A GRID-BASED HYBRID CELLULAR GENETIC ALGORITHM FOR
VERY LARGE SCALE INSTANCES OF THE CVRP

Bernabé Dorronsoro
Dept. of Comp. Science
E.T.S.I. Informatica
University of Malaga
29071 Mélaga, SPAIN
Email: bernabe @lcc.uma.es

Antonio J. Nebro

Dept. of Comp. Science

E.T.S.I. Informética
University of Mdlaga
29071 Malaga, SPAIN

Email: antonio@Icc.uma.es

KEYWORDS
Cellular genetic algorithm, grid computing, VRP

ABSTRACT

This work presents a hybrid genetic algorithm (GA) for
solving the largest existing benchmark instances of the
capacitated vehicle routing problem (CVRP). The pop-
ulation of the algorithm is structured by following two
classical parallelization models for GAs: coarse- and
fine-grained. Indeed, the proposed model is a distributed
GA (coarse-grained) in which each island is a cellular GA
(fine-grained). It has been called PEGA (Parallel cEllu-
lar Genetic Algorithm). PEGA has been built on top of
ProActive and it has been executed on a grid platform
composed of more than 100 machines so as to reduce the
computation time. The results show that, for many of the
considered instances, PEGA improves the best results re-
ported by any existing algorithm in the literature.

INTRODUCTION

The vehicle routing problem (VRP) (Dantzing and
Ramster 1959) lies in minimizing the cost of a fleet of
vehicles serving a set of customers from a unique de-
pot (Fig. 1). Reducing this cost means minimizing the
number of used vehicles and the length of their routes as
well. This problem is of great interest due to two main
facts. On one hand, the VRP is very interesting from
an academic viewpoint because of its complexity (it is
an NP-hard problem (Lenstra and Kan 1981)), the con-
straints it includes, and the many different existing ver-
sions. On the other hand, it has a direct application to the
real world since it can be used by both large logistic en-
terprises and small local delivering companies. Indeed,
using computer methods in such a business could often
lead important cost savings to be reached. In many cases,
these savings mean 20% of the total cost of the product
(Toth and Vigo 2001).

Proceedings 21st European Conference on Modelling and Simulation

Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

Daniel Arias
Dept. of Comp. Science
E.T.S.I. Informatica
University of Malaga
29071 Mélaga, SPAIN
Email: bernabe @lcc.uma.es

Francisco Luna
Dept. of Comp. Science
E.T.S.I. Informatica
University of Malaga
29071 Mélaga, SPAIN
Email: flv@lcc.uma.es

Enrique Alba

Dept. of Comp. Science

E.T.S.I. Informatica
University of Mdlaga
29071 Mélaga, SPAIN
Email: eat@lcc.uma.es

S

L
J L/

(a) (b)

Fig. 1. The Vehicle Routing Problem consists in serving a set of ge-
ographically distributed customers (points) from a depot (a) using the
minimum cost routes (b)

In the recent history of VRP, a constant evolution ex-
ists in the quality of the methodology used for solving
the problem. These techniques comprise exact algorithms
as well as heuristic methods. However, due to the com-
plexity of the problem, there is no exact method capable
of solving instances with more than 50 customers (Toth
and Vigo 2001; Golden et al. 1998). It is also clear
that generic heuristics cannot compete, in terms of so-
lution quality, against current techniques such as those
described in (Toth and Vigo 2001; Cordeau et al. 2005),
which are specifically developed for solving VRP. More-
over, the potential search of some of these modern tech-
niques, e.g. genetic algorithms (GAs), is not still fully
exploited, especially when combining them with effec-
tive local search mechanisms. All these considerations
could allow us to improve the search capability of a given
algorithm.

This work is therefore focussed on GAs. Due to
their population-based approach, GAs are very suit-
able for parallelization because their main operations
(i.e., crossover, mutation, local search, and function
evaluation) can be performed independently on differ-
ent individuals. As a consequence, the performance of
population-based algorithms is specially improved when
run in parallel. Two parallelizing strategies are especially
relevant for population-based algorithms: (1) paralleliza-
tion of computation, in which the operations commonly

©

Fig. 2. Panmictic (a), distributed (b), and cellular (c) GAs

applied to each individual are performed in parallel, and
(2) parallelization of population, in which the popula-
tion is split in different parts, each one evolving in semi-
isolation (individuals can be exchanged between subpop-
ulations). Among the most widely known types of struc-
tured GAs, the distributed (dGA) (or coarse-grain) and
cellular (cGA) (or fine-grain) algorithms are very popular
optimization procedures (see Fig. 2). The parallelization
of the population strategy is specially interesting since
it does not only allow to speed up the computation, but
also to improve the search capabilities of GAs (Alba and
Tomassini 2002; Canti-Paz 2000).

We propose in this work a new parallel cGA called
PEGA (Parallel cEllular Genetic Algorithm). PEGA
adopts all the parallelization strategies described above:
the population is divided into several islands (dGA), the
population of each island being structured by following
the cellular model (cGA). Furthermore, each cGA im-
plements a master/slave approach (parallelization of the
computation) in order to compute the most costly opera-
tions applied to their individuals. Periodically, cGAs ex-
change information (migration) with the goal of inserting
some diversity into their populations, thus avoiding them
falling into local optima. By using such structure in the
population, we keep a good balance between exploration
and exploitation, thus improving the capability of the al-
gorithm to solve complex problems (Alba and Tomassini
2002; Alba and Dorronsoro 2007). Additionally, cGAs in
PEGA are hybridized with a local search method which
is applied to every newly generated solution.

When solving very large problem instances, even
heuristic methods like PEGA require a large amount of
computational resources. This is exactly the context
in which PEGA was developed because it is ultimately
aimed at solving the largest instances of CVRP (a sub-
class of VRP): the VLSVRP benchmark (Li et al. 2005).
With this goal in mind, PEGA has been enabled to run
in grid computing platforms. This way, it has been im-
plemented in ProActive (ProActive 2007), a Java GRID
middleware library for an easy programming in grid en-
vironments. ProActive provides mechanisms for creat-
ing and managing collaborating objects (called active ob-
Jjects) which can be executed on remote machines. The
remote access to an active object is carried out transpar-
ently by ProActive by using Java RMI.

The main contribution of this work is therefore the
design of a new hybrid cGA which runs in parallel on
grid computing platforms. This algorithm has been used
to solve the largest known benchmark instances of the

CVRP (Li et al. 2005) and it is able to improve the best
known solutions computed by an optimization algorithm
for most of the studied instances.

The paper is structured as follows. In the next section,
we mathematically define the CVRP problem. Next, we
describe PEGA, our proposal for solving large instances
of the CVRP. Finally, the parameterization of the algo-
rithm, the benchmark used, and the results obtained, as
well as our conclusions and the main lines of future work
are given in the two last sections.

THE VEHICLE ROUTING PROBLEM

The VRP can be defined as an integer programming
problem which falls into the category of NP-hard prob-
lems (Lenstra and Kan 1981). Among the different vari-
ants of VRP we work here with the Capacitated VRP
(CVRP), in which every vehicle has a uniform capacity
of a single commodity. The CVRP is defined on an undi-
rected graph G = (V, E) where V = {vg, v1,..., v} is
a vertex set and E = {(vi,v;)/vi,vj € V,i < j}isan
edge set. Vertex vy stands for the depot, and it is from
where m identical vehicles of capacity () must serve all
the cities or customers, represented by the set of n ver-
tices {v1,...,v,}. We define on E a non-negative cost,
distance or travel time matrix C' = (c;;) between cus-
tomers v; and v;. Each customer v; has non-negative de-
mand of goods ¢; and drop time ¢; (time needed to unload
all goods). Let be Vi,....Vima partition of V, aroute R;
is a permutation of the customers in V specifying the or-
der of visiting them, starting and finishing at the depot vg.
The cost of a given route R; ={vo,v1,...,Vg+1}, where
v; € V and v9g = Vk+1 = 0 (0 denotes the depot), is
given by:

Cost(R ZCJ g1t Z‘;J , @)

and the cost of the problem solution (§) is:

Z Cost(R;) .)
=1

Fovre(S) =

The CVRP lies in determining a set of m routes (i)
of minimum total cost (see Equation 2); (ii) starting and
ending at the depot vy; and such that (iii) each customer is
visited exactly once by exactly one vehicle; subject to the
restrictions that (iv) the total demand of any route does
not exceed Q) (Z@j R G < Q); and (v) the total du-
ration of any route is not larger than a preset bound D
(Cost(R;) < D).

PEGA: PARALLEL CELLULAR GENETIC
ALGORITHM

PEGA is a parallel GA in which the population is struc-
tured at two levels and in two different ways. As it can
be seen in Fig. 3, the population is decentralized in a first

CPU 1 CPU2

CPU3 \ CPU 4

(&

o

Slaves
CPUK CPU K+1

CPU K+N

Master

Fig. 3. Structure of PEGA

level by using the island model. The topology of these
islands is an unidirectional ring so that migrations only
occur between immediate neighbors. At the second level,
each island is a cGA (see Section) in which the popula-
tion follows a fine-grained parallelization strategy. Fur-
thermore, each cGA is a master process that sends indi-
viduals to slave processes where they undergo the local
search method, the task demanding the higher computa-
tional costs in the reproductive cycle of the cGA. This
model and its parallel implementation in clusters were
initially proposed in (Alba 1999).

Cellular Genetic Algorithm

This section describes the cGA used in each island of
PEGA. Algorithm 1 shows its pseudocode. The popula-
tion is structured in a 2D toroidal grid where a neighbor-
hood structure is defined. The algorithm operates itera-
tively on each individual of the population (lines 3 and
4). The individuals can only interact with their nearby
neighbors (line 5) and the parents are therefore chosen
from the neighborhood of the current individual (line 6)
with a given criterion. The recombination and mutation
operators are applied in lines 7 and 8 with probabilities
P, and P,,, respectively. After that, the resulting individ-
ual undergoes a local search phase (line 9), and next its
fitness value is computed (i.e., the cost of the represented

Algorithm 1 Pseudocode of a cGA

1: proc Steps_Up(cga)
2: while not Termination_Condition() do

3: for x +— 1 to WIDTH do

4: fory < 1 to HEIGHT do

5: n.list—Get_Neighborhood(cga,position(x,y));
6.

7

8

//Algorithm parameters in ‘cga’

parents<—Selection(n_list);
aux-indiv<—Recombination(cga.Pc,parents);
aux_indiv<—Mutation(cga.Pm,aux_indiv);

9: aux.indiv«—Local_Search(cga.Pl,aux_indiv);

10: Evaluate_Fitness(aux_indiv);

11: Replacement(position(x,y),aux-indiv,cga,aux_pop);

12: end for

13: end for

14: cga.pop+—aux_pop;

15: Update_Statistics(cga);

16: end while

17: end_proc Steps_Up;

solution). The local search method is explained below.
Finally, the best individual between the current and the
offspring is placed in the equivalent position of an auxil-
iary population (line 11).

Once the reproductive cycle is applied to all the indi-
viduals of the population, the current population is re-
placed by the auxiliary one (line 14) and we then calcu-
late some statistics (line 15). This loop is repeated until a
termination condition is met.

Next, we detail some major issues concerning the im-
plementation of the cGA used:

« Individual representation. We have used GVR (Ge-
netic Vehicle Representation) (Pereira et al. 2002) for en-
coding the individuals. GVR uses a permutation of in-
teger numbers which contains both customers and route
splitters (delimiting different routes). Each route is com-
posed of the customers between two route splitters in
the individual. No unfeasible individuals are allowed so
when either the maximum capacity of the vehicles or the
maximum route length are exceeded, a repair procedure is
executed so that it splits routes into two or more different
subroutes which do not violate any constraint. This repair
procedure is very fast and it also introduces a high level
of diversity into the population. This represents an impor-
tant point since in our previous studies (not using GVR)
the population diversity was lost at the end of the evo-
lution (Alba and Dorronsoro 2004; Alba and Dorronsoro
2007).

« Generation of the initial population. The individuals
of the initial population are randomly generated, and then
they are modified as shown in (Pereira et al. 2002) with
the goal of obtaining feasible solutions.

« Recombination operator. PEGA uses the generic
crossover originally proposed in (Pereira et al. 2002).
The main feature of this operator is to promote diversity
in the population. This is a very important feature since in
our previous experiences addressing this problem (Alba
and Dorronsoro 2007; Alba and Dorronsoro 2004; Alba

Algorithm 2 Pseudocode of the recombination operator

// Let I and I5 be the chosen parents from the neighborhood;

Choose a random subroute SR = {a1,...,an} de I

Find the customer ¢ ¢ SR geographically closest to aq

Remove all the customers from I that are included in SR

The offspring is obtained after inserting S R into the genetic material of I; so
that a; is placed just after ¢

iParent 1 \

4 4]

LN

10| If the “\‘ Offspring
e e,

| o / B387
iParent 2 ;S 691105
23 2l Random ,"/

i subroute

Fig. 4. Recombination operator used: Generic crossover

and Dorronsoro 2006), the entire population converges
towards the same local optimum many times. This op-
erator is somewhat unusual because the newly generated
offspring does not only include genetic material from the
two parents but also random components, as shown in
Fig. 4. Algorithm 2 outlines the crossover operator used.
o Mutation. The mutation phase is composed of four
different mutation operators which are applied with dif-
ferent probabilities (only one of them is applied each
time), as proposed in (Pereira et al. 2002). Using
these four mutation procedures allows us to modify the
itinerary of a route, to move customers between routes,
and to add or remove routes. They are (see Fig. 5):

— Swap. It swaps the position of two randomly chosen
customers (belonging to the same route or not).

— Inversion. It reverses the visiting order of the cus-
tomers between two randomly selected points of the per-
mutation. In this case, all the customers must be in the
same route.

— Insertion. It selects a gene (either customer or route
splitter) and inserts it in another randomly selected place
of the same individual.

— Dispersion. It is similar to the Insertion operator, but
it is applied to a subroute (set of customers) rather than
to a single customer.

Swap Inversion

OriginalInd. 12345678 12345678
\/

N
MutatedInd. 1 254367 8| 1265437 8|

Insertion Dispersion

OriginalInd. 1 2345678 (1234567 8]

MutatedInd. 1 2356748| 12673458

Fig. 5. The mutation operators

« Local search. The local search method applies up to
50 steps of I-Interchange (Osman 1993) and then up to
50 steps of 2-Opt (Croes 1958) to each route of the so-
lution reached by I-Interchange. These values were set
after a tuning process. The /-Interchange method lies in
interchanging a customer from a route by other customer
belonging to other route, or inserting a customer from a
route in a different route. On the other hand, 2-Opr al-
ways works on one single route. It removes two edges of
one route and connects the customers in the possible way
(see Fig. 6). Since these two local search methods are
deterministic, the search stops if no improvements have
been reached in one single step. This will allow us to
largely reduce the execution times.

a b a b

{ B o o
o ([} o [}

] =0)

(] o) o

o0 o 0

d c d c

Fig. 6. The 2-Opt operator
EXPERIMENTATION

Recently, Li, Golden and Wasil presented in (Li et al.
2005) a new set of instances for the CVRP which are
mainly characterized by the high number of customers
used. This set of problems was called VLSVRP or Very
Large Scale VRP. The size of the proposed instances
in VLSVRP ranges between 560 and 1200 customers,
whereas the most widely used and accepted benchmarks
in the research community up to now were composed
of instances between 50 and 199 customers in the CMT
case (Christofides et al. 1979), or problems between 200
and 483 customers in (Golden et al. 1998). Some ad-
ditional important characteristics of VLSVRP are: it has
been generated by using an instance generator, thus eas-
ing the creation of instances of larger size (the reader is
referred to (Li et al. 2005) for more details on the in-
stance generator); the generated instances are geometri-
cally symmetric with a circular pattern, which allows the
best solution to be visually estimated; and the instances
of the VLSVRP all include constraints on the maximum
length of the routes.

PEGA has been designed with the aim of being used
to solve the VLSVRP instances. Because of the com-
plexity and large size of these problems, PEGA has been
executed on a grid composed of up to 125 heterogeneous
computers (PCs and Sun workstations/servers). The al-
gorithm is implemented in Java, using ProActive to man-
age all the grid related issues. The parameterization of
PEGA used for the experiments is detailed in Table L.
Concretely, PEGA is composed of 4 islands arranged in
a unidirectional ring. Each island operates the cGA de-
scribed above in Section , using a square toroidal grid of

Estimated solution for VLS26 = 23977.74

600

400
200

S
i

I I I
0 200 400 600

New best solution for VLS26 = 23977.73

600

| & 1z

I I I
0 200 400 600

Fig. 7. New best solution for VLS26. Differences between the new and the previous solution can be noticed in the shadowed area

TABLE I: Parameterization used in PEGA

Population size Islands: 100 Individuals (10 x 10)
Total: 400 Individuals (4 islands)
Neighborhood NEWS

Parent Selection
Recombination

Binary tournament + Current Individual

generic crossover (Pereira et al. 2002), p. = 1.0
Swap (pint = 0.05),

Inversion (piny = 0.1),

Mutation Insertion (pins = 0.05),
and Dispersion (pqisp = 0.15)
Replacement Replace if better

Local Search 1-Interchange + 2-Opt,
50 optimization steps each
Migration Frequency Every 10* evaluations

Stopping Condition 500,000 evaluations in each island

10 x 10 individuals. In the reproductive cycle, one par-
ent is chosen by binary tournament in the neighborhood
of the current individual (this neighborhood is composed
of the individuals in the North, East, West, and South —
NEWS). The other parent is the current individual itself.
The two parents are always recombined (p. = 1.0) by us-
ing the generic crossover operator. The resulting individ-
ual undergoes mutation by one of the operators Swap, In-
version, Insertion, and Dispersion with probabilities 0.05,
0.1, 0.05, and 0.15, respectively (Pereira et al. 2002).
Next, the local search method is applied to the mutated
individual. As explained before, the method firstly exe-
cutes 50 steps of /-Interchange (exploring combinations
of customers among different routes) and then it applies
50 steps of 2-Opt so as to optimize separately each newly
generated route. The resulting offspring replaces the cur-
rent individual in the population if the former has a better
fitness value than the latter.

In the proposed implementation, migration takes place
every 10% evaluations. At each migration operation,
the islands send their best individual to their immediate
neighbor. When a subpopulation receives a migrant, it
replaces the worst individual in the local population.

Table II presents the results of PEGA for the VLSVRP
benchmark (the best result for each instance is marked

in boldface). The table includes the name of the studied
instances, their sizes (number of customers to be served),
the best known solution for each instance (BNS) (Li et
al. 2005), the best and average solutions found by PEGA,
and the average execution time it takes. The fitness values
of the solutions represent the cost in terms of the global
distance traversed by the vehicles.

80 §
701
60 1
50 1
40 -
30 1
20 A
10 4

0 T T T T T T 1
500 600 700 800 900 1000 1100 1200

Size of C

Time (h)

Fig. 8. Computation times of PEGA for different problem sizes

The values in Table II have been obtained after per-
forming four independent runs of the smaller instances
(VLS21 to VLS25) and two independent runs of the re-
maining instances. This small number of independent
runs is due to the very long computational times required
by PEGA to solve the problem, which ranges from 10
hours for the smaller instances to 72 hours in the case of
VLS32. This is motivated by two main issues: (i) on one
hand, the local search is a very high computational de-
manding task, which grows almost exponentially with the
size of the solved instance; (ii) on the other hand, since
the optimal solution is unknown, the stopping condition
is to reach a preprogrammed number of function evalu-
ations, and this number has to be large enough so that
PEGA shall be able to find or even overcome the best
known solution. Figure 8 shows an evolution of the com-
putational times with the size of the instances. As it can
be seen, the grown curve of these times over the increas-
ing problem size is more than linear.

It is remarkable the accurate results despite the low

TABLE II: Results of PEGA for VLSVRP

Instance Size BNS Best Average Time (h)
VLS21 560 16212.835 16212.83 16212.83414.42¢-4 10.08
VLS22 600 14641.64f 14652.28 14755.90195 88 10.08
VLS23 640 18801.135 18801.13 18801.1341432¢—¢6 11.28
VLS24 720 21389.43% 21389.43 21389.431763¢—6 13.20
VLS25 760 17053.26% 17340.41 17423.42475.19 18.00
VLS26 800 23977.745 23977.73 23977.7313.49¢—5 23.76
VLS27 840 17651.607 18326.92 18364.57137.66 26.40
VLS28 880 26566.045 26566.04 26566.0411 33._¢6 30.00
VLS29 960 29154.345 29154.34 29154.3444.24¢—5 39.60
VLS30 1040 31742.64§% 31743.84 31747.511367 48.72
VLS31 1120 34330.94§ 34330.94 34331.54.¢.60 60.00
VLS32 1200 36919.24% 37423.94 37431.73+7.79 74.88

§ Visually estimated solution (Li et al. 2005); + ORTH (Li et al. 2005)

Best Solutions Found

45000

VRTR a=1
VRTR a=0.6
[|= VRTR a=0.4
3000071 & cGA M/S
25000} ™ PEGA

20000

400001

0
a
=}
1S3
S

15000
10000+

Total Travelled Distance
I3
3

o

N 9 o > ® © 1 2 o S N 2
42 9 A2 W 2 9 9 & 3 5) 5!
RSNV RV IR SRRV R R R AR

Fig. 9. PEGA vs. the state-of-the-art for solving the VLSVRP instances

number of independent runs which have been carried out.
Indeed, PEGA reaches the best known solution in 7 out
of the 12 studied instances. Furthermore, PEGA has been
able to improve the best known solution for VLS26. Even
though the difference is very small, they represent very
different solutions, as it can be seen in the shadowed area
of Fig. 7. We also want to note that the best known so-
lutions for all the instances have been visually estimated
by using the geometric properties of the problems, and no
algorithm was able to find them up to this work. In the
case of the instances VLS22 and VLS27, the solutions
were found by different RTR (Record-To-Record) algo-
rithms that were tried in the development phase of VRTR
(an enhanced version of RTR) (Li et al. 2005). However,
neither details on these algorithms nor references to re-
lated works are given in (Li et al. 2005) for further read-
ing on this topic. In Table II, ORTR means Other RTR
algorithms.

Figure 9 shows a comparison between the best solu-
tions obtained by PEGA, a master/slave cGA (called cGA
M/S) with the same configuration used in the cGAs of
the islands of PEGA (except for the termination condi-
tion, which is set to 200,000 evaluations in this case),
and the three algorithms which are the state-of-the-art for
VLSVRP. These three algorithms are different parame-
terizations of VRTR proposed in (Li et al. 2005). As

TABLE III: Difference (%) between the best known solution and the
results of PEGA and the algorithms of the state-of-the-art

Instance (1.8;RTR(S%)V alu%. 4 cGAM/S PEGA

VLS21 2.41 2.56 3.25 0.02 0.00
VLS22 0.07 0.10 0.19 2.17 0.07
VLS23 1.09 1.56 0.20 0.00 0.00
VLS24 1.85 1.06 2.54 5.6le—3 0.00
VLS25 0.58 0.65 0.55 3.53 1.68
VLS26 0.88 0.93 0.13 0.05 0.00
VLS27 0.97 1.61 1.42 4.83 3.83
VLS28 0.15 0.82 0.83 0.00 0.00
VLS29 0.09 0.10 0.85 0.02 0.00
VLS30 0.74 0.69 4.74 0.64 3.78e -3
VLS31 3.02 2.98 5.85 0.35 0.00
VLS32 1.36 1.33 6.76 2.02 1.37
Average 1.10 1.20 2.28 1.14 0.58

it can be seen, PEGA gets equal or lower fitness val-
ues (better results) than cGA M/S for all the tested in-
stances. Regarding the three VRTR versions, PEGA out-
performs them in all the instances but VLS25, VLS27,
and VLS32. In Table III, we present the comparison
among the three VRTR algorithms taken from the liter-
ature (Li et al. 2005), PEGA, and cGA M/S. The com-
parison is made for all the problem instances in terms
of the difference (percentage) between the solution they
reported and the best known solution (best values are in
boldface). This value can be understood as a quality mea-
sure of the results obtained by the algorithms. From the
results, it is noticeable that PEGA is a more robust al-
gorithm with respect to the other compared approaches
in the studied benchmark since it gets the best results
in 9 out of the 12 VLSVRP instances. Additionally,
PEGA obtains the best known solution in 7 instances,
solutions which have never been reached by any algo-
rithm, as stated before. If we compare PEGA with the
c¢GA M/S we can notice that structuring the population in
two different levels (fine- and coarse-grained) is highly
beneficial versus using just one level of decentralization
(the fine-grained model of cGA M/S) for the tested prob-
lems. Indeed, PEGA outperforms our cGA M/S for all
the tested instances.

The last row in Table III shows the average of the
differences between the solutions found by each algo-
rithm and the best known solutions of the 12 VLSVRP
instances. As it can be seen, PEGA gets the lowest
(best) value among the four compared algorithms. In-
deed, this value is half the value of the best VRTR ap-
proach (a = 1.0).

CONCLUSIONS AND FUTURE WORKS

This work presents a very powerful algorithm for solv-
ing extremely hard instances of CVRP. The proposed al-
gorithm, called PEGA, is a distributed GA with four is-
lands, in which each island is in turn a cellular GA. The
population is therefore structured at two levels. Addi-
tionally, and because of the complexity of the studied in-
stances, PEGA has been parallelized using ProActive so
that it can be executed on grid computing platforms. The
parallelization strategy used in each island follows a mas-
ter/slave scheme as well.

PEGA has been compared against the algorithms of the
state-of-the-art for the benchmark of the CVRP which
comprises the largest instances, the set of problems
VLSVRP. As a result, PEGA not only was able to find
the best results in 9 out of the 12 instances, but also it
computed the best known solution for 7 instances (never
found before by any algorithm, but they have been visu-
ally estimated by using their geometric features). PEGA
also found a new best solution for the VLS26 instance.

As very near future work, we are working on increas-
ing the number of independent runs of our experiments,
because we want to provide the results with statistical
confidence. We are also planing to reduce the computa-
tional times by increasing the size of our grid computing
platform as well as by improving the algorithm to make
it more efficient. In this second issue, our idea is to fo-
cus on developing new improved local search methods,
because it is the most computationally costly step of the
reproductive cycle.

ACKNOWLEDGEMENTS

The authors are partially supported by the Span-
ish Ministry of Education and Science, and by Eu-
ropean FEDER under contract TIN2005-08818-C04-01
(the OPLINK project, http://oplink.lcc.uma.es).

REFERENCES

Alba, E. 1999. “Andlisis y disefio de algoritmos genéticos paralelos
distribuidos,” Ph.D. dissertation, Universidad de Mdlaga, Malaga.
Alba, E. and Dorronsoro, B. 2004. “Solving the vehicle routing prob-
lem by using cellular genetic algorithms,” in Evolutionary Computa-
tion in Combinatorial Optimization — EvoCOP04, ser. LNCS, J. Got-
tlieb and G. R. Raidl, Eds., vol. 3004. Coimbra, Portugal: Springer
Verlag, 11-20.

Alba, E. and Dorronsoro, B. 2006. “Computing nine new best-so-far
solutions for capacitated VRP with a cellular genetic algorithm,” In-
formation Processing Letters, 98(6):225-230.

Alba, E. and Dorronsoro, B. 2007. Engineering Evolutionary Intelli-
gent Systems, ser. Studies in Computational Intelligence. Springer-
Verlag, ch. 13, “A Hybrid Cellular Genetic Algorithm for the Capac-
itated Vehicle Routing Problem”.

Alba, E. and Tomassini, M. 2002. “Parallelism and evolutionary al-
gorithms,” IEEE Transactions on Evolutionary Computation,
6(5):443-462.

Canti-Paz, E. 2000. Efficient and Accurate Parallel Genetic Algo-
rithms, 2nd ed., ser. Book Series on Genetic Algorithms and Evo-
lutionary Computation. Kluwer Academic Publishers, vol. 1.

Cordeau, J.; Gendreau, M.; Hertz, A.; Laporte, G. and Sormany J.
2005 New Heuristics for the Vehicle Routing Problem. Logistics
Systems: Design and Optimization, A. Langevin and D. Riopel,
eds., Springer, New York, 279-297.

Christofides, N.; Mingozzi, A. and Toth, P. 1979. Combinatorial Opti-
mization. John Wiley, 1979, ch. “The Vehicle Routing Problem,”
315-338.

Croes, G. 1958. “A method for solving traveling salesman problems,”
Operations Research, 6:791-812.

Dantzing, G. and Ramster, R. 1959. The truck dispatching problem.
Management Science 6, 80-91.

Golden, B.; Wasil, E.; Kelly, J. and Chao I.-M. 1998. Fleet Manage-
ment and Logistics. Boston: Kluwer, 1998, ch. “The Impact of
Metaheuristics on Solving the Vehicle Routing Problem: algorithms,
problem sets, and computational results,” 33-56.

Lenstra, J. and Kan, A.R. 1981. “Complexity of vehicle routing and
scheduling problems,” Networks, vol. 11, 221-227.

Li, F.; Golden, B. and Wasil, E. 2005. “Very large-scale vehicle rout-
ing: New test problems, algorithms, and results,” Computers & Op-
erations Research, vol. 32, 1165-1179.

Osman, I. 1993. “Metastrategy simulated annealing and tabu search al-
gorithms for the vehicle routing problems,” Annals of Operations
Research, 41:421-451.

Pereira, F.; Tavares, J.; Machado, P. and Costa, E. 2002. “GVR: a new
representation for the vehicle routing problem,” in /3th Irish Con-
ference Proceedings on Artificial Intelligence and Cognitive Science
(AICS), M. O. et al., Ed. Ireland: Springer-Verlag, 95-102.

“ProActive official web site,” http://www-sop.inria.fr/oasis/proactive/

Toth, P. and Vigo, D. 2001. The Vehicle Routing Problem, ser. Mono-
graphs on Discrete Mathematics and Applications, P. Toth and
D. Vigo, Eds. Philadelphia: STAM.

