). CAFÉ is
based on an indexed scheme with appropriate data
structures and has shown a faster query search than
exhaustive searching. A comparison of BLAST,
FASTA, and CAFÉ has been studied (Williams 2002).
An indexing technique for answering approximate
keyword search queries was developed by Fei and
Mefford (Shi 2005). This technique has two principal
components – a data structure called V-tree and its
partition methods for clustering words in the vocabulary
into subgroups. It stores the words in the vocabulary
into a V-tree based on its partition methods. The V-tree
data structure can reduce the number of distance
computations needed to answer the query.

Even though there has been much research for making
for making query searches faster, there has been less
research in terms of reducing storage requirements for
both the database and the user. The algorithm proposed
in the following section can perform searches on
compressed data in a fast and efficient manner.

THE PROPOSED METHOD
This section describes the proposed compression and
searching algorithms, including sequence encoding, data
structures, and query processing. Examples are provided
in each of these areas.

Sequence Encoding and Compression

Genomic sequences are commonly stored as strings
comprised of the four DNA bases: C, G, A, and T.
Generally, these are stored as ASCII characters, where
each symbol requires a single byte of storage.

However, only two bits are required to adequately
express these four symbols. Thus, ‘C’ can be replaced
with the bits 00, ‘G’ with 01, ‘A’ with 10, and ‘T’ with
11. This simple binary encoding of base strings allows
four DNA bases to be represented within one byte.
Thus, the sequence AGGT can be represented in binary
form as 10 01 01 11, which is readily converted to its
decimal equivalent of 151.

For the purposes of the proposed search algorithm,
however, it is desirable to represent octets of DNA
bases as a single unit. Since each base requires two bits,
all possible octets can be represented as 16-bit integers
ranging from 0 (all Cs) to 65535 (all Ts) as shown in
Figure 1. Since each integer in this range uniquely

encodes a string of eight nucleotides (an octet), these
integers will serve as hash values in the data structure at
runtime. In the meantime, these compressed values are
either stored sequentially on disk or transmitted
sequentially over a network during a file read operation.

Figure 1: Octet Encoding

Data Structure
Since DNA search and target strings are typically

very large, simple M x N string comparisons take too
much time to be considered a viable solution – a more
sophisticated data structure is required in order to
achieve reasonable performance in large searches. The
applicability of a data structure is largely determined by
the context of the problem – there is no such thing as the
“perfect” data structure. In the context of genomic
search, tree structures suffer because the data has little
order other than sequence, so complete searches require
either complete tree traversal or extra links within the
tree structure. Arrays suffer from the same problem.
Various array indexing schemes offer speed
improvements, but at the expense of memory. The
technique used for video compression suffers because
the distances to reference words are typically longer
than the two bits necessary to store the base being
encoded (1).

Figure 2: Data Structure

The proposed data structure consists of a doubly-
chained hash table, where one chain of pointers (solid
lines in Figure 2) implements a linked-list of all octets
that hash to the same integer value. A second linked list
(shown with dashed lines) is used to traverse the octets
in sequential order. In addition to preserving the
integrity of the data, this structure ensures that only the
portions of the targets sequence that match the search
string will be searched.

This data structure is easily serialized. Each octet is
encoded to binary (interpreted as decimal) form as
described above and stored sequentially on disk – which
offers the best I/O performance at runtime.

As each octet (16-bit integer) is read, a new node is
created and inserted at the end of the linked list for the
octet’s hash value (solid lines), which ensures that each
hash value’s linked list is stored in sorted order. The
node also contains sequence position information in
order to report where a match begins, as well as a
second linked list (dashed lines) that allows the data
structure to be efficiently traversed sequentially. Both of
these linked lists are traversed during a search operation.

Figure 3: Algorithm

Algorithm
Sequence searching takes place on compressed

sequence octets stored in the data structure described
above. In order to make comparisons to this data
structure, the search string also needs to be encoded as
binary octets using the same compression technique.
Because of the iterative windowing required by this
algorithm, search strings need to contain at least fifteen
bases.

Descriptions and examples of each of the algorithm
functions are covered below. The algorithm shown in
Figure 3 assumes that the target sequence has been
encoded and stored in the data structure described
above. It also assumes that each base search sequence
has been encoded as a two-bit binary value, and that the
search sequence contains at least 15 bases. In the
following algorithm, the variable currNode follows the
sequence-ordered linked list (the dashed list in Figure
2). The variable startNode follows the hash-ordered
linked list (the solid-line list).

Fully Aligned Octets – A Simple Example

Figure 4 builds on the previous figures, and shows a

simple, near-best case scenario. In this case, the search
sequence matches the 6th and 7th octet of the target
sequence.

The search begins by accessing the linked-list
addressed by the hash value of the search sequence’s
first octet. In this case, the first element of the hash
value’s linked list is octet #2 in the sample sequence.
Indeed, the first octet of the search sequence matches
octet #2 of the sample sequence, so the (dashed-line)
linked list is followed to find the octet #3 in the sample
sequence. In this case, the hash value of octet #3 of the
sample sequence (51599) does not match the hash value
of the second octet of the search sequence (25545), so
this once-promising search is abandoned, and the (solid-
line) linked list is followed to the next octet that
matches the first octet of the search sequence – in this
case, octet #6.

The next possible match begins at octet #6 in the
sample sequence. Following the (dashed) linked list to
octet #7 reveals that it matches the second octet in the
search sequence. Since there are no more terms in the
search sequence, there is a match beginning at octet #6
in the sample sequence. If there were more octets in the
(solid-line) linked list, further matches could be
discovered by repeating the process until the end of the
(solid-line) list is reached.

Partial Search Strings

In the previous example, the lengths of the search
strings were multiples of eight, so they aligned nicely
with octet boundaries. More often than not, this perfect
alignment is not the case in actual searches, so the

algorithm requires a further refinement in order deal
with non-aligned search strings. Instead of the last octet
of the search sequence being compared to an entire octet
in the target sequence, partial octets are compared using
an AND operation as shown in Figure 5. As will be seen
in the next section, this partial alignment technique may
also be used on the first octet of the search string.

Figure 4: Searching the Data Structure

Figure 5: Partial Octet Matching

Search Sequence Windowing

In both of the examples described above, the
matching sequences occurred on octet boundaries.
Again, this is not usually the case in actual searches. In
most cases (or when searching for all matches in a target
string), the search algorithm uses a windowing
technique where the search sequence is shifted one base
(2 bits) to the right for each of the eight possible
positions in the octet. Note that only the search
sequence is shifted – the data structure for the target
sequence remains unchanged. Although this requires
eight separate searches of the target sequence, these
basic comparison operations are sufficiently fast in
modern processors.

An example of the windowing algorithm is shown in
Figure 6. At each iteration, the octet contained in the
box would serve as the first octet to be matched. As
before, the hash value is simply a decimal interpretation
of the binary base encoding.

For each window iteration, the algorithm begins by
matching all complete octets as illustrated previously in
Figure 4. As usual, if any mismatches occur along the
way, the search moves to the next target sequence
matching the hash value of the first octet of the
windowed search string. If all complete octets match,
the partial octet at the end of the search sequence (if it
exists) is matched against the target sequence as

illustrated previously in Figure 5. If the sequences
continue to match, the partial octet at the beginning of
the search sequence (if it exists) is finally matched
against the target sequence. Note that this data structure
does not include backward chaining – which would
require unacceptable memory overhead because it
would require extra pointers for every octet, even
though only one backward pointer would be used for a
given search string. Instead, the partial sequence
preceding the first complete octet is retrieved from disk,
which is a relatively fast direct access file I/O operation
since the sequence position is known.

Figure 6: Search Windowing

ANALYSIS

A software prototype that implements this method has
been developed. Preliminary testing on a dataset
containing 5.6 million base pairs appears promising:

a) The simple compression algorithm achieves a
constant 4:1 compression ratio on standard ascii-
coded FASTA databases.

b) Base octets appear to be reasonably well
distributed, resulting in similar-sized linked lists for
each possible hash value. Thus, in a target sequence
with 3 billion base pairs, the average linked list for

a given hash value (the solid-line list) would be
expected to contain approximately 5700 nodes (3B
÷ 216 ÷ 8).

c) Searches for strings containing up to 5000 base
pairs are executing in under 100 ms on an (old)
2GHz AMD 64 with 1 MB of RAM.

CONCLUSIONS AND FUTURE WORK

The expected benefits of this approach are four fold:

a) Fast search. Only the portion(s) of the target
sequence that match the search string will be
searched. Non-matching areas are ignored.

b) Fast I/O. Compressed data are saved sequentially,
resulting in fast retrieval speed from disk.

c) Efficient memory utilization. Compressed data does
not need to be decompressed. The algorithm works
directly on compressed data.

d) Easily parallelizable for even faster searches and/or
distributed deployment. The algorithm is
embarrassingly parallel and involves little
communication overhead.

As described above, this data structure relies heavily
on memory address pointers. Since these pointers
cannot be meaningfully stored on disk (when the data is
reloaded, it will most likely load into different memory
addresses), search operations will be most efficient on
machines with enough memory to store the entire
compressed target sequence.

The memory required to store a target sequence is
expected to be directly proportional to the number of
bases in the sequence and the word size of the computer
used. With a 64-bit processor, each octet is expected to
require 20 bytes (32 bits for a sequence number and two
64-bit addresses). With a 32-bit processor, each octet is
expected to require 12 bytes. Thus, the data structure
required to hold a target sequence with 3 billion base
pairs on a 64-bit processor is expected to require
approximately 7.5 GB of memory. Although this is a
significant amount of memory, it is within the realm of a
workstation-sized computer.

Preliminary testing of this approach appears
promising. Over the next couple of months, the
following extensions to this project are anticipated:

a) Finish programming the prototype search tool.

b) Measure search speed of various-sized search
strings on a broad range of actual genomic datasets,
and compare these results against those using tools
such as BLAST, FASTA, and CAFÉ.

c) Compare memory and storage efficiency against
existing tools such as BLAST, FASTA, and CAFÉ.

d) Parallelize the algorithm so it can take advantage of
multiple processors and large shared memory

clusters. This is likely to lead to significant
performance gains.

e) Explore methods for implementing wildcard
(similarity) matching in order to be able to search
strings “similar” to a search string.

REFERENCES
Agrawal, Sanjay, Surajit Chaudhuri, Gautam Das,

"DBXplorer: A System for Keyword-Based Search over
Relational Databases," 18th International Conference on
Data Engineering (ICDE'02), 2002.

Altschul S., W. Gish, W. Miller, E. Myers, and D. Lipman,
"Basic Local Alignment Search Tool," J. Molecular
Biology, vol. 215, pp. 403-410, 1990

Altschul, SF, TL Madden, AA Schaffer, J Zhang, Z Zhang, W
Miller, DJ Lipman, (1997) “Gapped BLAST and PSI-
BLAST: a new generation of protein database search
programs”, Nucleic Acids Res, . 25, 3389–3402

Astell, James (2005), “Databases of Discovery”, ACM Queue
vol. 3, no. 3 - April 2005

Baxevanis, Andreas D. (Editor), B. F. Francis Ouellette,
“Bioinformatics: A Practical Guide to the Analysis of
Genes and Proteins”, New Jersey: Wiley 2005

Cao, Xia, Beng Chin Ooi, Tung, A.K.H., Hwee Hwa Pang,
Kian-Lee Tan, “DSIM: A Distance-Based Indexing
Method for Genomic Sequences”, IEEE Symposium on
Bioinformatics and Bioengineering, 2005. BIBE 2005,
Publication Date: 19-21 Oct. 2005, (pp): 97- 104

GenBank (2005),
http://www.nlm.nih.gov/news/press_releases/dna_rna_10
0_gig.html, date accessed Feb 2007.

The Institute for Genomic Research,
http://www.tigr.org/db.shtml, data accessed March 2007.

Shi, Fei, Mefford, C., “A new indexing method for
approximate search in text databases”, The Fifth
International Conference on Computer and Information
Technology, 2005. CIT 2005, Sept. 2005 pp: 70- 76, 2005

Su, Qi, Jennifer Widom, “Indexing Relational Database
Content Offline for Efficient Keyword-Based Search”
Proceedings of the 9th International Database
Engineering & Application Symposium (IDEAS'05), Vol.
00, pp: 297 – 306, 2005

Williams, H. and J. Zobel. Indexing and Retrieval for
Genomic Databases. IEEE Transactions on Knowledge
and Data Engineering, 2002.

Zhang, Zheng, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DNA
sequences", J Compuational Biol 2000; 7(1-2):203-14.

AUTHOR BIOGRAPHIES

JEFF WALLACE was born on a farm in the upper
peninsula of Michigan. He received his BS in
Computer Science from the University of Michigan in
1982, his MBA from Santa Clara University in 1988
and his MFA in film with a specialization in Special
Effects from the University of Southern California in
1996. He is currently a graduate student at the
University of Nevada and is a tenured faculty member at
Truckee Meadows Community College in the
Department of Computer Office Technologies. His

research interests are in Bioinformatics and Artificial
Intelligence. His email is jwallace@tmcc.edu

GREGORY VERT was born in Fairfield California in
1956. He received his BS in Geography with a
specialization in GIS from the University of Washington
in 1985, his MS in Information Systems Management,
Seattle Pacific University, in Seattle, Washington in
1988, and his PhD in Computer Science from the
University of Idaho in Moscow Idaho in 2000. He has
been an Assistant Professor at the University of Nevada,
Reno in the Computer Science and Engineering
Department since 2002. His research is in the areas of
GIS, Computer Security, Fuzzy System, Database and
Bioinformatics. His email address is
gvert@cse.unr.edu

SARA NASSER was born in Hyderabad, India. She
received her BE in Computer Science and Engineering
from MJCET, Osmania University, and her MS in
Computer Science from the University of Nevada in
2003. She is currently a PhD student in Computer
Science and Engineering and is expecting to graduate in
2008. Her research is in the area of Bioinformatics and
Fuzzy Systems. Her e-mail address is
sara@cse.unr.edu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

