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Abstract

In this paper we present a framework for writing exact
optimization algorithms distributed on a grid environment.
It presents a new way of reusing design and code for multi-
objective optimization methods in conjunction with assis-
tant methods. These kinds of methods are used mainly for
reducing the search space, or for using a mono-objective
method for solving a multi-objective problem, or both. We
use a master-slave paradigm for the parallelization of the
work units and a branch and bound algorithm as a default
assistant method. The branch and bound algorithm is also
distributed on grids which allows a two level parallelism for
the optimization. We show how the different objects are cod-
ified in order to allow less communication while at the same
time maintaining the reusability requirement. A sample in-
stantiation of the framework is presented using the Parallel
Partitioning Method (PPM). Preliminary results are shown
using different Flowshop instances.
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1 Introduction

There exist a grand variety of frameworks for exact
optimization. Most of these frameworks use a branch
and bound algorithm to perform the search, or facilitate
the programmer in writing branch and bound-based algo-
rithms. Examples of such frameworks are: PUBB [19],
BOB++ [2], PPBB [16], PICO [7], MALLBA [4],
ZRAM [1], ALPS [20], MW Framework [8], Sym-
phony [14]. There is a good taxonomy of parallel software
frameworks and an overview of the implementation of
parallel branch and bound algorithms and frameworks in
[15].

In multi-objective optimization there exist different

methods or strategies to optimize without searching in
all the search space. Examples of methods which use
those strategies are the Two Phases Method (TPM)[17],
the Parallel Partitioning Method (PPM)[9] and the
epsilon-constrained method[18]. These methods have the
particularity of optimizing using a strategy. This strategy
is used, in order to reduce the search space, for using a
mono-objective method for solving the multi-objective
problem, or both. In order to do this, it uses another method
(an assistant method) to optimize different subspaces.
Hence, each time one of these methods is written, a new
implementation of the assistant method has to be written
or at least, the connection between the strategy and the
method has to be built. At the moment, to the best of our
knowledge, there are no distributed frameworks which
address directly the use of methods for multi-objective
optimization by the assistance of another method. Our
framework addresses these kinds of problems using a
default assistant method and at the same time being
distributed on a grid environment. In our work, we will
be having a default implementation using as an assistant
method the branch and bound algorithm developed in [12].
This algorithm can be used with different problems, and
accepts multi-objective and mono-objective optimization.
It has proven to be very efficient and highly scalable on a
grid environment [12].

The rest of the paper is organized as follows: Section 2
presents the design requirements and objectives and the
overall architecture of the proposed framework from design
and implementation points of view. Section 3 describes the
application of the framework for solving the bi-objective
Flow-Shop scheduling problem and its experimentation on
the Grid5000 French experimental grid. In Section 4, the
conclusion and perspectives of the work are drawn.
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2 The Framework

Usually, a family of related applications has many of
their functionality similar, if not the same. A framework
addresses this aspect by providing abstract representations
of classes and implements invariant parts for the different
applications in a family. More specifically, "A framework is
a set of abstract classes and components that together com-
prises an abstract design solution for a family of related ap-
plications" [10].

2.1 Design requirements and objectives

A framework lets us make different applications within
a domain of functionality. In order to be able to do that,
it is needed that we specifically define the domain. The
functionality the framework is expected to satisfy is called
functional requirements. There are also quality criteria
which the framework should try to satisfy and they are
called non-functional requirements.

Functional requirements

• The framework should facilitate the implementation of
different exact optimization methods for exploring the
search space.

• There should provide parallel support for the different
parallel exact optimization methods that need it such
as TPM or PPM.

• It should be able to distribute the provided parallelism
on grids.

Non-functional requirements

• Reusability: the code and design solutions should be
reusable.

• Modifiability: the development of new methods should
be done in a clear way concerning the underlying opti-
mization method assistant and parallel behavior. That
is, the programmer should have to write only the part
of the new method.

• Flexibility: the framework should be easily extended
to provide the programmer with the ability to easily
instantiate different optimization domains. That is, us-
ing different objectives, restrictions or models for the
optimization.

• Extensibility: It should be easily extended in order to
support new parallel or distributed technologies with-
out the need of changing the code for the optimization
algorithms or search strategies.

• Performance: it should provide by default with high-
performance optimization algorithms so that the users
can focus only on the details concerning their new
search strategy for optimization. The distributed and
parallel requirements should be met without degrading
the performance of the system.

• Scalability: As the framework should be distributed on
a grid environment where a large number of processors
may be available, it is important that the performance
is improved as the number of processors used grows.

2.2 System Architecture

In order to satisfy the requirements above, we implement
different design decisions going from an architecture point
of view to a design point of view. The architecture lets us
address most of the functional and non functional require-
ments by providing a general view of the interactions of the
different modules inside the framework without the need
of a detailed specification. The design lets us see more in
detail how the framework will be used and instantiated.

Concerning the goals for modifiability and extensibility,
we think that working with a layers style makes a strong
separation of functionality so that the change in one of the
main features would conclude in changing as less code as
possible or nothing at all for the other layers. Concerning
the functional requirement for parallel search algorithms,
we provide with a layer that implements the functions for
optimization using asynchronous communication so that
each call to those functions doesn’t stop the flow of the
main structure of the optimization method. The goal of
distributing the work on a grid environment is addressed
using components with distributed capabilities, that is, they
should be serialized (codified) and deserialized (decodified)
in order to be sent through the grid. At the same time,
with the purpose of making the framework as less attached
as possible to any technology, this is implemented in a
different layer. The framework provides with a default
implementation of this layer and we think making it work
with the Message Passign Interface (MPI) is a good option
since the programs can be deployed on a cluster or on a
grid environment.

The first design decision we take is the separation of the
main method for exploring in the search space (i.e.: TPM,
epsilon-constrained, PPM) from the solver that performs
the optimization within a particular space (i.e. B&B). The
StrategySolver layer has the responsibility of optimizing
the space in which to explore for the solutions. In order to
find these solutions, it uses the OptimizationSolver layer
which responsibility is the optimization of an objective
function inside a given space. In this way, each time a new



algorithm is written, there is no need to make any changes
to the optimization code.

As it was previously said, the StrategySolver should be
able to work in parallel for some of its functions. This is
achieved by making the OptimizationSolver able to receive
and work with asynchronous calls. So, each time the
StrategySolver has to perform different optimization tasks
in parallel, it calls the OptimizationSolver as many times as
needed.

Concerning the distribution of the paralellism there
is another layer that performs the distributed calls so
that the optimization layer may take place in different
machines. By default, this is done using the MPI layer. The
architectural view is represented in Figure 1. In this view
all the layers of the MPI API are not shown and depend
on the implementation. However, as it was previously said
in the extensibility requirement, this layer can be changed
without the need of changing the implementation of either
the strategy or the optimization algorithm used, as long as
it conforms to the same interfaces.

A Sequence Diagram used to show the actions used dur-
ing the distribution of optimization requests to the different
slaves is shown in Figure 2. In this example, we can see
the strategy (StrategySolver) calls asynchronously (the flow
of the method is not interrupted) the master (MasterMPI-
Solver) two times to optimize . At each time, the Mas-
terMPISolver calls one different Slave and after that it re-
mains waiting for the answer in the method getSolutions().
Then, each of the slaves call its own solver which would ac-
tually perform the optimization. After the internal solvers
finish optimizing, each slave sends the results to the Master.
When all the results arrive the master returns the answers
to the strategy method. In this Figure, in order to make it
readable, we hide the part of the codification of the objects
that where distributed. The codification will be shown later.

2.3 Grid-based implementation

A summary of the main classes used for the optimization
process is represented in Figure 3. The class Optimiza-
tionSolver is the abstract class used to represent the main
method and the assistant method (i.e. the branch and
bound). This solver has a method to perform optimization
with Objectives, Restrictions and InitialSolutions. Each of
these components is represented with a different class. The
Objective class has a method which returns the evaluation
of that solution for a specified objective. The Restriction
class has also an evaluation method and it also works
with solutions, but returns a boolean value indicating
whether the solution is inside the feasible space or not.

The initialSolutions can be used to feed the solver or the
strategy with initial solutions for optimizing the search.
This is also used in some of the strategies as we shall see
later in the example of PPM.

For the distribution part, we implement a wrapper for
the OptimizationSolver which acts as a proxy, redirecting
the different asynchronous calls to different machines. This
wrapper is represented in both classes: MasterMPISolver
and SlaveMPISolver. They use a master-worker paradigm
to distribute the work. The Master is connected to the
main method or strategy and the Solver is connected
to the assistant method. In our default implementation
using the branch and bound proposed in [12], the assistant
method is also distributed on the grid so this generates a
two level paralellism and distribution which we believe
can be helpful in some of the optimization methods. The
fact that the optimization method, the assistant method
and the distributed capabilities use the same interface will
let us compose different types of interactions between
them to achieve different results, through a composition of
strategies and methods.

In order for the different classes to be distributed, they
have to be codified and decodified. Each class that is
distributed codifies and decodifies itself.Depending on the
codification used, this may greatly optimize the transfer
of information since only the necessary details of each of
the objects would be transmitted. The way to codify and
decodify each object is implemented using the basic types
used in c++. Each codification is made using a Packet
object which will later be distributed. The Packet class
lets us hide the distributed technology used to codify the
objects. This is done in order to separate the distributed
technology from the rest of the framework (Figure 4).
In this way, reusing the codification of the objects when
changing the distributed technology would conclude in
no modification to the serializable classes. In our default
implementation of the framework there exist the MPIPacket
class that implements its methods.

As an example for the codification, each bound re-
striction is represented by an objective (in this case as an
integer) and a lower and an upper bound. Therefore, each
time a BoundRestriction is sent, we would only have to
send one integer and two double values. This should greatly
optimize data transfers since only the necessary data is sent.

Finally, in order to use the framework on a grid environ-
ment, we use MPICH-G2 [13], a grid-enabled implemen-
tation of MPI which uses the grid services provided by the
Globus Toolkit. In this way, we can execute our framework
in different clusters with a wide range of heterogeneus pro-



Figure 1. Architectural view using the distributed implementation of MPI

Figure 2. Sequence Diagram showing the distribution of requests

Figure 3. Classes used during the optimization process



Figure 4. Packet class used for the codifica-
tion

cessors.

3 Application to the Bi-objective Flow-Shop
Problem

3.1 Flow-Shop problem formulation

The Flow-Shop problem is one of the numerous
scheduling problems [3]. It has been widely studied in the
literature. The problem consists in scheduling n jobs (i = 1
.. n) on m machines (j = 1 .. m). In this paper, we focus on
the permutation Flow-Shop where the jobs are scheduled
in the same order in all the machines. The two considered
objectives are the makespan (Cmax) and the total tardiness
(T). The makespan is the completion time of the last job
and the total tardiness is the sum of the tardiness of every
job. In the Graham et al. notation [5] this problem is
denoted F/Permut, di/(Cmax,T).
The makespan minimization problem has been proved to
be strongly NP-hard by Garey, Johnson and Sehti [11] for
permutation Flow-Shops with more than two machines
whereas the total tardiness minimization problem has been
proved to be NP-hard by Du and Leung [6] even on a single
machine.

3.2 The framework instantiation on the
problem using the PPM strategy

The PPM strategy consists of three phases which are
represented in Figure 5. In this example, the first phase
finds the extremes of the two objectives. During the second
phase, the search space is uniformly divided with respect
to one extreme. Each subspace is optimized with respect
to the other extreme. Then, we have a set of uniformly
located solutions. The third phase finds the remaining
Pareto solutions in all the search space. Using the solutions
previously found, as shown in phase three of Figure 5,
the space of the multiobjective problem is reduced. The

Figure 5. PPM Phases for a bi-objective prob-
lem

complete explanation and rationale behind the different
steps of PPM can be found in [9].

In order to use the framework for this problem and this
method of optimization, one has to implement the classes
and methods associated to the strategy, the restrictions used,
the assistant method and the objectives of the problem. The
classes needed for the instantiation are:

• PPMSolver: It represents the PPM method. In the
method solve(OptimizationRequest) we implement
the three phases described above. Inside each of
these phases, the optimization method is called, for
example, to solve one extreme.

• FlowshopObjective: It represents both objectives
Tardiness and Makespan. We define the method
solve(Solution) which, depending on the kind of
objective will evaluate such objective with the solution
given. Besides implementing the Objective interface
it has to implement bound_abstract. This interface is
used by the branch and bound each time it calculates
the bounds.

• BoundRestriction: It defines constraints for the 2nd
stage of PPM, which several searches are sent in a
different search space. Here we define a lower bound
and an upper bound and the method that evaluates the
solutions between those bounds. The objects of this
class will be used by the branch and bound before
inserting them into the Pareto front.

• main function: In this function we initialize the frame-
work, create the different classes and we configure
them (composition) to work together. That is, we
configure the new PPMMSolver with the MasterMPI-
Solver as the internal solver and the branch and bound
solver as the internal solver of the SlaveMPISolver.



Figure 6. Instantiation of the framework with PPM and the Flow-Shop problem

3.3 Experimentation on Grid5000

Experiments were conducted on the Grid5000 grid.
Grid5000 is a nation-wide experimental grid composed
by 9 clusters distributed over several French universities
(Bordeaux, Lille, Rennes, Sophia-Antipolis, Toulouse,
Orsay, Lyon, Grenoble and Nancy). We used the cluster
hosted at the Rennes site for the experiments. All of the
machines are bi-processors.

Table 1 shows results from different flowshop instances.
Inside we show the number of processors used during the
different runs, the comparison of the phases of PPM, the
total amount of time taken for the resolution, the speed-up
of each experiment and the parallel efficiency. We have
performed experiments using the instances of Taillard
and Reeves. The results show a speed-up that is almost
linear with respect to the number of processors. Hence, we
think the scalability requirement is met. However, more
experiments have to be conducted on different instances
and different problems in order to support our initial results.

4 Conclusions and future work

In this paper we have presented an overview of an
object-oriented framework for mono-objective and multi-
objective exact optimization. As far as we know, there
are no frameworks that address the issues of optimizing
using a strategy above other methods. We have seen
the architecture of the system and the process used for
combining the main method or strategy with the assistant
method. The codification of the units provided shows a way
of codifiyng the objects prior to distributing them taking
only the necessary data needed for their identification.
Its object oriented nature lets us change the distributed
technology without changing the objects codified.
An application using the PPM strategy and a flowshop
problem was presented. Through this example we showed
the reusability of the framework by implementing only the
parts that are needed for the optimization and leaving the
rest (like the distribution of requests) for the framework
to do. Through numerous experiments with this instance
we have proven the scalability requirement is met on a

different number of processors.

However, we think that we still have to face different
concerns. Specifically, the framework has to be tested with
other kinds of problems (TSP, QAP, Knackspack) and other
kinds of strategies (K-PPM, TPM, e-contrained). Another
issue which needs to be addressed due to the volatile na-
ture of the grid, is fault tolerance. We think this problem
could be overcome with different versions of MPI imple-
mentations like OpenMPI, FTMPI, MPICH-V2, but we still
have to test them with the framework working on the grid.
It would be also interesting to integrate this framework with
software for heuristic or meta-heuristic optimization.As the
interface of the optimization method accepts initial solu-
tions, at least a high level of cooperation is feasible. That
is, an heuristic can be used to feed the exact method with
initial results. This cooperation will allow the framework to
be used for solving larger and more difficult problems.
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