Distributed Coevolutionary Genetic Algorithm
for Optimal Design of Ad Hoc Injection Networks

Grégoire Danoy, Pascal Bouvry

Faculty of Sciences, Technology and Communications

University of Luxembourg
Luxembourg
{gregoire.danoy, pascal.bouvry}@Quni.lu

Abstract— Multi-hop ad-hoc networks allow establish-
ing local groups of communicating devices in a self-
organizing way. However, in a global setting such net-
works fail to work properly due to network partitioning.
This means that users locally interacting could eventu-
ally spread and move away from each other and conse-
quently loose their connections. Considering that de-
vices are capable of communicating both locally (e.g.
using Wi-Fi or Bluetooth) and additionally with remote
devices (e.g. using GSM/UMTS links) the objective of
our work is to optimize the way of inter-linking multi-
ple network partitions. To this end we rely on small-
world network properties, that consist in using special
attributes like the clustering coefficient and the charac-
teristic path length. In this paper we investigate the use
of a distributed Cooperative Coevolutionary Genetic Al-
gorithm (CCGA) and compare its performance to a gen-
erational and a steady state genetic algorithm (genGa
and ssGA) for optimizing one instance of this topology
control problem and present initial evidence of its ca-
pacity to solve it.

I. INTRODUCTION

Multi-hop ad-hoc networks are networks composed
of communicating devices capable of spontaneously in-
terconnecting without any pre-existing infrastructure.
The most popular wireless networking technologies
available nowadays for building such networks are Blue-
tooth and IEEE802.11 (Wi-Fi). Devices in range to one
another communicate in a point-to-point fashion. But
such ad-hoc networks are intrinsically dynamic. Due
to their limited transmission range, such networks face
partitioning problems that penalizes their global effi-
ciency. In real scenarios, one or more additional remote
links have to be created to keep connected the different
clusters of locally interacting users that dynamically
move.

In this paper we consider the problem of optimizing
the addition of such long-range links (e.g. GSM, UMTS
or HSDPA) that are also called bypass links to inter-
link network partitions. To tackle this topology control
problem, we use small-world properties as indicators for
the good set of rules to maximize inter-link efficiency.
Small-world networks [1] feature a high clustering co-
efficient () while still retaining a small characteristic
path length (L). A small path length corresponds to
fewer hops, which is of importance for effective routing
mechanisms as well as for the overall communication
performance of the entire network. The clustering coef-
ficient represents the connectivity in the neighborhood
of each node and thus reflects the degree of informa-

Proceedings 21st European Conference on Modelling and Simulation

Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

Enrique Alba
Department of Computer Science
University of Malaga
Mélaga, Spain
eat@lcc.uma.es

tion dissemination each single node can achieve. This
finally motivates the objective of evoking small-world
properties in such settings.

In order to optimize those parameters (maximizing
v, minimizing L) and to minimize the number of re-
quired bypass links in the network, we relied on Evo-
lutionary Algorithms (EAs) [2] and more specifically
on a distributed Cooperative Coevolutionary Genetic
Algorithms (GA) [3] using Dafo, our distributed agent
framework for evolutionary optimization. CCGA has
already proved its ability for solving complex real-world
problems [4]. We start by investigating the kind of evo-
lution step more amenable to our problem by compar-
ing the performance of a distributed CCGA, to both
generational [5] and steady-state [6] GAs on a basic
instance of a partitioned ad-hoc network.

The remainder of this paper is organized as fol-
lows. In the next section we give a detailed view on
CCGA. Section IIT introduces Dafo, our distributed
agent framework for evolutionary optimization. Then
in Section IV, we provide details on the injection net-
work problem; we address as well several small-world
properties. In Section V presents the experiments and
analyzes the results. The last section contains our con-
clusions and perspectives.

II. COEVOLUTIONARY ALGORITHMS

As for the ”classical” genetic algorithm, the concept
of coevolutionary algorithms comes from the biologi-
cal observations [7]. Indeed, the nature is composed
of several species that coevolve. And instead of evolv-
ing a population of similar individuals (like in classical
Genetic Algorithms) representing a global solution, we
consider the coevolution of subpopulations of individu-
als representing specific parts of the global solution. In
the following subsections, we introduce CCGA, a Co-
operative Coevolutionary Genetic Algorithms [3]. This
algorithm was already applied (cf. [8]) for parallel and
distributed optimization of a number of test functions
known in the area of evolutionary computation. It was
demonstrated that coevolutionary algorithms outper-
form a sequential GA. In the present article, we con-
sider optimizing the Injection Networks problem by ap-
plying this cooperative coevolutionary algorithm.

Species 1

Population

Representative

Species 2

‘Species 3

Merge
Partial
Solutions

Population

evalyiated

Domain
Model

Fig. 1. Potter and De Jong’s CCGA architecture

Representative

Fitness

A. CCGA

Cooperative (also called symbiotic) coevolutionary
genetic algorithms (CCGA) involve a number of inde-
pendently evolving species which together form com-
plex structures, well-suited to solve a problem. The
fitness of an individual depends on its ability to col-
laborate with individuals from other species. In this
way, the evolutionary pressure stemming from the dif-
ficulty of the problem favors the development of coop-
erative strategies and individuals. Potter and DeJong
[3] developed a model in which a number of popula-
tions explore different decompositions of the problem.
In Potter’s system, each species represents a subcom-
ponent of a potential solution. Complete solutions are
obtained by assembling representative members of each
of the species (populations). The fitness of each indi-
vidual depends on the quality of (some of) the complete
solutions it participated in, thus measuring how well it
cooperates to solve the problem. The evolution of each
species is controlled by a separate, independent evolu-
tionary algorithm. In the initial generation (t=0) indi-
viduals from a given subpopulation are matched with
randomly chosen individuals from all other subpopu-
lations. A fitness for each individual is evaluated, and
the best individual in each subpopulation is found. The
process of cooperative coevolution starts form the next
generation (t=1). For this purpose, in each generation
a cycle of operations is repeated in a round-robin fash-
ion. Only one current subpopulation is active in a cycle,
while the other subpopulations are frozen. All individu-
als from the active subpopulation are matched with the
best values of frozen subpopulations. When the evolu-
tionary process is completed a composition of the best
individuals from each subpopulation represents a solu-
tion of a problem. Figure 1 shows the general architec-
ture of Potter’s cooperative coevolutionary framework,
and the way each evolutionary algorithm computes the
fitness of its individuals by combining them with se-
lected representatives from the other species. Potter’s
methods have also been used or extended by other re-
searchers, for instance Eriksson and Olsson [4] have
used a cooperative coevolutionary algorithm for inven-
tory control parameter optimization.

Algorithm 1: CCGA
gen=0
foreach speciess do
Pops(gen) = randomly initialized population
evaluate fitness of each individual Pop,(gen)
end
while termination condition = false do
gen = gen + 1
foreach speciess do
selectPops(gen) from Pops(gen — 1) based on
fithess
apply genetic operators tBops(gen)
evaluate fitness of each individual Pops(gen)
end
end

ITI. DISTRIBUTED AGENT-BASED EVOLUTIONARY
COMPUTATION

We consider the opportunity to embed our players
into software agents what is a convenient and elegant
way to benefit from existing software infrastructure.
Indeed using a multi-agent framework like Madkit [9]
leverages us of writing low-level agent interaction be-
haviors and highly simplifies the agents distribution.

Since its introduction in the 70’s, the agent technol-
ogy has become synonymous with advanced computer
software. The nature of real world problems has lead
to the evolution of multi-agent systems in Distributed
Artificial Intelligence (DAI). In this case each aspect of
a problem is under the control of an agent and all the
agents in the system interact to generate a global solu-
tion. In the proposed approach, the agent environment
is composed of other evolving agents. In this article we
choose Evolutionary Algorithms for modelling agents
intelligence and the concept of agents organization for
modelling agents interactions.

The concept of a ”computational agent” becomes in-
creasingly important in computer science, representing
a new level of abstraction for software design. Dis-
tributed artificial intelligence/multi-agent systems are
typically applied in two ways. In the first, the prob-
lem domain is itself distributed, e.g. telecommunica-
tions routing, and as such the multi-agent paradigm is
a natural "fit” since each aspect of the system can be
attributed to an agent. In the second, complex tasks
are divided into multi-aspect problems to allow for the
construction of a solution through the combination of
a number of simpler (in respect to the global task) in-
teracting agents. New issues arise when evolutionary
computation is applied to the multi-agent paradigm.
In these systems evolutionary algorithms must adapt
to dynamic problem spaces, where changes are caused
by the interactions of the agents in the environment of
the global system. Agents evolve in a dynamic environ-
ment composed of other agents.

The use of evolutionary computing techniques in sys-
tems containing many interacting agents/entities goes
back to the earliest days of experiments in machine in-
telligence. For example, Barricelli [10] used an abstract
ecological model to examine the evolution of complexes

of cooperative entities, based in the idea of ”symbio-
genesis”, the evolution of complexity by the bringing
together of previously autonomous entities. However,
nowadays most of coevolutionary computing consists
of systems in which agents roles are predetermined
as being either competitive or cooperative or a mix-
ture of the two, i.e. agents are assigned particular
tasks within the global system. Distributed problem
solving by a multi-agent system represents a promis-
ing approach for solving complex computational prob-
lems. An agent-oriented problem-solving environment
increases efficiency, capability and genericity by em-
ploying a set of agents communicating and co-operating
to achieve their goals, i.e. that is to find local solutions
that satisfy both their hard and soft constraints.

Our solution consists in providing a meta-level in
the form of a distributed agent framework dedicated
to evolutionary optimization including coevolutionary
genetic algorithms. Modelling the algorithm with a
multi-agent system makes explicit resolution strategy
(i.e. the algorithm interaction graph) by using orga-
nizational models explicitly representing the roles and
the interactions that are allowed for each agent. Us-
ing the agent technology also allows us to take benefit
from existing multi-agent platforms and methodologies.
The deployment and the distribution of the algorithm
is thus ensured.

A. Framework Architecture

By providing a minimum of Java code concerning his
optimization problem and a simple XML configuration
file, the designer is capable of optimizing its function
using various GAs that are generational GA, steady
state GA and CCGA (that can be distributed). The
XML file is used as an input file by the Organizer Agent
for specifying information about the genetic algorithm,
its parameters and information concerning the distri-
bution if required.

Figure 2 represents a simple example of a distributed
instance of Dafo on 3 different computers. Computers
2 and 3 run a Slave Scheduler Agent that first sends
message I (which contains the IP address of Computer
1) to the Communicator Agent running in the Madkit
platform’s kernel in order to connect to Computer 1
(represented by message 2). As soon as all Commu-
nicators have established a connection with the Com-
municator of Computer 1, one agent can communicate
with any other agent, no matter on which computer
it is (i.e. the computers are fully connected). Con-
sequently, after this connection, all the other agents
can communicate in a fully transparent way. Once all
nodes are connected, the Master Scheduler sends mes-
sage & that contains parameters (topology, population
size, crossover operator, etc.) that will be used to in-
stantiate the FEwvolutionary Agents (running a Simple
GA), as represented by message 4. The Fwvolutionary
Agents can freely communicate with each other accord-
ing to the CCGA architecture (as presented in Figure
1 and will send their partial solutions (message 4) to
the Observer Agent that is in charge of merging those

Computer 1 : Computer 2 Computer 3

—————————— e e)

Observer —— 5 —

Master Slave
Scheduler 3 Scheduler

i 1

Dafo
Framework

Slave

Madkit
_ Platirom
N
@

Fig. 2. Distributed Dafo Architecture

results and provide as output the global solution found.

Using Dafo makes juggling with the different versions
of GAs easy. For instance, to use CCGA in distributed
mode, it is sufficient to add the IP address and the
port of the Node 1 and the total number of nodes in
the configuration file.

IV. THE PROBLEM

This section introduces the injection network opti-
mization problem using small-world properties. We
first provide the reader with a definition of the injection
network concept. Next we give details on what defines
a small-world graph in this context.

A. Injection Networks

Due to several difficult (and practical) challenges
that are inherent to mobile multi-hop ad-hoc networks,
some past work advises the utilization of hybrid wire-
less networks, where a fixed infrastructure supports a
higher connectivity among several clusters of ad hoc
networks and avoids network partitioning [11] [12] [13].
However such a hybrid wireless network is often not
feasible, because of economical and implementation is-
sues. Alternatively, an infrastructureless setting is of
interest where problems of restricted geographical re-
gions are avoided. Helmy [14] focuses on long-range
links for which the objective is to reduce the number of
queries during the search for a given target node. An-
other approach introduces base stations to increase con-
nectivity in ad hoc networks [15], thus realizing global
reachability. Watts [1] introduces a spatially defined
link, called global edge, with length-scaling properties
to include spatial models in his investigations. Some
approaches extend standard ad-hoc network models, by
considering two different transmission ranges [16] [17],
e.g. small distance Bluetooth links along with higher
distance Wi-Fi links. Our initial motivation for the
current investigation is based on the assumption that
technologies like Bluetooth and Wi-Fi can be used to
create ad-hoc communication links within the transmis-
sion range at no charge. Additional cellular network
links such as GSM/UMTS/HSDPA might be employed
by appropriately equipped devices to establish supple-

mentary communication links between two arbitrary
devices. These links, however, will induce additional
costs. Furthermore, we propose to implement that in
a transparent way for the end user, i.e. linking in a
mobile multi-hop ad-hoc network should be managed
without explicit human interaction (self-organization).
In summary, different approaches exist to augment ad-
hoc networks with additional links. Different reasons
exist for this need on increasing connectivity: e.g. to
gain bandwidth between particular devices, and also to
inter-link multiple ad-hoc network partitions. Conse-
quently, we introduce the notion of bypass links.

Definition 1 (Watts) The spatial neighborhood 'y, (v)
of a node v is the set of nodes within transmission range

tr of v.

Definition 2: A bypass link is a link (u,v) between
nodes u and v with u ¢ T',.(v).

) 200 400 600 800 1000 1200 1400 1600

1600

1400

1200

1000

800

600

400

200

Fig. 3. Example of Injection Network

That is, a bypass link is a link which connects two
nodes that are not in the same spatial neighborhood.
Please note that elements of I',.(v) do not necessarily
have to be connected to v in real settings. Practically,
a bypass link can be built by using a cellular network
as well as by using access points. Nevertheless, in our
model a bypass link is counted as a single hop, thus
simplifying the real topology behind that bypass link.
Since we can dynamically control such bypass links, the
network topology basically can be biased as needed, re-
sulting in a topology control problem. Thus, this ap-
proach does not need to consider mobility models as
mobility can be compensated via the bypass links. The
injection communication paradigm is based on estab-
lishing bypass links between carefully selected devices.
Herrmann et al. [18] called these dedicated communi-
cation points hub nodes. Depending on the overall ob-
jective, the selection of such devices can be driven by
different factors, like for instance to obtain a high local
clustering coefficient around the hub, or devices show-
ing certain attributes (e.g. information available or ser-
vices offered on a particular device). These dedicated

devices used for establishing bypass links are called in-
jection points. For self-organizing communication net-
works based on bypass links and injections points as
described before we use the term injection networks.

Definition 8: Two nodes u and v are called injection
points if a bypass link (u,v) exists between nodes u and
.

In order to study the small-world properties of such
hybrid networks, we had to rely on some ad-hoc net-
work simulator. In our case we used Madhoc [19],
an application-level network simulator dedicated to the
simulation of mobile ad hoc networks. The main mo-
tivation for using Madhoc is its ability to simulate hy-
brid networks, i.e. mixing different technologies (e.g.
bluetooth/Wi-Fi for local connections and UMTS for
long distance calls), and its graphical and batch modes
of visualization.

B. Small-Worlds

Small-world networks [1] are a class of random graphs
that exhibit two main characteristics: a small charac-
teristic path length (L) and a high clustering coefficient
(7). A formal definition of these two graph measures is
given below:

Definition 4 (Watts) The local clustering coefficient
~ of one node v with k, neighbors is

— [E@I

Yo = (kz,u) -
where |E(I'7)| is the number of links in the relational
neighborhood of v and (kQ) is the number of possible
links. The clustering coefficient is the average local
clustering coefficient for all nodes of a network.

For example, in Figure 4, node «a is connected to three
nodes b, d and e. The maximum number of possible
edges among these three nodes is three. The graph
shows that only two out of those three possible edges
exist (between b-e and d-e). The edge b-d is missing. So
the clustering coefficient for node ais 2/3 or about 0.67.
For Figure 4, this value is 0.67. In a physical sense, the
clustering coefficient defines the extent to which nodes
in the graph tend to form closely-knit groups that have
many edges connecting each other in the group, but
very few edges leading out of the group.

Definition 5 (Watts) The shortest path length d,
connecting each node v € V(N) of a network N to all
other nodes is d(v,j) ¥ j € V(N). The characteristic path
length L is the median of all shortest paths.

The characteristic path length is a measure of the
number of hops necessary to reach any node in the net-
work from any other node. This indicates the degree of
separation or connectivity between nodes in the graph.
In Figure 4, node a can reach three of the nodes (b, d
and e) through just one hop and the fourth node (c)

via two hops. So the characteristic path length for this
node is:

__ HopsToReachAllNodes __ (3x1)+(1x2) __
L(a’) - NumberO f Nodes - 4 =125

The characteristic path length (L) for the entire
graph, which is the mean of the characteristic path
length of all nodes, is equal to 1.2. The challenging as-

a d

b c

Fig. 4. Graph with v = 0.67 and L = 1.2

pect in using small-world properties is that small-world
networks combine the advantages of regular networks
(high clustering coefficient) with the advantages of ran-
dom networks (low characteristic path length).

C. Solution Encoding

Solution encoding is a major issue in this kind of algo-
rithms since it will determine the choice of the genetic
operators applied for exploring the search space. We
have used a binary encoding of the solution in which
each gene encodes an integer on 15 bits, that corre-
sponds to one possible bypass link in the half-matrix of
all possible links. For instance, if the maximum num-
ber of bypass links fixed a priori for the network that
is optimized is 10, then for the genGA and the ssGA a
chromosome will have 10 genes of 15 bits. Concerning
CCGA, it will depend on the number of subpopulations
used, if for instance CCGA is used with 5 subpopula-
tions then one chromosome will have % = 2 genes of 15
bits. Figure 5 shows the example of a chromosome com-
posed of 2 genes (thus the maximum number of created
bypass links is 2) on a network of 5 stations. The 5x5
matrix represents all the possible links in the network
including the already existing local links in the network
(thus of the existing Wi-Fi connections) and the impos-
sible links (i.e. links between two similar stations like
station 1 - station 1) that are represented as shaded
cells in the matrix (cells number 1, 7, 13, 19 and 25).
In the example showed in Figure 5, the first gene (cir-
cled) with the integer value 3 stands for the connection
between station 1 and station 3 in the corresponding
matrix (also circled).

D. Fitness Function

As stated before we have used the Madhoc simulator
to experiment injection networks optimization. Indeed,
Madhoc allows to simulate and to visualize hybrid ad-
hoc networks (using Wi-Fi, bluetooth, GSM, UMTS),
to evaluate small world measures on them and to calcu-
late the number of partitions in the network. In order

Binary ,00000000000011
Encoding

A
Chromosome

First Station

Network

Bypass Link m m m m =

Second Station

17

21| 22| 23

Fig. 5. Solution encoding example

to assign a fitness to the candidate solutions (i.e. sets
of possible bypass links) of our algorithms, we use a
unique cost function F which combines the two small
world measures (L and) and the number of created
bypass links. When computing the fitness function, we
first test if the global network is connected. Indeed,
since we use small-world properties as indicators, the
network has to be connected in order to compute the
characteristic path length (L) on the global network.
Thus, if the optimized network is not connected, due to
too few or not efficiently placed bypass links, the fitness
value is a weighted term of the number of partitions in
the network. On the contrary, if the network is con-
nected, the fitness value is a linear combination of the
small world measures (clustering coefficient and char-
acteristic path length) and of the difference between
the number of bypass links and the maximum number
allowed. We look for maximizing the clustering coef-
ficient and minimizing both characteristic path length
and number of bypass links. Using this fitness func-
tion we thus have a maximization problem as defined
in Algorithm IV-D.

Algorithm 1: Fitness Function

if Graph connected then
F=z=a*~+p3*(L-1)+ ¢ * (bypassLinks -
maxBypassLinks)
else
| fitness = 0.1 * numberOfPartitions
end

With weights experimentally defined:

a=1

8 =1 /(numberOfNodes -1)

6 = 2 / (numberOfNodes * (numberOfNodes-1))

bypassLinks is the number of bypass links created
in the simulated network by one solution, maxBy-
passLinks (defined a priori) is the maximum number
of bypass links that can be created in the network,
numberOfPartitions is the number of remaining parti-
tions in the whole network after the addition of bypass
links and numberOfNodes is the number of nodes in the
global network.

V. EXPERIMENTATIONS

This section presents the results obtained on the in-
jection network optimization problem using the dis-
tributed CCGA compared to the results given by the
generational GA (genGA) and the steady state GA
(ssGA) . We first describe the parameters used for the
three genetic algorithm. Next, the configuration of the
network simulator is introduced and, finally the results
obtained using the CCGA, genGA and ssGA are ana-
lyzed and compared.

The algorithms have been implemented in Java and
tested on a single node for genGA, ssGA and CCGA
and on 6 cluster-nodes for dCCGA (distributed CCGA)
all nodes having a 3.7 GHz Xeon processor with 16 GB
of RAM, running Debian Linux (with kernel 2.6.9-22)
and Java version 1.5.0_05.

A. GA Parameterization

120

100

80

40

20

@ G
Cluster 3

Cluster 2

0

Fig. 6. Studied Networks with 3 clusters

In table I, we show the parameters used for genGA,
ssGA, CCGA and dCCGA.

(d)CCGA was tested with 5 subpopulations. For all
algorithms we used a randomly generated population
composed of 100 individuals. The selection operator
is a binary tournament selection (two individuals are
selected and the fittest is copied into the intermedi-
ate population). The crossover operator is uniform
crossover used with probability p.=0.8. The mutation
operator is bit flip mutation in which each allele of the
chromosome is flipped with probability p,,= 1/chro-
mosome_length. Concerning the generational GA and
(d)CCGA we have added elitism: the best individual
found in one generation is thus kept for the next gen-
eration.

TABLE I: Parameters used for genGA, ssGA, and (d)CCGA

Number of Subpopulations 5 (only for (d)CCGA)
100 individuals

50,000 function evaluations

(Sub)Population size
Termination Condition
Selection Binary Tournament
Uniform, p.=0.8
Mutation operator bit flip, pm = 1/chrom_length

Elitism 1 individual (not for ssGA)

Crossover operator

B. Madhoc Configuration

As stated before, the Madhoc simulator was used for
managing the complex scenario posed by this injection
network problem. We have defined a squared simula-
tion area of 0.2 km? and tested with a density of 210
devices per squared kilometer. Each device is equipped
with both Wi-Fi (802.11b) and UMTS technologies.
The coverage radius of all mobile devices ranges be-
tween 20 and 40 meters in case of Wi-Fi. The studied
network, as presented in Figure 6, here represents a
snapshot of a mobile network in the moment in which
a single set of users moved away from each other creat-
ing the clusters of terminals, that were obtained using
the graphical mode of Madhoc. Used as example, the
network with 3 clusters (center of Fig. 6) consists in 42
stations located in three partitions, the first partition
has 38 nodes, the second one 3, and the third one has

a single node. The number of possible connections in

this 3-clusters network is %fw = 882, the

number of existing Wi-Fi connections in this network
is 116, thus the number of possible bypass links is 882-
116 = 766. The clusters are selected purposely to be
different and thus challenging.

TABLE II: Parameterization used in Madhoc

Surface 0.2 km?
Node Density 210 / km?
Number of Nodes 42
Partitions 3
Possible Links 766
C. Results
0.76
genGA ——
SSGA
074 | -]
072 |]
07|]
g oesf S]
5 SSGA
2 066 []
g i [—
I oe4p —— genGA |
062 | yd |
06|]
'
{
058 |-]
0.56 ! ‘ ‘ ‘
0 10000 20000 30000 40000 50000

Function Evaluations

Fig. 7. Average results of 30 runs using genGA, ssGA and CCGA

Each result presented hereafter is the average ob-
tained on 30 independent runs. In order to establish
the statistical significance of the means, we first have
checked that the data is normally distributed using the
Kolmogorov-Smirnov test. If so, we then perform an
ANOVA test so as to compare the means otherwise we
use a Kruskal-Wallis test [20].

In Table IIT we show the averaged results for all 30
runs for each algorithm. As it can be seen in Table
III, using a CCGA provides better results than both
genGA and ssGA, genGA being the least performing

TABLE III: Results of all experiments

Network GA Crossover Time Result
genGA Uniform 58min 12s 0.6534
ssGA Uniform 70min Os 0.6764

3 Clusters
CCGA Uniform 138min 36s | 0.6971
dCCGA Uniform 98min 55s 0.6971

one (with statistical confidence). This can be graphi-
cally observed in Figure 7, as well as the better con-
vergence speed of CCGA compared to the other two
GAs. As expected the computational time required for
dCCGA is lower than for CCGA thanks to the distri-
bution of the subpopulations, however it is still higher
than panmictic GAs like genGA and ssGA due to the
synchronization between subpopulation induced by the
CCGA algorithm.

VI. CONCLUSION AND FUTURE WORKS

The results presented in this paper belong to an on-
going research on the injection network optimization
problem using distributed coevolutionary genetic al-
gorithms. Dafo, our distributed agent framework for
evolutionary optimization, including coevolutionary ge-
netic algorithms has been presented. The concept of
injection network has been introduced as well as the
utilization of small-world properties as indicators for
inter-linking network partitions.

Experiments have been conducted using an ad-hoc
network simulator on one network scenario composed of
42 stations. Three different GAs, generational, steady-
state and cooperative coevolutionary, have been used,
each one was tested using uniform crossover. The best
result experimentally found on this problem, both in
terms of best result found and convergence speed, was
using the distributed CCGA. Initial evidence of the ca-
pacity of GAs and especially of coevolutionary GAs for
solving this problem was also provided in this article.

As a future work, we plan to use some other coevolu-
tionary GAs such as LCGA (Loosely Coupled Genetic
Algorithm) to solve this problem. Our next research
will also focus on the optimization of dynamic injection
networks in which nodes move while optimum injection
points are computed at the same time and thus bypass
links have to be continuously created and destroyed in
order to keep the network unpartitioned.

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Ministry
of Science and Technology and FEDER under contract TIN2005-
08818-C04-01 (OPLINK project) and by the European CELTIC
project (CARLINK).

REFERENCES

[1] D. J. Watts, Small Worlds — The Dynamics of Networks
between Order and Randomness. Princeton, New Jersey:
Princeton University Press, 1999.

[2] T. Back, D. B. Fogel, and Z. Michalewicz, Eds., Handbook
of Evolutionary Computation. Bristol, UK, UK: IOP Pub-
lishing Ltd., 1997.

[3] M. A. Potter and K. De Jong, “A cooperative coevolution-
ary approach to function optimization,” in Parallel Problem

(4]

(5]

[6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17)

(18]

(19]

20]

Solving from Nature — PPSN III.
pp. 249-257.

R. Eriksson and B. Olsson, “Cooperative coevolution in in-
ventory control optimisation,” in Proc. of the Third Inter-
national Conference on Artificial Neural Networks and Ge-
netic Algorithms. University of East Anglia, Norwich, UK:
Springer-Verlag, 1997.

D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1989.

D. Whitley and J. Kauth, “GENITOR: A Different Ge-
netic Algorithm,” in Proceedings of the Rocky Mountain
Colorado, on Artificial Intelligence, 1988, pp. 118-130.

J. Paredis, “Coevolutionary life-time learning,” in Parallel
Problem Solving from Nature — PPSN IV. Berlin: Springer,
1996, pp. 72-80.

F. Seredynski, A. Y. Zomaya, and P. Bouvry, “Function op-
timization with coevolutionary algorithms,” in Proc. of the
International Intelligent Information Processing and Web
Mining Conference. Poland: Springer, 2003.

O. Gutknecht and J. Ferber, “Madkit: a generic multi-agent
platform,” in Proc. of the fourth international conference on
Autonomous agents. ACM Press, 2000, pp. 78-79.

N. A. Barricelli, “Symbiogenetic evolution processes realized
by artificial methods,” Methodos, no. 9, pp. 35-36, 1957.
P. Ratanchandani and R. Kravets, “A Hybrid Approach to
Internet Connectivity for Mobile Ad Hoc Networks,” in Pro-
ceedings of IEEE WCNC, 2003.

A. Andronache, M. R. Brust, and S. Rothkugel, “Multime-
dia Content Distribution in Hybrid Wireless Networks Using
Weighted Clustering,” in WMuNeP ’06: Proceedings of the
2nd ACM international workshop on Wireless Multimedia
Networking and Performance Modeling. New York, NY,
USA: ACM Press, 2006, pp. 1-10.

N. I. T. Fujiwara and T. Watanabe, “A Hybrid Wireless
Network Enhanced with Multihopping for Emergency Com-
munications,” in ICC ’04: Proceedings of the IEEE Inter-
national Conference on Communications, 2004, pp. 4177—
4181.

A. Helmy, “Small Large-Scale Wireless Networks: Mobility-
Assisted Resource Discovery,” 2002.

O. Dousse, P. Thiran, and M. Hasler, “Connectivity in Ad-
Hoc and Hybrid Networks,” in INFOCOM, 2002.

D. Cavalcanti, D. Agrawal, J. Kelner, and D. F. H. Sadok,
“Exploiting the Small-World Effect to Increase Connectivity
in Wireless Ad Hoc Networks,” in ICT, ser. Lecture Notes
in Computer Science, J. N. de Souza, P. Dini, and P. Lorenz,
Eds., vol. 3124. Springer, 2004, pp. 388—-393.

J. Li, C. Blake, D. S. D. Couto, H. I. Lee, and R. Morris,
“Capacity of Ad Hoc Wireless Networks,” in MobiCom ’01:
Proceedings of the 7th annual international conference on
Mobile Computing and Networking. New York, NY, USA:
ACM Press, 2001, pp. 61-69.

K. Herrmann and K. Geihs, “Self-Organization in Mobile
Ad hoc Networks based on the Dynamics of Interaction,”
Erlangen, Germany, 2003.

L. Hogie, P. Bouvry, F. Guinand, G. Danoy, and E. Alba,
“Simulating Realistic Mobility Models for Large Het-
erogeneous MANETS,” in Demo proceeding of the 9th
ACM/IEEE International Symposium on Modeling, Anal-
ysis and Simulation of Wireless and Mobile Systems
(MSWIM’06). IEEE, October 2006.

E. Alba, Parallel Metaheuristics: A New Class of Algo-
rithms. Wiley-Interscience, 2005.

Berlin: Springer, 1994,

Grégoire Danoy received the Indus-
trial Engineer Degree in Computer Sci-
ence from Luxembourg University of Ap-
plied Sciences in 2003 and the M.S. de-
gree in Web Intelligence from Ecole des
Mines of Saint-Etienne, France, in 2004.
He is currently working toward the PhD
degree with the University of Luxembourg
and the Ecole des Mines of Saint-Etienne
(France). His current research interests
include nature inspired algorithms, multi-

agent systems, dynamic optimization.

