Bob++ : a Framework for Exact Combinatorial
Optimization Methods on Parallel Machines

Francois Galea and Bertrand Le Cun
PRiSM Laboratory, University of Versailles
45 avenue des Etats-Unis, 78035, Versailles, France

Francois.Galea@prism.uvsq.fr, Bertrand.Lecun@prism.uvsq.fr

Abstract— The aim of this article is to propose
the object-oriented design of the Bob++4 framework.
Bob++4 is a framework for implementing solvers for
combinatorial optimization problems on parallel and se-
quential machines. Several similar frameworks have
been proposed in the last decade but each of them only
focuses in one method, said Branch-and-Bound, Divide-
and-Conquer, etc.. and proposes also one paralleliza-
tion, which is very difficult to extend. We propose a
software design where: first, several exact combinatorial
optimization methods are made available to the user to
solve a problem, and second, an interface to facilitate
the implementation of a parallelization is also provided.
Parallelizations may use POSIX threads as well as MPI,
or more specialized libraries such as Athapascan/Kaapi.

Keywords— Combinatorial Optimization, Search algo-
rithms, Branch-and-Bound, Parallelism, Cluster, Grid
Computing

I. INTRODUCTION

Large scale decision and optimization problems be-
long to the class of the best applications for parallel
machines and also for computational grids. The prob-
lems are in the NP-Hard complexity class and may re-
quire an exponential computational time in the worst
case. It is natural to consider the parallelization of the
search process when a solution of a large-scale problem
is out of reach when using a single-processor computer.

The tremendous attention that the parallelization of
these methods as Branch-and-Bound has received in
the literature gives some indication of its importance
in many research areas.

But as in many domains, several software frameworks
have been proposed, establishing the interface between
the users and the parallel machine. These tools include
Bob++ [21], BCP [13], PICO [3], ALPS [20], [12], [18],
Bob [9], PUBB [15], [14], PPBB [19]

It is possible to classify these different existing frame-
works according to two major criteria:

1. The node search algorithm involved in the search
process. These algorithms include Branch-and-Bound
(B&B), Divide-and-Conquer (D&C), A* and Dynamic
Programming (DP).

2. The programming environment they use to im-
plement the parallelization. Some of the available
programming environments are POSIX threads, MPI,
PVM, and Athapascan/Kaapi.

Many of the available parallel search algorithm
frameworks are specialized at the same time in the algo-
rithm they implement, and for a specific programming
environment. For example, BCP [13] is an implementa-
tion of the Branch-and-Price-and-Cut algorithm, which

Proceedings 21st European Conference on Modelling and Simulation

Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

runs on the MPI programming environment. PICO [3]
is a Mixed-integer solver, which implements B&B, and
also runs on MPL.

Some other projects tend to diversify some aspects of
the solver framework. SYMPHONY [17], for example,
solves mixed-integer programming (MIP) problems us-
ing PVM for distributed memory machines or OpenMP
for shared memory machines. ALPS [20], [12], [18],
which in some way is a successor of SYMPHONY [17]
and BCP [13], generalizes the node search to any tree
search, which of course enables B&B search, among
others. Though, the only available programming en-
vironment for ALPS [20], [18] is MPI. In a similar
manner, PEBBL [4] integrates the B&B search from
PICO [3], allowing the implementation of a larger va-
riety of solvers than MIP solvers.

The old version Bob [9], [11] focus on parallel Branch
and Bound. Others methods like A* have been added
but with awful hacks. What Bob++ proposes is to pro-
vide different search algorithm classes, while being able
to use different possible parallelization methods. The
goal is to propose a single framework for most classes
of combinatorial optimization problems, which can be
solved on as many different programming environments
as possible. Figure 1 shows how Bob-++ interfaces
between high-level applications (QAP, TSP, ...) and
different possible parallel programming environments.
However, Bob++ is still under developement.

Bob++ has been developed in C++ language, and
proposes a C++ API, composed of basic classes which
are extendable by the user.

Most real-life tests have been done using the Branch-
and-Bound search algorithm, showing the robustness of
the Branch-and-Bound application interface. Most of
other developed applications are just validation tests
for the design of some of the node search algorithms,
such as a simple N-Queens problem solver which uses
Divide-and-Conquer.

Most of recent work has been focused on Branch-
and-Bound. Dynamic Programming and A* are cur-
rently unavailable, due to changes we made in the
Bob++ structure when developing Branch-and-Bound
and Divide-and-Conquer, even though these changes
have been done with the addition of Dynamic Program-
ming and A* in mind. This is why the only application
interface we will talk about in the following sections of
this article is Branch-and-Bound.

The next section deals with the Bob++ application
interface. The parallel interface is presented in the sec-

(QAP (TSP}(VRP}(

)
NN S

User algorithm

Bob++

Programming environment

g

[Sequential]

y
[Athapascan]

Posix threads

=<
e

Fig. 1. The structure of Bob++ applications

tion III. The section IV shows two applications. Con-
cluding remarks and future work are presented in the
section V.

II. APPLICATION INTERFACE

The idea behind the Bob-++ application interface
is to provide the programmer with an easy inter-
face for programming parallel node search algorithms,
based on the following classical methods : A*, Divide-
and-Conquer, Dynamic programming and Branch-and-
bound. At this time, the only implemented methods
are Divide-and-Conquer and Branch-and-Bound.

In Bob++, each of the mentioned methods is imple-
mented by four classes. The base classes for each of
them are the following:

e The Instance class is used for the storage of all the
global data of the application. This data is initialized
at the beginning of the resolution. It is not allowed to
modify its contents during the execution of the resolu-
tion.

o The Node class enables the storage of the data and
contains the methods associated to a node in the search
space.

e The GenChild class contains the method used to gen-
erate the child nodes of a given node.

e The Algo class contains the execution code of the
main loop of the resolution.

Each of these base classes are derived into specific
classes which are specialized for the resolution of the
different possible search algorithms.

The specialized Instance, Node and GenChild
classes are called “the user classes”, meaning that these
classes must be customized by the user to implement
the resolution of its own problem. The virtual methods
that the user needs to redefined, are different according
to the choosen method (B&B, D&C, ...).

In order to perform strong type checking at com-
pilation time and to avoid downcast, Bob++ makes
an exhaustive use of templates in the class definition.
The Bob++ classes are parametrized by a Trait class
which only contains types definitions. The Trait must
contain the definition for the Node, the Instance, the
GenChild and the Algo but also for the Stat class and
Priority class. This modelization, is widely used in

class MyTrait {
public:

typedef MyNode Node;
typedef MyInstance Instance;
typedef MyGenChild GenChild;
typedef Bob::BBAlgo<MyTrait> Algo;
typedef Bob::BestEPri<MyNode> PriComp;
typedef Bob::BBStat Stat;

};

class MyNode : public Bob::BBIntMinNode {
I

class MyInstance : public Bob::BBInstance<MyTrait> {

};
class MyGenChild: public Bob::BBGenChild<MyTrait> {
};

Fig. 2. Example of a Trait class

C++ Standard Template Library (STL). The figure 2
shows a short example of this.

A Stat instance stores all the activities of an asso-
ciated Algo. It is used for monitoring the execution of
the resolution, either in a offline or online way. The
user can extend the definition of the default Stat class
to add statistics or monitored values which correspond
to its specific needs.

The Priority class contains the rules to schedule the
search. Bob++ provides default classes derived from
Priority. These default classes can be used when a
standard node selection rule (depth first, best evalua-
tion first, etc.) is enough. The user can also choose to
create a specific Priority-derived class.

A. The log system

Using the Stat class, or any of its derived classes,
makes possible to the user to get a lot of information
from the execution of the algorithm.

The Stat is instanciated only once in sequential and
shared memory environments, hence the generated log
data is global in this case. In distributed memory envi-
ronments, one Stat instance is associated to each run-
ning Algo instance, which generally corresponds to a
processor of the parallel machine. Thus, the different
Stat objects only store locally-generated data.

While the algorithm is running, a Stat object gener-
ates statistics about general data such as the number
of generated nodes, evaluated nodes, or the number
of calls to the generation method of the GenChild, as
well as problem-specific information. It is possible to
redirect the output of a Stat object to a file, hence the
execution evolution can be analyzed after the execution
is finished, or during the execution.

It is also possible to view the data from the file when
the execution is not finished. Of course, in this case,
all the processors must output their logging informa-
tion to the same file, thus this behaviour is limited to
the sequential and multi-threaded programming envi-
ronments.

In shared memory programming environments, the

analysis of the contents of a log file allows to obtain
both global and processor-specific information about
the execution of the algorithm. In distributed mem-
ory programming environments, only processor-specific
data is available in the different log files. This why the
log system offers the possiblilty to configure a Stat in-
stance to output its data to a network host machine.
This host simply runs a boblistener program, which lis-
tens for incoming log information from the different
parallel computer nodes, and gathers them to a single
log file. This way, it remains possible to have real-time
access to centralized global and processor-specific in-
formation, even in distributed memory environments.

In order to display the generated log information,
a tool called bobview has been developed. This tool
can display the contents of a log file, either after the
execution of the algorithm, or while it is running. As
the log information contains both global and processor-
specific data, bobview offers different view modes for the
analysis of the execution.

As an example, figure 3 shows the displayed infor-
mation which is generated by the execution of the MIP
solver running on a dual processor shared memory com-
puter, using the multi-threaded programming environ-
ment. The first view displays global information about
the global priority queue activities, basically the evo-
lution of the number of priority queue insertions, dele-
tions, and number of stored nodes. The two other plots
display thread-specific information.

This log system has been developed with the idea
that the user should be able to easily get information
feedback from the behaviour of its algorithms. This in-
formation allows easy tuning of an application without
having to wait for the end of its execution.

B. The B&B abstract solver

A solver using the B&B method is written by extend-
ing the 3 following “user” classes: BBNode, BBInstance
and BBGenchild.

To be able to compare two BBNode objects according
to their evaluation, the BBNode class is parametrized
with the sense of optimization (maximisation or min-
imsation) and the type of the evaluation (int, float, dou-
ble, etc..). Shortcuts have been predefined, such that
the user can choose one the different available default
node classes i.e. BBMinIntNode, BBFloatMaxNode ... as
a base class for its own Node class. In Bob++, only one
type, one class is used to represent the subproblem or
a solution of the problem.

The BBInstance class must be extended to enable
the storage of all the information needed for the resolu-
tion of the specific problem. For example when solving
a MIP problem, one may plan to include the original
MIP problem in the BBInstance-derived object, in or-
der to have constant access to the knowledge about
integer and continuous variables.

The BBGenChild class is not really different from
the basic GenChild class. The user must extend the
BBGenChild class to redefine the operator() which
performs the branching operation from a Node object.

iGlobal viewi| Thread #0 | Thread #1
5000. T T T T T T T Priority Queue Insertions [l

4500, Priority Queue Deletions I
4000 —

3500, 1+
3000 :
2500,

Items in Priority Queue [N

2000, 1 —+
1500.

1000,

5000 —

0.000 & ‘ : : : i N
0.000 1.000 2.000 3.000 4000 5.000 6.000 7.000

3000. T T T T T T T Priority Queue Insertions | |
777777777777777777777 R Priority Queue Deletions

2500. i i i i i i i Q -
RS TR ISR AR PRSI AU S LA ‘___’A_____‘,___ [Number of evaluated nodes [

2000 : : : : / : : Nurmnber of pruned nodes

1500

1000,

500.0

0.000
0.

Global view | Thread #0

3000. T T T T T T T [Priority Queue Insertions | |
R I A R R E Y " [Priority Queue Deletions | |
ZERC ‘ ‘ ‘ ‘ T i —
RN I N SN S S LI [/ [71 Number of evaluated nodes [
2000, - ; ; ; // ; ; Nurmber of pruned nodes
O [- G
. : : ///// :]
1000 | /V T | ! :
500.0 +— / / : : 1 :
0.000 ¢ ; : ‘ ‘ ‘ :
0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000

Fig. 3. Execution Analysis of a multi-threaded B&B application

The user code must ensure that each newly-generated
child Node object which is suitable to be explored is
inserted into the priority queue if it is a subproblem.

A Priority class is associated to the specialized
Node class. The Priority class must be defined in
the Trait class.

The figure 4 shows the UML sequence diagram of the
search procedure i.e. the BBAlgo: :operator().

III. PARALLEL INTERFACE

Unlike the other frameworks, the Bob++ design inte-
grates a programming interface to implement all kinds
of tree search parallelizations. Many of the existing
frameworks propose only one parallelization. For ex-
ample, PICO [3] and ALPS [20], [12], [18] propose a
Master-Hub-Worker parallelization, SYMPHONY [17]
uses a Master/Worker paradigm using PVM.

There exists a large variety of machines and a large
variety of problems. One could be able to use a
dual-core processor, as well as cluster of worksta-
tions. Bob+4+ could be extended using this interface
by adding a new Programming environment. At this
time, the proposed environments are sequential, multi-
threaded (making use of POSIX threads) and Kaapi-
based environments. An MPI version is currently under
development.

A. The Programming Environment principles

The main idea leading the Bob++ design to obtain
parallel solvers is a generalization of the Global priority
Queue (GPQ) used to implement the old Bob [9], [11]
library. The principle is to have different instances of
Algo that are executed on different processors. These
different Algo communicate, and are synchronized us-
ing high level communication tools. These tools are
mainly the data structures that store the subproblems,
the solutions or other information needed by a specific
method. These Global Data Structures are equivalent
to the Knowledge Pool introduced by ALPS [20], [12],
[18].

For example in the context of a B&B, these “par-
allel” instances of BBAlgo will mainly execute a loop
where at each iteration the operator() of an instance
of the user BBGenChild is executed on a pending node
obtained from a Global priority Queue GPQ. The new
generated nodes are re-inserted in GPQ. In the same way
if a solution is found, the data structure called Global
Solution GSol will be updated with this new solution.

The different GPQ and GSol must communicate to
ensure that each Algo has enough work to do and has
the latest updated Solution.

The GPQ and GSol can be considered from the Algo
point of view as high level communication tools since
the different Algo instances only communicate through
these tools.

This design does not constraint the algorithm used to
manage the nodes or broadcast a new solution value. It
does not imply a specific parallel strategy. The goal is
to be able to implement, a Master /Hub/Worker strat-
egy used by PICO [3], PEBBL [4] and ALPS [20], [12],
[18], but also simple Master/Slave strategy using MPI,
or different parallelization strategies using the POSIX
threads on a shared memory machine. One could also
implement a parallelization where the load balancing
strategy takes into account the heterogeneity of a Grid.
The figure 4 shows the UML sequence diagram of the
BBAlgo: :operator (), which performs the main loop of
the algorithm. The GPQ and the GSol are respectively
called ThrPQ and ThrSol which are concrete classes of
the mutlithreaded environment.

An interesting property of this design is also that
the parallel and sequential Algo implementations are
exactly the same. The only difference is the different
implementation of the Global Data Structures.

Abstract classes are proposed in the Bob++ Frame-
work, to define the interfaces needed by the Algo. The
PQInterface defines the interface used by the B&B al-
gorithm to store the pending nodes. Concrete classes
are also defined. For example the PQSkew class extends
the PQInterface interface. In this case, the algorithm
used to store the nodes according to their priorities is
the Skew-Heap [16].

The Threaded programming environment defines an-
other concrete class which extends the PQInterface
called the ThrPQ (see figure 4). The goal of this class is
to enable the access to the PQSkew in mutual exclusion
mode. The figure 5 shows the UML sequence diagram

sd BBAIgo::aperatori) J
al.BBA| [gLBEGenchig] taThP0| [teTheSal]

i | \ \ \
[

Toop RO not empty] | T T

Delf) | Node

operatar (J{in n;: TheNode) : void ‘
W [child Mode is a $ubproblern]

Ins(in n : Mode) ‘vmd

opt [child Node is a\snlutlnn]
Upd(inout n - Hads) - bool \

T |

Fig. 4. The UML sequence diagram of a search

[ThBEAIgENProg| [al:BBAlg0][a2EEA| [tpo:Thie [ts:Thesol|[mPQ I s LSnII
1 | | \ |
| | \ |
par) aperator 0 sd! BBAIgo: operatar) i i
| \ |
I | I
i } | }
——lFr—— +-——F————+

operatar ()

| |
| |
; ‘
| |
-
——b—+—4——
| [
| |
| |
| |
| |
| |

sdlBEA\gu. operatori) u
I
\
|
\
\

L

Fig. 5. The UML sequence diagram of multithreaded search

of the threaded environment, which calls in parallel the
Search sequence diagram (see figure 4 on 2 differents
instances of the BBAlgo class. In this diagram, the two
instances of the BBAlgo use the same instance of ThrPQ
and the same instance of ThrSol.

Therefore, the initialisation of an Algo e.g. the ini-
tialisation of an instance of the Algo itself and the ini-
tialization of the data structure it uses, are performed
by the Programming Environment. The Bob++ Pro-
gramming Environment class which realizes all this ini-
tialization is the AlgoEnvProg class.

More general initialization than which is made on the
AlgoEnvProg is often necessary for a specific environ-
ment. For example, in a context of a multithreaded
environment (called Thr), the different threads must
be created, but after the parsing of the command line.
These initializations are usually made in static meth-
ods. The choice between the environments is made in
the main function. Fig. 6 shows an example of a main
function that can be used to generate different solvers
for the same problem, making use of different program-
ming environments.

The multithreaded environment has been proposed
in order to propose an easy and powerful use of modern
dual- or quad-core processors. It also constitutes the
first step for the implementation of a hybrid algorithm
for clusters of shared-memory machines.

int main(int argc, char xxargv) {
#ifdef Atha
Bob::AthaBBAlgoEnvProg<MyTrait> env;
Bob: :AthaEnvProg: :init(n,v);
Bob: :core::Config(n,v);
#elif defined(Threaded)
Bob: :ThrBBAlgoEnvProg<MyTrait> env;
Bob: : ThrEnvProg: :init () ;
Bob: :core::Config(n,v);
Bob: : ThrEnvProg: :start () ;
#else
Bob: :SeqBBAlgoEnvProg<MyTrait> env;
Bob: :core: :Config(n,v);
#endif
MyInstance *Instance=new MyInstance();
env(Instance);
#ifdef Atha
Bob: : AthaEnvProg: :end () ;
#elif defined(Threaded)
Bob: : ThrEnvProg: :stop() ;
#endif
Bob: :core::End();
delete Instance;

}

Fig. 6. Example of a main function

B. The Athapascan Environment

We use the Athapascan/Kaapi library [23] as a par-
allel environment for Bob++. Athapascan/Kaapi is
a high level parallel programming tool. Its aim is to
schedule a set of tasks which are created dynamically
using Athapascan’s Fork primitive. Athapascan/Kaapi
has been developed in such a way that one does not
have to worry about the specific machine architecture
or the optimization of load balancing between proces-
sors. The created tasks are scheduled on the different
processors in order to complete the work.

In the context of B&B, the Athapascan/Kaapi li-
brary is a very interesting tool to parallelize the search
procedure. A strategy consists in creating a task to
explore a subtree rooted on a node. The leaves of the
subtree which are subproblems become new tasks. The
idea is to have enough tasks to ensure that all pro-
cessors have enough work. In Bob++, the task that
explores a subtree is a full instance of a Bob++ Algo.
The Athapascan primitive used to fork a task is called
in the GPQ’s insert method. Different strategies are de-
fined in order to have different sizes of subtrees accord-
ing to the position of the root node in the tree. When
the node is very close to the root node of the B&B
tree, the size of the subtree explored by a task must be
very small, to produce work very quickly. When the
root node of a subtree is on the middle of the B&B
tree, the size of the subtree could increase. The Atha-
pascan/Kaapi runtime stores the list of waiting tasks
in a list which is local to each process. If the process
runs on a machine that has several processors, the list
is shared among the threads that are running on each
processor and that execute the tasks. The next section
shows some results with this environment.

IV. BoB++ APPLICATIONS

This section describes the more advanced applica-
tions we designed on top of Bob-++.

Instance # Procs Time (mn)
Nugent17 168 0.33
Nugent20 50 5.69
Nugent20 168 3.58
Nugent20 184 3.32
Nugent21 50 11.5
Nugent21 168 7.19
Nugent22 50 9.8
Nugent24 140 153.7

TABLE I: Tests of the QAP code

A. The QAP solver

The first Branch-and-Bound application is a solver
for the Quadratic Assignment Problem. The QAP was
formulated by Koopmans and Beckmann (1957) [8] as
the task to find a permutation 7 of {1,...,n} that min-
imizes:

minzzzzcijkzxijxkl + ZZCUIU (1)

i=1 j=1k=1 =1 =1 j=1

inj =1 i=1,..,n (2
j=1

day=1 j=1..n (3
=1

LL‘ij:O,l i,jzl,..,n (4)

where Cjji; denotes the cost incurred by locating fa-
cility ¢ on location j and facility k£ on location [. It rep-
resents the product of f;;, (flow between the facilities 4
and k) and dj; (distance between the locations j and
). The QAP Solver on top of Bob++ is based upon
the dual procedure of Hahn and Grant [6] to compute
the lower bound and the polytomic branching strat-
egy of Mautor and Roucairol [10]. This code has been
tested on various machines [2], [1] using the Athapas-
can/Kaapi parallelization. In [7] this code with Bob++
has been tested with a fault tolerant version of Atha-
pascan/Kaapi. Table I shows the results of the QAP
code on the some Nugent instances from the QAPLIB.
The runs have been realized on a Itanium-2 cluster of
the university of Grenoble. The CPU times show that
the algorithm is scalable.

B. The MIP solver

The second Branch-and-Bound application which has
been developed is a simple Mixed-Integer Programming
(MIP) solver. The solver can take the description of a
problem from a CPLEX LP file, then solve it using the
chosen parallel environment. The LP solver used dur-
ing the node evaluation can be chosen from different
existing solvers : CPLEX from Ilog or Xpress-MP by
Dash Optimization are the possible available commer-
cial solvers, but solvers from the open source commu-
nity can also be used : GLPK, LP_solve and Clp.

For the moment, the integrated MIP solver is at
a very early stage of development. It uses simple

branching methods, and does not make use of generic
cuts. Therefore, it cannot be compared to the available
efficiency-proven MIP solvers. However, we obtain very
good speed-up improvements using the POSIX threads
environment, on multi-processor shared-memory archi-
tectures. Our objective for the near future is to perform
heavy testings on distributed memory environments, as
soon as the necessary code is added to the MIP solver.

The flexibility for the LP solver choice has been made
possible by using the Glop library which we developed
([5], [22]). Glop is a free-software application program-
ming interface (API), which wraps solver-specific LP or
MIP solver function calls. Its base idea is to provide
the user with a generalized API which allows to sup-
press the dependence of the code to a specific solver.
This way, it is for example possible to compare the
performance of the different solvers by using the same
optimization code.

Another solver interface from the open-source com-
munity already exists Osi from the COIN OR
project [13]. Glop differs from Osi to the fact that
it is only a lightweight wrapper to the solver API calls,
whereas Osi is a C++ interface which allows the prob-
lem modelization and resolution in an object-oriented
way, which is not the usual way solver APIs usually
work.

V. SUMMARY AND FUTURE WORK

In this paper, we have presented the main features
of the Bob++ Framework. We described the User
Programming Interface and the Parallel Programming
Interface, called the Programming Environment inter-
face. We explain how is it possible to use a high level
parallel library in Bob+4. We show the good perfor-
mance we obtained on the QAP problem using the
Athapascan/Kaapi library. We also quickly present
the MIP solver that uses the Glop library using the
Multithreaded environment. Its development is still in
progress, this is why no good results are currently avail-
able. The current solver can not be compared to other
existing solvers as it still lacks cut generation.

We present the log system of Bob++4, which provides
the ability to analyze the execution of the parallel al-
gorithm. The statistics are available during program
execution, even in distributed memory environments.
They can also be analyzed after the execution.

Current work includes the addition of generic cut
generation to the MIP solver, which as we expect
should provide significant performance increase.

Several other features could be proposed for the Ap-
plication Interface and to increase the Parallel Inter-
face. As said in the introduction, we would like Bob++
to propose interfaces for other methods as Dynamic
Programming and A*. Higher level interfaces could be
proposed to facilitate the programming of more special-
ized algorithms built on top of B&B, like Branch-and-
Price and Branch-and-Cut. An old version of Bob++
used to include these features: we have to port them
on this current version. The parallel interface could
be extended to propose other parallel library ports like

MPI.

(1]

(5]

(6]

[7]

(10]

(11]

(12]

(13]

14]

(15]

[16]

(17)

(18]

(19]

20]

(21]

REFERENCES

A. Djerrah. Résolution Exacte d’un probléme d’optimisation
combinatoire NP-difficile sur grilles de machines. PhD the-
sis, Université de Versailles-Saint-Quentin, july 2006. In
French.

A. Djerrah, S. Jafar, V.-D. Cung, and P. Hahn. Solving
QAP on cluster with a bound of reformulation linearization
techniques. In In the 17th IMACS World Congress Sci-
entific Computation, Applied Mathematics and Simulation
IMACS2005, Paris, France, July 2005.

J. Eckstein, C. A. Phillips, and W. E. Hart. PICO: An
object-oriented framework for parallel branch and bound.
In E. Scientific, editor, Proceedings of the Workshop on In-
herently Parallel Algorithms in Optimization and Feasibility
and their Applications, Studies in Computational Mathe-
matics, pages 219-265, 2001.

J. Eckstein, C. A. Phillips, and W. E. Hart. PEBBL 1.0
User Guide. RRR 19-2006, RUTCOR, August 2006.

F. Galea. Probléemes d’optimisation en curiethérapie. PhD
thesis, Université de Versailles—Saint-Quentin-en-Yvelines —
UVSQ, 45, Avenue des Etats-Unis, 78035 Versailles Cedex,
FRANCE, Sept. 2006. In French.

P. Hahn and T. Grant. Lower bounds for the quadratic
assignment problem based upon a dual formulation. Oper-
ations Research, 46:912-922, 1998.

S. Jafar. Programmation des systémes paralléles distribués :
tolérance aux pannes, résilience et adaptabilité. PhD thesis,
INP de Grenoble, June 2006. In French.

T. Koopmans and M. Beckman. Assignment Problems and
the location of economic activities. Econometrica, 25:53-76,
1957.

B. Le Cun, C. Roucairol, and the PNN team. Bob: a uni-
fied platform for implementing branch-and-bound like algo-
rithms. RR 95/16, Laboratoire PRiSM, Université de Ver-
sailles - Saint Quentin en Yvelines, Sept. 1995.

T. Mautor and C. Roucairol. Difficulties of Exact Methods
for Solving the Quadratic Assignment Problem. In P. M.
Pardalos and H. Wolkowicz, editors, Quadratic Assignment
and Related Problems, volume 16 of Discrete Mathemat-
ics and Theoretical Computer Science, pages 263—-274. DI-
MACS, American Mathematical Society, May 1994.
M.Benaichouche, V.Cung, S.Dovaji, B. Cun, T.Mautor, and
C.Roucairol. Building a Parallel Branch and Bound Li-
brary, volume 1024 of LNCS State-of-the-Art Survey, pages
201-231. Springer-Verlag, 1996.

T. Ralphs, L. Ladnyi, and M. Saltzman. A Library Hier-
archy for Implementing Scalable Parallel Search algorithms.
The Journal of Supercomputing, 28(2):215-234, may 2004.
M. J. Saltzman. COIN-OR: An Open Source Library for
optimization. Kluwer, Boston, 2002.

Y. Shinano, M. Higaki, and R. Hirabayashi. An Interface
Design for General Parallel Branch-and-Bound Algorithms.
In Workshop on Parallel Algorithms for Irregularly Struc-
tured Problems, pages 277-284, 1996.

Y. Shinano, M. Higari, and R. Hirabayashi. Generalized util-
ity for parallel branch-and-bound algorithms. In Proceed-
ings of the 1995 Seventh Symposium on Parallel and Dis-
tributed Processing, number 392, Los Alamitos, CA, 1995.
IEEE Computer Society Press.

D. Sleator and R. Tarjan. Self-Adjusting Heaps. SIAM J.
Comput., 15(1):52-69, Feb. 1986.

T.K.Ralphs and M. Guzelsoy. The SYMPHONY Callable
Library for Mixed Integer Programming. In In proceed-
ings of the Ninth INFORMS Computing Society Confer-
ence, 2005.

T.K.Ralphs, L. Ladanyi, and M. Saltzman. Parallel Branch,
Cut, and Price for Large-scale Discrete Optimization. Math-
ematical Programming, 98(253), 2003.

S. Tschoke and T. Polzer. Portable parallel branch-and-
bound library user manual, library version 2.0. Techni-
cal report, Department of Computer Sciences, University
of Paderborn., 1996.

Y. Xu, T.K.Ralphs, L. Ladnyi, and M. Saltzman. ALPS: A
Framework for Implementing Parallel Search Algorithms. In
In proceedings of the Ninth INFORMS Computing Society
Conference, 2005.

Bob++: Framework to solve Combinatorial Optimization

22]

23]

Problems

http://bobpp.prism.uvsq.fr/.

Glop, the Generic Linear Optimization Package.
http://glop.prism.uvsq.fr/.

Kaapi: a library for high performance parallel computing
based on an abstract representation to adapt the computa-
tion to the available computing ressources.
http://kaapi.gforge.inria.fr/.

