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ABSTRACT 

Biological databases are growing significantly, as are 
the number of queries directed at them. In 2005, the 
genomic databases at the National Center for 
Biotechnology Information (NCBI) received about 50 
million web hits per day, at peak rates of about 1,900 
hits per second. As these databases become more 
popular, there is increased demand to make them faster 
and more efficient. In this paper, we propose a method 
for compressing and searching selected genome 
databases using techniques appropriate for computers of 
virtually any size. This search technique is expected to 
produce its best results with large search sequences 
against large DNA databases, and lends itself to parallel 
computation techniques with little communication 
overhead required. Because the compression algorithm 
uses a lossless binary encoding format, search results 
are exact – not approximate. Furthermore, searches take 
place on the compressed data, obviating the need for 
decompression prior to executing a search. 
 
INTRODUCTION 

Biological databases are growing significantly as 
organisms are being sequenced. These genomic 
databases help biologists understand the underlying 
structure of organisms and aid research in the area of 
genomic sciences. Publicly available databases can be 
used by biologists to compare organisms, find related 
species, etc.  
 

To retrieve information, users run queries against one 
of these databases, such as a search for a nucleotide 
sequence from a nucleotide database. A typical search 
involves matching a query nucleotide sequence with all 
the sequences available in the database. If a database is 
large in size, several comparisons are required until a 
match is found. Efficiency is critical in such a database 
system. The user desires to find the exact or most 
similar result in the shortest amount of time. A database 
search can be viewed as finding the longest common 
subsequence(s) between the query sequence and a 
database sequence. A longest common subsequence 
indicates the similarity between the query and the 
database sequence.  
 

Genomic sequences are fairly large in size ranging 
from several thousand to million character long 
sequences. Searching against a large database can be 
time consuming therefore there is a need to make 
database access faster and better. 
 

 A typical search may involve comparing a string of 
200K characters against a database that may contain 
millions of sequences of similar or larger sizes. A user 
who may be trying to search against a large database 
may require several minutes to get the reply. Added to 
that a PC has limited resources and searching against a 
large database can be quite time consuming. Querying a 
database involves several factors such as the speed of 
the tool, accuracy of the match, etc. An ideal tool for 
such querying should satisfy these requisites. 
 

Since large databases have huge memory 
requirements, a method to compress data can be 
beneficial. Compression of data can greatly reduce the 
processing time. For example, if the data is compressed 
five-fold, then a 200,000 character sequence now 
becomes a 40,000 character sequence. The same query 
search now involves comparison with smaller sequences 
making the search faster.  
  

DNA data is sensitive to changes, such as 
replacements, insertions, deletions. A compression 
technique that permits full recovery of the genome 
sequences is required. For example, consider two 
sequences: 

 
Sequence 1:  
 

ACTTACGTATCGCCCCC 
 
Sequence 2: 

 
ACTTACGTATCGCCACC 

 
Sequence 1 and 2 are similar in that there is only one 

character difference between them. An ideal 
compression technique should maintain the similarity 
relationship between the two sequences after 
compression. In the above case the compressed data 
should also have a distance of 1. 
 

The research in this paper focuses on providing fast 
search, fast retrieval speed from disk, efficient memory 
utilization, and easily parallelizable implementation for 
even faster searches and/or distributed deployment. A 
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lossless compression technique is proposed that allows 
full recovery of data.  The next section presents the 
background, followed by the proposed algorithm in the 
following section.  In the following section we analyze 
the technique and conclude with future work in the last 
section. 
 

BACKGROUND 
 

In this section we discuss some of the existing tools 
for sequence alignment. We also discuss some of the 
earlier methods propose to improve sequence alignment. 
 

Sequence alignment is an important field in 
bioinformatics. Sequence alignment provides method to 
compare new sequences with previously completed or 
assemble sequences. The completed sequences are 
stored in databases.  
 

Genomic database servers process tens of thousands 
of queries a day. GenBank is one such database 
maintained by National Center for Biotechnology 
Information (NCBI). GenBank has over 55 million 
sequence entries from at least 200,000 different 
organisms (GenBank 2005). GenBank’s search tool is 
known as BLAST. In 2005, NCBI received about 50 
million web hits per day, at peak rates of about 1,900 
hits per second, and about 400,000 BLAST searches per 
day from about 2.5 million users (Astell 2005).  
 

BLAST is a de facto standard tool used for measuring 
similarity between sequences (Altschul 1990, 1997). 
BLAST is popular for its efficiency, and has undergone 
several updates for efficiency and speed. Mega BLAST 
is a greedy search method that works on BLAST data 
for DNA sequence alignment search and is known to be 
faster than BLAST. Mega BLAST uses a greedy 
algorithm for nucleotide sequence alignment search 
(Zhang 2000). This program is optimized for aligning 
sequences that differ slightly and can align much longer 
sequences than BLAST. Mega BLAST can only work 
with DNA sequences. 
 

The Institute for Genomic Research (TIGR) is another 
center for deciphering and analyzing genomes. TIGR's 
Genome Project contains a collection of curated 
databases containing DNA and protein sequence, gene 
expression, cellular role, protein family, and taxonomic 
data for microbes, plants and humans (IGR 2007).  
 

BLAST is a tool that does an exhaustive search. 
FASTA is another tool that does an exhaustive search. 
An exhaustive search is costly in terms of speed. A 
query string does not have to be compared to the entire 
database. Heuristics can be added to a search process to 
make it faster and accurate. Keyword based searches are 
one such example of non-exhaustive search. Keyword-
based search has been popularized by Internet search 
engines and is not generally provided by traditional 

databases (Agrawal 2002). An example of keyword-
based search over structured databases is EKSO (Su 
2005). EKSO indexes interconnected textual content in 
relational databases, providing intuitive and highly 
efficient keyword search capabilities over this content. 
It trades storage space and offline indexing time to 
significantly reduce query time computation. 
 

There are several other search tools such as Flash, 
SST and CAFÉ (Cao 2005, Baxevanis 2005). CAFÉ is 
based on an indexed scheme with appropriate data 
structures and has shown a faster query search than 
exhaustive searching. A comparison of BLAST, 
FASTA, and CAFÉ has been studied (Williams 2002). 
An indexing technique for answering approximate 
keyword search queries was developed by Fei and 
Mefford (Shi 2005). This technique has two principal 
components – a data structure called V-tree and its 
partition methods for clustering words in the vocabulary 
into subgroups. It stores the words in the vocabulary 
into a V-tree based on its partition methods. The V-tree 
data structure can reduce the number of distance 
computations needed to answer the query.  
 

Even though there has been much research for making 
for making query searches faster, there has been less 
research in terms of reducing storage requirements for 
both the database and the user. The algorithm proposed 
in the following section can perform searches on 
compressed data in a fast and efficient manner.    
 
 
THE PROPOSED METHOD 
This section describes the proposed compression and 
searching algorithms, including sequence encoding, data 
structures, and query processing. Examples are provided 
in each of these areas. 
 
Sequence Encoding and Compression 

Genomic sequences are commonly stored as strings 
comprised of the four DNA bases: C, G, A, and T. 
Generally, these are stored as ASCII characters, where 
each symbol requires a single byte of storage. 
 

However, only two bits are required to adequately 
express these four symbols. Thus, ‘C’ can be replaced 
with the bits 00, ‘G’ with 01, ‘A’ with 10, and ‘T’ with 
11. This simple binary encoding of base strings allows 
four DNA bases to be represented within one byte. 
Thus, the sequence AGGT can be represented in binary 
form as 10 01 01 11, which is readily converted to its 
decimal equivalent of 151. 
 

For the purposes of the proposed search algorithm, 
however, it is desirable to represent octets of DNA 
bases as a single unit. Since each base requires two bits, 
all possible octets can be represented as 16-bit integers 
ranging from 0 (all Cs) to 65535 (all Ts) as shown in 
Figure 1. Since each integer in this range uniquely 



encodes a string of eight nucleotides (an octet), these 
integers will serve as hash values in the data structure at 
runtime. In the meantime, these compressed values are 
either stored sequentially on disk or transmitted 
sequentially over a network during a file read operation. 
 
 

 
 

Figure 1: Octet Encoding 
 

Data Structure 
Since DNA search and target strings are typically 

very large, simple M x N string comparisons take too 
much time to be considered a viable solution – a more 
sophisticated data structure is required in order to 
achieve reasonable performance in large searches. The 
applicability of a data structure is largely determined by 
the context of the problem – there is no such thing as the 
“perfect” data structure. In the context of genomic 
search, tree structures suffer because the data has little 
order other than sequence, so complete searches require 
either complete tree traversal or extra links within the 
tree structure. Arrays suffer from the same problem. 
Various array indexing schemes offer speed 
improvements, but at the expense of memory. The 
technique used for video compression suffers because 
the distances to reference words are typically longer 
than the two bits necessary to store the base being 
encoded (1).  
 
 

 
 

Figure 2: Data Structure 

The proposed data structure consists of a doubly-
chained hash table, where one chain of pointers (solid 
lines in Figure 2) implements a linked-list of all octets 
that hash to the same integer value. A second linked list 
(shown with dashed lines) is used to traverse the octets 
in sequential order. In addition to preserving the 
integrity of the data, this structure ensures that only the 
portions of the targets sequence that match the search 
string will be searched.  
 

This data structure is easily serialized. Each octet is 
encoded to binary (interpreted as decimal) form as 
described above and stored sequentially on disk – which 
offers the best I/O performance at runtime. 
 

As each octet (16-bit integer) is read, a new node is 
created and inserted at the end of the linked list for the 
octet’s hash value (solid lines), which ensures that each 
hash value’s linked list is stored in sorted order. The 
node also contains sequence position information in 
order to report where a match begins, as well as a 
second linked list (dashed lines) that allows the data 
structure to be efficiently traversed sequentially. Both of 
these linked lists are traversed during a search operation. 
 
 
 
 

 
 

Figure 3: Algorithm 
 



Algorithm 
Sequence searching takes place on compressed 

sequence octets stored in the data structure described 
above. In order to make comparisons to this data 
structure, the search string also needs to be encoded as 
binary octets using the same compression technique. 
Because of the iterative windowing required by this 
algorithm, search strings need to contain at least fifteen 
bases. 

Descriptions and examples of each of the algorithm 
functions are covered below. The algorithm shown in 
Figure 3 assumes that the target sequence has been 
encoded and stored in the data structure described 
above. It also assumes that each base search sequence 
has been encoded as a two-bit binary value, and that the 
search sequence contains at least 15 bases. In the 
following algorithm, the variable currNode follows the 
sequence-ordered linked list (the dashed list in Figure 
2). The variable startNode follows the hash-ordered 
linked list (the solid-line list). 
 

Fully Aligned Octets – A Simple Example 
 
Figure 4 builds on the previous figures, and shows a 

simple, near-best case scenario. In this case, the search 
sequence matches the 6th and 7th octet of the target 
sequence.  
 

The search begins by accessing the linked-list 
addressed by the hash value of the search sequence’s 
first octet. In this case, the first element of the hash 
value’s linked list is octet #2 in the sample sequence. 
Indeed, the first octet of the search sequence matches 
octet #2 of the sample sequence, so the (dashed-line) 
linked list is followed to find the octet #3 in the sample 
sequence. In this case, the hash value of octet #3 of the 
sample sequence (51599) does not match the hash value 
of the second octet of the search sequence (25545), so 
this once-promising search is abandoned, and the (solid-
line) linked list is followed to the next octet that 
matches the first octet of the search sequence – in this 
case, octet #6. 
 

The next possible match begins at octet #6 in the 
sample sequence. Following the (dashed) linked list to 
octet #7 reveals that it matches the second octet in the 
search sequence. Since there are no more terms in the 
search sequence, there is a match beginning at octet #6 
in the sample sequence. If there were more octets in the 
(solid-line) linked list, further matches could be 
discovered by repeating the process until the end of the 
(solid-line) list is reached. 
 
Partial Search Strings 

In the previous example, the lengths of the search 
strings were multiples of eight, so they aligned nicely 
with octet boundaries. More often than not, this perfect 
alignment is not the case in actual searches, so the 

algorithm requires a further refinement in order deal 
with non-aligned search strings. Instead of the last octet 
of the search sequence being compared to an entire octet 
in the target sequence, partial octets are compared using 
an AND operation as shown in Figure 5. As will be seen 
in the next section, this partial alignment technique may 
also be used on the first octet of the search string. 
 
 
 

 
 

Figure 4: Searching the Data Structure 
 
 

 



 

 
 

Figure 5: Partial Octet Matching 
 

Search Sequence Windowing 

In both of the examples described above, the 
matching sequences occurred on octet boundaries. 
Again, this is not usually the case in actual searches. In 
most cases (or when searching for all matches in a target 
string), the search algorithm uses a windowing 
technique where the search sequence is shifted one base 
(2 bits) to the right for each of the eight possible 
positions in the octet. Note that only the search 
sequence is shifted – the data structure for the target 
sequence remains unchanged. Although this requires 
eight separate searches of the target sequence, these 
basic comparison operations are sufficiently fast in 
modern processors.  

An example of the windowing algorithm is shown in 
Figure 6. At each iteration, the octet contained in the 
box would serve as the first octet to be matched. As 
before, the hash value is simply a decimal interpretation 
of the binary base encoding. 
 

For each window iteration, the algorithm begins by 
matching all complete octets as illustrated previously in 
Figure 4. As usual, if any mismatches occur along the 
way, the search moves to the next target sequence 
matching the hash value of the first octet of the 
windowed search string. If all complete octets match, 
the partial octet at the end of the search sequence (if it 
exists) is matched against the target sequence as 

illustrated previously in Figure 5. If the sequences 
continue to match, the partial octet at the beginning of 
the search sequence (if it exists) is finally matched 
against the target sequence. Note that this data structure 
does not include backward chaining – which would 
require unacceptable memory overhead because it 
would require extra pointers for every octet, even 
though only one backward pointer would be used for a 
given search string. Instead, the partial sequence 
preceding the first complete octet is retrieved from disk, 
which is a relatively fast direct access file I/O operation 
since the sequence position is known.  
 

 
 

Figure 6: Search Windowing 
 
 
ANALYSIS 

A software prototype that implements this method has 
been developed. Preliminary testing on a dataset 
containing 5.6 million base pairs appears promising: 
 

a) The simple compression algorithm achieves a 
constant 4:1 compression ratio on standard ascii-
coded FASTA databases.  

b) Base octets appear to be reasonably well 
distributed, resulting in similar-sized linked lists for 
each possible hash value. Thus, in a target sequence 
with 3 billion base pairs, the average linked list for 



a given hash value (the solid-line list) would be 
expected to contain approximately 5700 nodes (3B 
÷ 216 ÷ 8). 

c) Searches for strings containing up to 5000 base 
pairs are executing in under 100 ms on an (old) 
2GHz AMD 64 with 1 MB of RAM. 

CONCLUSIONS AND FUTURE WORK 

The expected benefits of this approach are four fold: 

a) Fast search. Only the portion(s) of the target 
sequence that match the search string will be 
searched. Non-matching areas are ignored. 

b) Fast I/O. Compressed data are saved sequentially, 
resulting in fast retrieval speed from disk. 

c) Efficient memory utilization. Compressed data does 
not need to be decompressed. The algorithm works 
directly on compressed data. 

d) Easily parallelizable for even faster searches and/or 
distributed deployment. The algorithm is 
embarrassingly parallel and involves little 
communication overhead.  

As described above, this data structure relies heavily 
on memory address pointers. Since these pointers 
cannot be meaningfully stored on disk (when the data is 
reloaded, it will most likely load into different memory 
addresses), search operations will be most efficient on 
machines with enough memory to store the entire 
compressed target sequence.  

The memory required to store a target sequence is 
expected to be directly proportional to the number of 
bases in the sequence and the word size of the computer 
used. With a 64-bit processor, each octet is expected to 
require 20 bytes (32 bits for a sequence number and two 
64-bit addresses). With a 32-bit processor, each octet is 
expected to require 12 bytes. Thus, the data structure 
required to hold a target sequence with 3 billion base 
pairs on a 64-bit processor is expected to require 
approximately 7.5 GB of memory. Although this is a 
significant amount of memory, it is within the realm of a 
workstation-sized computer. 

Preliminary testing of this approach appears 
promising. Over the next couple of months, the 
following extensions to this project are anticipated: 

a) Finish programming the prototype search tool. 

b) Measure search speed of various-sized search 
strings on a broad range of actual genomic datasets, 
and compare these results against those using tools 
such as BLAST, FASTA, and CAFÉ. 

c) Compare memory and storage efficiency against 
existing tools such as BLAST, FASTA, and CAFÉ. 

d) Parallelize the algorithm so it can take advantage of 
multiple processors and large shared memory 

clusters. This is likely to lead to significant 
performance gains.  

e) Explore methods for implementing wildcard 
(similarity) matching in order to be able to search 
strings “similar” to a search string. 
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