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ABSTRACT

Wildfires are a concern for communities throughout the
world. They cause millions of dollars in damage and lead
to loss of lives. The development of computational mod-
els to predict wildfire behavior is necessary to minimize
wildfire damages and casualties. Visualizing the data gen-
erated from these computational models has many applica-
tions including training, strategic planning, data analysis,
and model validation. The complexity of visualizing wild-
fire brings many challenges, further complicated by large
datasets and specialized hardware used to drive immersive
systems. This paper present methods for managing the large
datasets and computational complexity involved in visualiz-
ing large wildfires in immersive environments.

INTRODUCTION

Wildfires are very unpredictable. It is difficult to determine
exactly where and when a wildfire will happen next and it is
even more difficult to determine how a wildfire will spread
with absolute precision. It is the unpredictability of wildfires
that make them so dangerous. It is this reason that so much
time and money is spent researching wildfire behavior.

There are many advantages to modeling the spread of
wildfires. Spread models can be used to develop plans to
fight fire, initiate more predictable prescribed burning, and
also predict the risk involved if a wildfire occurred in a cer-
tain area. Determining how much risk to an area’s inhabi-
tants and their property can be used to spend money appro-
priately and develop a proactive plan for evacuation and fire
fighting. Kyle Canyon in Southern Nevada is a good exam-
ple of a high danger wildfire zone. In the event of a wildfire,
it would be very difficult, if not impossible, to evacuate its
citizens and would most likely end in a high fatality rate.
Many decisions rely on the results of wildfire spread model
simulations. It is important that these models, to some de-
gree, accurately predict the spread.

Validating these models is difficult without the wildfire
actually happening and comparing the results. Visualization
of the wildfire model output in an immersive environment

can be used to validate its output against environment fac-
tors such as terrain slope, fuel moisture, wind vectors and
weather conditions. It can also be used to compare model
output against video footage or a visual recreation of the
scene from collected data. This is only a single but im-
portant reason for visualization of wildfire model output.
Visualization of these model outputs can be used to better
train firefighters and fire bosses and aid in burning more pre-
dictable prescribed fires.

Burning a wildfire for the purpose of training is danger-
ous and costly. Virtual reality technology makes it possible
to recreate wildfire scenarios with more realistic results then
previously possible. Recreating wildfire or using model out-
puts can be used to train fire bosses and firefighters and aid
in the development of plans and precautions. With the devel-
opment of a real-time wildfire simulation it would be pos-
sible to run through several virtual scenarios very quickly.
This could be used to better determine what measures to
take while burning a prescribed fire.

Real-time visualization of this data is a necessary require-
ment for these applications. Faster than real-time visual-
ization would also bring many advantages. Wildfires often
burn over large areas of land even covering tens to hundreds
of thousands of acres resulting in the need to visualize of
several large datasets. Visualizing terrain and forests of this
magnitude is a computationally intensive task while main-
taining real-time frame rates. Rendering a fire across this
vast landscape also brings many challenges.

The rest of this paper is structured as follows. The next
section presents related work on wildfire visualization, vir-
tual reality, possible hardware configurations, and our soft-
ware environment. This is followed by a section describing
our implementation of different parts of the wildfire sce-
nario. The paper finishes with our conclusions and possi-
bilities for future work.

BACKGROUND

Fire and Wildfires

Much work exists for visualizing fire for the purpose of
training and analysis. However, little work has been done
to visualize fires and wildfires in an immersive medium.
A good amount of work as been spent visualizing com-
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putational models for in-building fires (Bukowski and Se-
quin, 1997; Govindarajan et al., 1999). (Julien and Shaw,
2003; Tate et al., 1997) use virtual environments and realis-
tic spread models for application in firefighting training sce-
narios; however, the models and fire visualization are not
applicable to outdoor, large-scale fires.

Los Alamos National Laboratory developed a tool for the
visualization of wildfire data; however, both their model
and visualization ran slower than real-time (Ahrens et al.,
1997; McCormick and Ahrens, 1998). This work states the
applicability of visualization of wildfire to training, but only
describes the graphical elements necessary. Similar work
using GIS based reconstruction of forest landscape scenar-
ios has been done with non-immersively visualized wild-
fires (Yu et al., 2004). The authors chose to implement their
own elliptical wildfire spread model based on the Huygen’s
principle of wave propagation and compute localized fire
behavior using the Rothermel model. They achieved real-
time frame rates on a desktop system using a custom forest
level-of-detail system and wildfire spread model. However,
the paper did not discuss the validity of their wildfire spread
model and did not address the application or complexities
of their application in an virtual environment.

Farsite

FARSITE is a well-established fire behavior and growth
simulator developed by the USDA Forest Service. It is used
by fire analysts from the US Department of the Interior, Na-
tional Park Service, US Department of the Interior Bureau
of Indian Affairs. (Community, 2007) Its importance and
widespread use among fire professionals was a critical fac-
tor for choosing to visualize its simulation output. FARSITE
incorporates models of surface fire, crown fire, point-source
fire acceleration, spotting, and fuel moisture to calculate the
spread of fire of a landscape (Finney, 1998). These various
models are used to propagate vectors of fire parameter poly-
gons. Intervals of these expanding polygons are interpo-
lated to generate raster data that describe fire behavior. The
raster data outputs are stored in ESRI ascii files, of which
six of the outputs are of importance to visually reconstruct-
ing the wildfire scenario. Several of the inputs required to
run a FARSITE simulation are also crucial to visualizing the
wildfire scenario. This includes the digital elevation model
data used to render the terrain and the fuel load data used to
place vegetation.

Virtual Reality

Virtual Reality (VR) as it relates to this project is the use
of hardware and software technologies used to allow user
to view and interact with computer-simulated environments.
The goal of VR is to mentally immerse a user within these
environments through different types of sensory feedback.
Sight (visual), a type of sensory feedback important to this,
but in a broader sense feedback also includes aural (sound),
touch (haptic), and smell (olfactory). The broad definition
of VR includes the visualization of a 3D world on a desk-
top computer because this can and often creates a sense of
immersion. However, the specific definition used in this
project involves the visualization on stereoscopic displays

Figure 1. FARSITE Data Visualization

and interaction captured by tracking systems because these
technologies offer many advantages over visualization on a
desktop system. The source of these advantages is through
the support of depth cues not achievable on non immersive
systems.

Depth cues are the important information a viewer uses
to discern distances between objects in a scene. The more
depth cues a system can support the more potential for im-
mersion is possible. Monoscopic, stereoscopic, and motion
depth cues are important to VR systems. Monoscopic depth
cues are achievable on both immersive and desktops sys-
tems. Monoscopic depth cues can be seen in a single static
image of a scene. These are the depth cues, which can be
drawn from image features such as size, shading, and oc-
clusions. Stereoscopic image depth cues are the differences
determined between the images obtained by each eye (left
and right images). Motion depth cues can be seen when
a viewer changes the relative position between them and an
object. The viewer can gauge the distance of an object based
on how fast an object passes by when they change perspec-
tive (closer objects appear to move faster than farther ones).
A 3D desktop environment is only able to provide mono-
scopic depth cues, but an immersive system with stereo-
scopic displays and head tracking can simulate all depth
cues discussed. The addition of these depth cues allows for
an experience closer to reality, making such an environment
suitable for training applications.

Immersive Hardware Systems

Multi-screen display systems require specialized hardware
unlike HMDs, which can use hardware similar to desktop
PCs. Multi-screen display systems require multiple graph-
ics pipes to keep real-time frame rates. The goal is to keep
performance independent of the number of screens a system
contains. A 6-wall system should have comparable perfor-
mance with a 4-wall system if driven by similar hardware.
Two configurations exist for achieving this goal: The first is
a shared memory system with multiple graphics pipes and
the second, more recent, is provided by cluster-based sys-
tems. Shared memory systems support a single large mem-
ory image across all processors. On these systems a process
is used to render each screen independently and one to many



processes are used to update the simulation. Rendering each
screen in parallel offers performance, which is independent
of the number of screens in the system. Performance is fur-
ther increased by allowing the simulation and rendering to
run in parallel. The idea is to run the update and rendering
computation in parallel as much as possible, but because
they are accessing the same data, the update writing and the
rendering reading it must be locked. Cluster-based solutions
run the simulation and rendering code on a node for each
screen in parallel and a head node keeps the simulations in
sync. It is also possible on these systems to run the rendering
and simulation code in parallel for increased performance
if multiple processors are available. The shared memory
solution has the disadvantage of requiring expensive spe-
cialized hardware to support multiple graphics cards. High
performance, available commodity hardware can be used in
cluster-based systems with a fast interconnect.

VR Toolkits and Scene Graphs

VR systems contain specialized input and tracking hard-
ware, but also specialized screen and computational hard-
ware configurations making writing software for these sys-
tems a monumental task. The hardware configurations for
these systems can vary drastically between different organi-
zations requiring software to be changed for each of these
systems. VR toolkits attempt to abstract these differences
so that an application can be written once and run on all of
these systems. The largest difference between VR toolkits
consists of the type of input hardware and computational
configurations they support. William R. Sherman’s FreeVR
supports a variety of input and tracking systems such as
common desktop game pads all the way to high end track-
ing system such as InterSense’s IS-900, but only supports
shared memory systems. VRUI and VR Juggler supports
similar tracking hardware, but also support cluster-based
systems.

Scene graphs uses many optimizations to speed up ren-
dering. Many of these offer different types of culling which
quickly determine the visibility of geometry and reduce the
amount of triangles need to be rendered. Frustum culling
removes geometry outside of the viewers point of view. Oc-
clusion culling removes geometry which is not visible be-
cause it is behind other geometry in the scene. Small fea-
ture culling removes geometry which are smaller than a
particular amount of screen space in pixels. Scene graphs
also reduce the amount of expensive state changes such as
changing shaders, textures, and other rendering states. They
also often implement lazy state updating, which only up-
dates states that are not already set. Optimization traversal
usually run during a single time after initialization can opti-
mize a the scene graph data structure and the geometry con-
tained within. These optimizations can include organizing
the scene graph into an octtree for optimized frustum culling
or organizing triangle-based geometry into optimized trian-
gle strips.

Although there are many scene graphs, there are few
which are open source and suited to the development of
virtual reality applications. Support for multi-pipe render-

ing is the fundamental feature necessary for rendering on
our shared memory system. This support includes manage-
ment of OpenGL objects (Texture object, Vertex buffer ob-
ject, etc.) and, less importantly, a data protection mecha-
nism. Data protection is often very specific to a problem to
achieve high performance. Both OpenSG and OpenScene-
Graph are two scene graphs that meet this criteria. OpenSG
implements a system, which allow the scene graph to be
transparently shared across multiple machines in a cluster
or server processes on a single machine (details about the
implementation of this system can be found in these papers
(Reiners et al., 2002)). OpenSceneGraph does not have the
ability to shared the scene graph data structure, but must be
protected using an external locking mechanism or the ren-
dering and simulation update must be done sequentially.

Problem: Visualization of Large Wildfires

Frequently, wildfire can cover large landscapes many times
beyond the current computational and memory capacity of
current visualization hardware. Each graphical element
such as terrain, vegetation, and fire is associate with a large
dataset either describing the landscape or driving the sim-
ulation. Each one of these element has its own challenges
and performance bottlenecks. The digital elevation model
data and satellite image describe the terrain. The fuel load
data is used to construct the vegetation environment. The
wildfire is spread according to FARSITE outputs. Our goal
is to achieve real-time visualization of wildfire that cover
vast landscape each element much be managed to maintain
visual fidelity and run in real-time.

PROPOSED SOLUTION

FreeVR and OpenSceneGraph

We built our application on the open-source FreeVR and
OpenSceneGraph (OSG) libraries. The FreeVR virtual re-
ality integration library is a cross-display VR library with
built-in interfaces for many input and output devices. It
allows programmers to develop on a standard desktop ma-
chine, with inputs and display windows that simulate a pro-
jection or headbased immersive system. The application can
then run just about any type of VR system. The OpenScene-
Graph library is used to help with world rendering. OSG
allows 3D objects to be hierarchically organized within the
environment, and also provides a system that optimizes the
rendering through the use of various culling and sorting
techniques.

A considerable amount of our effort thus far has been in
writing the software interface between FreeVR and OSG.
FreeVR works naturally well with OpenGL and other lower
level graphical rendering libraries. However, when inter-
facing a VR integration library with a higher level render-
ing API there are many issues that need to be addressed,
in particular 1) dealing with the perspective matrices, 2)
shared memory allocation, 3) multiprocessing, and 4) win-
dowing and input device interfacing. A software interface
between FreeVR and the SGI Performer scene-graph library
already existed, so we felt confident that the similar OSG li-
brary would not be too difficult. The Performer library was



avoided due to its closed-nature, and expected lack of future
support.

While the OSG scene-graph system is somewhat based
on the efforts of the Performer library, there are two ma-
jor differences between the OSG implementation and Per-
former: 1) OSG does not double-buffer the scene-graph, re-
quiring the update traversal to avoid making changes to the
scene-graph while a cull traversal is in progress, and 2) be-
cause many people contribute new node types to the open-
source OSG, there is no strict enforcement of the rule pre-
venting scene-graph modifications taking place outside the
update traversal. Neither of these issues is typically a con-
cern for desktop applications running on a single CPU sys-
tem, but for multi-screen immersive systems, they are prob-
lematic. To address these implementation issues, we must
specifically avoid the modification of the scene-graph when
the multiplerenderings are taking place. FreeVR provides a
semaphore-based locking/barrier system that we used to ex-
clude writes to the scenegraph data during culling. Further-
more, when we discovered that some of the node-types (e.g.,
the particle system node) used the culling traversal to make
additional modifications to the scenegraph we had to specif-
ically insert extra locking code into those modules. The end
result is a system that works satisfactorily, but the addition
of each barrier results in lower frame rendering rates.

Initial Abstractions

To achieve high performance the amount display and simu-
lation computation that should be run in parallel should be
maximized. Abstraction of dynamic graphical elements into
several steps is necessary to achieve this goal. The process-
ing of each element is broken into three stages: 1) rendering,
the code which displays the element 2) updating the simu-
lation code 3) synchronizing and maintaining congruency
between the first steps. The first two steps run in parallel
working on their own copy of the data and the last step syn-
chronizes the two copies. This uses the assumptions that
the simulation code in step 2 is non-trivial and would re-
quire more time than syncing the data in step 3. OpenSG
provides a similar more generic mechanism; however, we
believe that a generic solution is not always possible and a
higher framerate is better with some specialization.

Scalable Rendering

Each element of the scene strives to minimize its impact on
the performance of the visualization. The goal was to sec-
tion off as much work to the graphical processing unit as
possible and leave the CPU time available for visualization
to other elements and simulation code. The following sys-
tems manage and minimize their uses of system resource
using level-of-detail algorithms specific to their data and vi-
sualization domain. The management of resources also al-
lows the system to view landscapes that are larger than the
available amount of system resources.

Terrain

In the first implementation of the terrain we chose to imple-
ment the Geometrical Mipmapping (de Boer, 2000) algo-
rithm. This enabled the system to visualize terrain datasets

much larger than brute-force methods; however, it required
that the entire dataset be loaded into memory. This algo-
rithm would result in a complex memory management sys-
tem. This method although reducing CPU usage over previ-
ous methods still could be improved. Ulrich’s Chunked Lod
algorithm (Ulrich, 2002) offered several advantages includ-
ing higher triangle throughput, low CPU usage, and implicit
memory management. This method, unlike Geometrical
Mipmapping, requires offline tessellation of the elevation
data. Figure 2 illustrates the tessellation of this approach.

Figure 2. Surface Tessellation

Vegetation

Similarly, vegetation is placed using an offline utility. This
saves the cost of having to place trees at runtime and this
saving allow the trees to be paged in from a file. The veg-
etation utility uses the fuel load data input from FARSITE
and an expert’s knowledge of the location to determine what
types of vegetation are native to a location and their posi-
tions. Pixel error is used to determine when trees should not
be displayed anymore. In general this is when the size of the
rendered vegetation is smaller than a few pixels of screen
space. Currently, trees are grouped into localized batches to
be sent to the video card for rendering. This increases the
amount of vegetation able to be rendered, but has the limit of
only being able to process vegetation in groups. Processing
vegetation individually allows the system to changed the ap-
pearance of that vegetation as it burned, but results in slow
rendering speeds. A compromise is to use instancing (Cor-
poration, 2004) to draw and process vegetation nearer to the
viewer and process distance trees using groups.

Wildfire

Visualization of the wildfire is driven directly from the FAR-
SITE simulation data using particle based fire and smoke.
Fire and other natural phenomenon have been successfully
rendered using high numbers of particles. Applications us-
ing high numbers of particles are not able to render in real-
time the use of sprites can significantly reduce the number
of particles with good visual results(Reeves, 1983; Feldman
et al., 2003). Sprite-based particle systems can accurately
and realistically represent fire with very few particles. This
is because localized behavior using an accurate offline simu-



Figure 3. Fire and Smoke

Figure 4. Fire Visualization in the Cave

lation and other factor such as color, position, emissiveness,
and animation frame can be controlled using a real-time fire
model (Wei et al., 2002; Tamas Umenhoffer, 2006; Nguyen,
2004). The visual complexity of particle systems can be re-
duced progressively as the distance increases from the user;
however, the physical properties of all particles must be cal-
culated. Reduction of rendered particles is often the bot-
tleneck because the amount of sprites necessary to render
a wildfire quickly reaches the maximum fillrate capacity of
the GPU.

RESULTS AND CONCLUSIONS

We have implemented the fire simulation system using the
solution decisions described in the previous section. Initial
responses from fire agencies have been positive. A screen
capture of a sample run showing trees, fire, and smoke is
shown in Figure 3. A larger picture of the simulation run-
ning in our four-sided Fakespace FLEX system is shown in
Figure 4.

Visualization of computational wildfire models has many
applications. Wildfire can spread over large amounts of area
producing equally large datasets. We have introduced meth-
ods that can manage and visualize these datasets interac-
tively. Abstraction of the rendering, simulation computa-
tion results in modular code that allows for the integration
and optimization of different implementations for render-
ing elements of a scene. They also take advantage of dif-

ferent hardware configurations used to drive virtual reality
systems.

FUTURE WORK

Increasing the accuracy and realism of visualizing wildfire
scenarios is a primary focus. This focus will specifically in-
volve the use of additional outputs from FARSITE including
flame length, rate of spread and crown fire data. The aim of
this endeavor is to improve the accuracy of the visualization
for the application of data analysis and model validation.
The realistic visual appearance of the fire and smoke is a
top priority for presenting wildfire scenarios.

Very little work has been spent on scaleable rendering
of realistic real-time fire and smoke with application to the
large scale required for wildfires. Current work only consid-
ers single or small scale fires over small objects. The com-
plexity of realistically visualizing a single fire can quickly
use the entirety of a computer system’s resources. We will
look to create a specialized LOD system that will further op-
timize our fire rendering system to support larger wildfires.

The software has been left extensible enough for use with
other wildfire simulation models. with the long-term goal
of using a real-time model. A real-time wildfire model has
many applications including training and predictable pre-
scribed burning. This will also necessitate the inclusion of
an enhanced user interface and formal analysis of usability.
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