Towards a Napster-Like P2P B&B algorithm

M. Mehdi, M. Mezmaz, N. Melab and E-G. Talbi
Laboratoire d’Informatique Fondamentale de Lille
UMR CNRS 8022, INRIA Futurs - DOLPHIN Project
Cité scientifique - 59655, Villeneuve d’Ascq cedex - France
{mehdi,mezmaz,melab,talbi }@Qlifl.fr

Abstract— The Branch and Bound (B&B) algorithm
is one of the most used methods to solve in an exact
way combinatorial optimization problems. In a previ-
ous article, we proposed a new approach of the parallel
B&B algorithm for distributed systems. This approach
is based on a new way to efficiently deal with some cru-
cial issues met in distributed systems. The new method
is used to propose a parallilization of the B&B with the
farmer-worker paradigm. The obtained resluts show the
efficiency and the scalability of the approach.

However, the new farmer-worker approach has a dis-
advantage: some nodes of the B&B tree can be explored
by several B&B processes. To avoid this redundant
work, we propose a new approach based on the Napster-
like Peer-to-Peer(P2P) model. Validation is performed
by experimenting the approach on a bi-objective flow-
shop problem instance that has never been solved ex-
actly. The obtained results, after 15 days on computa-
tion pool of about 2500 processors, belonging to 8 distinct
clusters, prove the efficiency of the proposed approach.
Indeed, the peer processors were exploited on average
to 99.3% while the index processor was exploited 0.01%.

Keywords— Branch and Bound, Parallel Computing,
Peer-to-Peer Computing, Flow-Shop Problem.

I. INTRODUCTION

Combinatorial optimization addresses problems for
which the resolution consists in finding the (near-
Joptimal configuration(s) among a large finite set of
possible configurations. In practice, most of these prob-
lems are naturally NP-hard and complex. The Branch
and Bound (B&B) algorithm is one of the most pop-
ular methods to solve exactly this kind of problems.
This algorithm allows to reduce considerably the com-
putation time required to explore all the solution space
associated with the problem being solved. However, the
exploration time remains considerable, and using par-
allel processing is one of the major and popular ways
to reduce it. Many parallel B&B approaches have been
proposed in the literature. A taxonomy of associated
parallel models is presented in [12]. Four models are
mainly identified and studied within the context of dis-
tributed computing. The parallel exploration of the
search tree is one the most used one.

[13] proposes a farmer-worker approach based on spe-
cial coding of the explored tree and the work units.
These codings allow to optimize the dynamic distri-
bution and check-pointing mechanisms on distributed
systems, to implicitly detect the termination of the al-

This work is part of the CHallenge in Combinatorial Optimiza-
tion (CHOC) project supported by the National French Research
Agency (ANR) through the Hign-Performance Computing and
Computational Grids (CIGC) programme.

Proceedings 21st European Conference on Modelling and Simulation

Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

gorithm, and to efficiently share the global informa-
tion. The algorithm has been applied to the flow-
shop scheduling problem, one of the hardest challeng-
ing problems in combinatorial optimization. Using the
new approach, the problem instance (50 jobs on 20 ma-
chines) has been optimally solved for the first time. The
method allows not only to improve the best known so-
lution for the problem instance but it also provides a
proof of the optimality of the provided solution.

However, the new farmer-worker approach has a dis-
advantage: some nodes of the tree can be explored by
several B&B processes. To avoid this redundant work,
it is indispensable for the B&B processes to commu-
nicate and cooperate during the resolution. The ap-
proach thus must be deployed according to the (Peer-
to-Peer)P2P paradigm. The strategies of Napster [9]
and Gnutella [11] are the two main approaches used
in P2P systems. Unlike the approach of Gnutella, the
model of Napster requires minor modifications to adapt
the farmer-worker paradigm and to get a P2P deploy-
ment without a redundancy in the tree exploration.
To the best of our knowledge, the presented approach
in this paper is the first use of the Napster-like P2P
model for computing systems. The goal of the new
approach is to be as efficient as the farmer-worker ap-
proach, to avoid the redundancy in work during the
exploration of the B&B tree, and to prove that Napster-
like P2P model is efficient for computing systems. Un-
like the farmer-worker approach, the Napster-like P2P
approach can be compared easily with the sequential
B&B since no node of the tree is visited more than one
time.

The rest of the paper is organized as follows. Sec-
tion IT and Section III give an overview of the B&B
algorithm, its parallelization, and related works. The
parallel approach proposed in [13] is described in Sec-
tion ITII. Section V presents its implementation based
on the farmer-worker paradigm. In Section VI, we de-
scribe our new Napster-like P2P approach for the paral-
lelization of the B&B algorithm. Section VII presents
the experiment performed on a bi-objective flow-shop
instance to evaluate the quality of the approach. Sec-
tion VIII draws some conclusions and perspectives of
this work.

II. PARALLEL B&B ALGORITHM

Solving a problem in combinatorial optimization con-
sists in exploring a search space to provide a (near-
Joptimal solution. To each candidate solution of the

search space is associated a cost. Solving exactly a
combinatorial optimization problem consists in finding
the solution having the optimal cost. For this purpose,
the B&B algorithm is based on an implicit enumera-
tion of all the solutions of the considered problem. The
search space is explored by dynamically building a tree
whose root node represents the problem being solved
and its whole associated search space. The leaf nodes
are the potential solutions and the internal nodes are
subspaces of the total solution space. The size of these
subspaces is increasingly reduced as one approaches the
leaves.

The construction of such a tree and its exploration
are performed using four operators: branching, bound-
ing, selection and elimination. The algorithm proceeds
in several iterations during which the best solution
found so far is progressively improved. The generated
and not yet treated nodes are kept in a list whose ini-
tial content is limited to only the root node. The four
operators intervene at each iteration of the algorithm.
The B&B makes it possible to reduce considerably the
computation time necessary to explore the whole so-
lution space. However, this remains considerable and
parallel processing is thus required to reduce the explo-
ration time.

In [12], four parallel models are identified for B&B
algorithms: (1) the parallel multi-parametric model, (2)
the parallel tree exploration, (3) the parallel evaluation
of the bounds, and (4) the parallel evaluation of a single
bound. The model (1) consists in launching simultane-
ously several B&B processes. These processes differ by
one or more operators, or have the same operators, but
parameterized differently. The trees explored in this
model are not necessarily the same. Model (1) guaran-
tees the implicit exploration of the whole solution space.
Like model (1), model (2) also consists in launching
several B&B processes. However, all the processes in
model (2) are similar, and explore simultaneously the
same tree. Among the four models, this model is the
most popular and studied one. Unlike the two previ-
ous models, models (3) and (4) suppose the launching
of only one B&B process. They do not allow to paral-
lelize the whole B&B algorithm as both models (1) and
(2) do, but they parallelize only the bounding opera-
tor. In model (3), each process evaluates the bounds
of a distinct pool of nodes, while in model (4) a set
of processes evaluate in parallel the bound of a single
node.

In [12], an analysis of these different parallel models
is presented within the context of distributed comput-
ing systems. Distributed systems in general, and P2P
systems in particular, exploit the resources of a great
number of machines. These resources can be proces-
sors, memories or others. A distributed system aims at
giving the illusion of a very powerful virtual machine. It
makes it possible to solve problems which require very
long execution time. Since distributed systems are dis-

tributed memory systems, the parallel tree exploration
model is more suitable for these environments.

III. RELATED WORKS

Many parallel B&Bs on distributed computing sys-
tems are described in the literature. [12], [5] and [15]
present different parallel strategies for the B&B algo-
rithm. On the distributed systems, the B&B algo-
rithm is often deployed according to the master-slave
paradigm. The master manages the list of the not yet
explored nodes and distributes nodes to the slave ma-
chines. A slave machine receives one node only from the
master, explores the subtree of which the received node
is the root, and returns to the master all not explored
nodes. From a deployment to another, what change of-
ten is the condition of returning these nodes. In [3], a
slave machine returns all the not explored nodes after a
hundred seconds. In [1], a slave machine explores only
the son nodes of the received node, and returns the re-
sult to the master.

The best parallel efficiency recorded by [3], on a plat-
form of 185 processors, is equal to 85.6%. This result
is obtained by exploiting on average only 17 proces-
sors during this test. While the best parallel efficiency
recorded by [1], on a grid of 128 processors, is equal
to 71%. Besides, [2] shows the limits of this paradigm
and the used load balancing strategy. [2] advises to
use to the hierarchical master-slave paradigm. How-
ever, by using 348 processors organized with hierarchi-
cal master-slave paradigm, the best parallel efficiency
obtained by [2] is about 33%.

[8] proposes an original P2P strategy. These strategy is
often referenced in the combinatorial optimization lit-
erature on distributed systems. However, the obtained
parallel efficiency are less of the one obtained in [3].
Indeed, [8] obtains 84.4% on a simulator of 100 proces-
Sors.

IV. FoLp-UNFOLD APPROACH

The proposed approach in [13] is based on the parallel
tree exploration model with a depth first search strat-
egy. This approach is focused on the list of active nodes.
The B&B active nodes are those generated but not yet
treated. During a resolution, this list evolves constantly
and the algorithm stops once it becomes empty. Any
list of active nodes covers a set of tree nodes. This set
is made up by all nodes which can be explored from a
node of this active list. The principle of the approach
is based on the assignment of a number to each node
of the tree. The numbers of any set of nodes, covered
by a list of active nodes, always form an interval. The
approach thus defines a relation of equivalence between
the concept of list of active nodes and the concept of
interval. So, it is possible to deduce a list of active
nodes from an interval, and an interval from a list of
active nodes. As its size is reduced, the interval is used
for communications and check-pointing, while the list
of active nodes is used for exploration.

In order to pass from one concept to the other, the ap-
proach defines two additional operators: the fold opera-

tor and the unfold operator. The fold operator deduces
an interval from a list of active nodes, and the unfold
operator deduces a list of active nodes from an interval.

V. FARMER-WORKER PARALLEL APPROACH

Fold and Unfold operators can be used for the par-
allelization of the B&B according to different parallel
paradigms. In [13], the selected paradigm is the farmer-
worker one. In this paradigm, only one host plays the
role of the farmer, and all the other hosts play the role
of a worker. This paradigm is relatively simple to be
used. Its major disadvantage is that the farmer can
constitute a bottleneck. However, communicating and
handling intervals instead of list of active nodes make
it possible to reduce the communication costs and the
farmer work. This paradigm is thus selected in [13] to
test the fold-unfold approach. The goal is to show that
the approach makes it possible to push the limit of this
paradigm as for the bottleneck, and to have thus a more
scalable approach.

In the adopted farmer-worker approach, the workers
host as many B&B processes as they have processors,
and the farmer hosts the coordinator. Each B&B pro-
cess explores an interval of node numbers, and manages
local solution set. To get a work, a B&B process ob-
tains an interval from the coordinator, deduces a list
of nodes from this interval using the unfold operator,
and explores this node list. To do a check-point, a
B&B process deduces an interval from the list of not
treated nodes using the Fold operator, and communi-
cates this interval to the coordinator. The cost of the
fold and unfold operators are infinitely negligible com-
pared to the time devoted to exploring the B&B tree.
On the other hand, the coordinator keeps a copy of all
the not yet explored intervals, and manages global so-
lution set. The copies of the intervals are kept in a set
noted INTERV ALS, and the solutions of the global
solutions in another set noted SOLUTIONS. Fig. 1
gives an example with three B&B processes and a co-
ordinator. In this example, three intervals are being
explored, and the fourth one is waiting for a free avail-
able B&B process.

11— 5

9p———419 | Coordinator
20p———422 /Farmer
25p——440

16—¢5 Op——419

20p———+422

B&B process B&B process B&B process
/Worker /Worker /Worker

Fig. 1. An example with B&B processes and a coordinator

In addition to balancing the load between B&B pro-
cesses, other problems must be taken into account. In-
deed, the B&B processes make two assumptions about

the workers. They suppose that they are likely to break
down and not necessary dedicated. Consequently, these
processes are fault tolerant and are launched according
to the cycle stealing model. The only assumption of the
coordinator about the farmer is that it can fail. The
coordinator manages only the possible failures of the
farmer.

The approach presented in [13] has been implemented
following a large scale idle time stealing paradigm
(Farmer-Worker). It has been experimented on a flow-
shop problem instance (T'a056) that has never been
optimally solved. The new algorithm allowed to re-
alize a success story as the optimal solution has been
found with proof of optimality, within 25 days using
about 1900 processors belonging to 9 Nation-wide dis-
tinct clusters (administration domains). During the
resolution, the worker processors were exploited with
an average of 97% while the farmer processor was ex-
ploited only 1.7% of the time. These two rates are
good indicators on the efficiency of this approach and
its scalability.

VI. NAPSTER-LIKE P2P APPROACH

However, the presented farmer-worker approach in
[13] has a disadvantage: some nodes of the tree can be
explored by several B&B processes. Let [A,B[an inter-
val being explored by a holder B&B process, and [A’,B’|
its copy in the coordinator. As explained in [13], the
interval [A’B’[can be divided into two intervals [A’,C[
and [C,B’[. This occurs after a request from requesting
B&B process. After this division, [C,B’[is explored by
the requesting process, while the holder process con-
tinues the exploration of [A,B[. However, [C,B’[and
[A,B[are not completely disjoint. Consequently, the
same nodes of the tree can be explored by the two pro-
cesses.

To avoid this redundant treatment, it is indispens-
able for requesting and holder processes to coordinate
their intervals. Before beginning the exploration of
the received interval, the requesting process must make
sure that the two intervals are disjoint. It is essential
to requesting process to contact the process holder in
order to refine the division. The holder process is then
given the responsibility to determine the intervals that
each of the two processes must explore. This is done
by the intersection and subtraction operators. These
two operators are noted N and \, respectively. The
equations (1) and (2) define them.

[4, B[N[C, D]
= (1)
[maz (A, C), min(B, D)]

[4, B\[C, D]

(2)
(X/X € [A,B[and X ¢ [C,D[}

Let [A,B][the interval of the holder process, and [C,D[
the received interval by the requesting process. The
holder process proceeds in two stages. First, it sub-
tracts from [C,D] the already explored interval by the

holder process. Then, it subtracts [A,B[from the given
interval to the requesting process. In other words,
[C, D[and [A, B[become equal to [C, D[N[A, B[and
[A, B[\[C, D|, respectively. Once this new division fin-
ished, both intervals obtained are completely disjoint,
and both processes can continue the exploration of their
interval. This new strategy thus ensures that no nodes
is explored twice.

Unlike the previous approach, this new approach sup-
poses that a B&B process can be contacted by another
B&B process. Indeed, the B&B processes send requests
to the coordinator and to the other B&Bs processes,
and can receive requests from any B&B process. The
approach thus must be deployed according to the P2P
paradigm. In this new approach, a peer hosts as many
B&B processes it has processors. The intervals con-
stitute the handled resources. In a P2P deployment,
one important issue must be taken into account: the
resource discovery and their routing.

The resource discovery consists in identifying the
peer able to provide the required resource. As indi-
cated in [4], the strategies of Napster [9] and Gnutella
[11] are the two main approaches used in P2P systems.

In Naspter, the resource discovery is centralized, and
based on an index peer which stores the peer-resource
relations. When a peer seeks a resource, it obtains from
the index the address of the peer having this resource.

Unlike the centralized strategy of Napster, the re-
source discovery in Gnutella is completely distributed.
In Gnutella, a peer is connected only by its neigh-
bors. They are logical neighbors and the set of con-
nections forms logical topologies. To find a resource, a
peer broadcast a message to its neighbors in this logi-
cal topology. The request is propagated by a neighbor
to its own neighbors. A peer, which receives the re-
quest and which has the required resource, does not
propagate the message, and returns the resource to the
requesting peer.

Peerl : Resl, Res2
Peer2 : Res3

Peer3 : Res4, Res5
Peer4 : Res6, Res7, Res8

Discovery
request

Resl Res3 Res4 Res6
Res2 Res5 Res7
Res8

Fig. 2. Resource discovery in Napster

To deploy the B&B, our approach is based on the re-
source discovery model of Napster. Unlike the approach
of Gnutella, the model of Napster requires minor mod-
ifications to adapt the farmer-worker paradigm, and to
get a P2P deployment without a redundancy in the tree

exploration. The coordinator process plays the role of
index, and the worker processes the role of the peers. In
the farmer-worker paradigm, the coordinator returns to
a worker an interval. In this new strategy, the index re-
turns to a peer the resource and the address of the peer
which holds this resource. As already explained, this
resource is an interval. Then, the requesting peer con-
tacts the holder peer of the received interval in order to
make disjoint the intervals of the holder and requesting
peers.

Discovery
request

Discovery

Discovery
request

request

Discovery
request

Fig. 3. Resource discovery in Gnutella

VII. EXPERIMENTATION
A. Bi-objective permutation flow-Shop problem

The flow-shop problem is one of the numerous
scheduling multi-objective problems [14] that has re-
ceived a great attention given its importance in many
industrial areas. The problem can be formulated as
a set of N jobs Jy,Js,...,Jx to be scheduled on M
machines. The machines are critical resources as each
machine can not be simultaneously assigned to two
jobs. Each job J; is composed of M consecutive tasks
ti1,...,tin, where t;; designates the j task of the job
J; requiring the machine m;. To each task t;; is asso-
ciated a processing time p;;, and each job J; must be
achieved before a due date d;.

The problem being tackled here is the bi-objective per-
mutation flow-shop problem where jobs must be sched-
uled in the same order on all the machines. There-
fore, two objectives have to be minimized: (1) Cpraz:
makespan (Total completion time), (2) T total tardi-
ness. The task ¢;; being scheduled at time s;;, the two
objectives are NP-hard[7][10], and can be formulated
as follows:

Crae = Max{sip + pim|i € [1... N}

T= Zf\; [maz(0, sip + pine — di)]

The application of the proposed approach to the flow-
hop problem has been experimented on one of the in-
stances proposed by [6]. More exactly, it is an instance
generated for problems of 50 jobs on 5 machines in

which only the makespan! is considered. The instance
has been extended with the tardiness® as the second
objective. Such instance has never been solved exactly
in its bi-objective formulation.

B. The experimentation platform

The method is tested on the computational pool de-
tailed in Table I. It is made up of approximately 2, 500
processors belonging to 8 clusters. These clusters be-
long to Grid’50002. Grid’5000 is a Nation-wide exper-
imental grid composed by 9 clusters distributed over
several French universities (Bordeaux, Grenoble, Lille,
Nancy, Orsay, Rennes, Sophia, Toulouse). The eight
exploited clusters are those of Bordeaux, Lille, Nancy,
Orsay, Rennes, Sophia, Toulouse. All the machines
of Grid’5000 are dedicated bi-processors, and inter-
connected by the Ethernet Gigabit, using RENATER*
nation-wide network.

CPU model | Cluster | Number of CPU
AMD 2.2 Bordeaux 2x58
Xeon 3.0 2x43
AMD 2.2 Lille 2x53
AMD 2.6 2x46
AMD 2.0 Lyon 2x56
AMD 2.4 2x70
AMD 2.0 Nancy 2x47
Xeon 1.6 2x120
AMD 2.0 Orsay 2x216
AMD 2.4 2x126
AMD 2.2 Rennes 2x64
AMD 2.0 2x100
AMD 2.0 2x74
AMD 2.2 Sophia 2x56
AMD 2.6 2x50
AMD 2.2 Toulouse 2x58

Total 2,474

TABLE I: The computational pool

C. Ezperimental results

After about 15 days of computation, the experiment
did not make it possible to solve the instance. How-
ever, the recorded statistics seem enough to evaluate
the quality of the approach. Table II summarizes the
most important statistics recorded during the resolu-
tion. The experiment lasted approximately 15 days,
with an average of 655 processors, a maximum of 1, 606
available processors, and a cumulative computation
time of about 26 years. About 7 billion nodes were
explored.

As Table II indicates, more than 4 million check-
point operations were done by the B&B processes, while
the index did its check-point about 7 hundred times.

Lhttp://www.eivd.ch/ina/Collaborateurs/etd/default.htm
2http://www.lifl.fr/OPAC/

Shttp://www.grid5000.fr

4http://www.renater.fr

These check-point operations have allowed the fault
tolerance mechanism to face the thousands of failures
which have occurred. Indeed, more than 150 thousand
failures of the peers and 31 failures of the index were
recorded.

The peer processors were exploited on average to
99.3% while the index processor was exploited 0.01%.
These two rates are good indicators on the parallel effi-
ciency of this approach and its scalability. In a Napster-
like P2P paradigm, a good approach must maximize
the exploitation rate of the peer processors and must
minimize the exploitation rate of the index processor.

Running wall clock time 15 days
Total CPU time 26 years
Average number of peers 655
Maximum number of peers 1,606
Number of explored nodes 6,782,787,073
Index check-point operations 698
Peer check-point operations 4,581,950
Peer failures 169,141
Index failures 31
Peer CPU exploitation 99.3%
Index CPU exploitation 0.01%

TABLE II: The computation statistics

VIII. CONCLUSIONS AND FUTURE WORKS

Solving exactly large instances of combinatorial opti-
mization problems requires a huge amount of computa-
tional resources. Parallel Branch and Bound(B&B) al-
gorithms based on the parallel exploration of the search
tree have successfully been applied to solve these prob-
lems. However, experiments are often limited to few
tens of processors. Designing and implementing B&B
algorithms for a large scale computational distributed
systems is a great research challenge as several crucial
issues must be tackled. In [13], we have proposed a new
B&B algorithm with new approaches allowing to effi-
ciently tackle the problems met in distributed systems.
The approach consists in an efficient coding associated
with the explored tree and work units (collections of
nodes). The approach has been implemented following
a large scale idle time stealing farmer-worker paradigm.
The obtained resluts show the efficiency and the scala-
bility of the approach.

However, the new farmer-worker approach has a dis-
advantage: some nodes of the B&B tree can be explored
by several B&B processes. To avoid this redundant
work, we propose a new approach based on the Napster-
like Peer-to-Peer(P2P) model. Validation is performed
by experimenting the approach on a bi-objective flow-
shop problem instance that has never been solved ex-
actly. The obtained results, after 15 days on a com-
putation pool of about 2500 processors, belonging to
8 distinct clusters, prove the efficiency of the proposed
approach. Indeed, the peer processors were exploited
on average to 99.3% while the index processor was ex-
ploited 0.01%. These two rates are good indicators on

the parallel efficiency of this approach and its scala-
bility. To the best of our knowledge, the presented ap-
proach is the first use of the Napster-like P2P model for
computing systems. The new approach is as efficient as
the farmer-worker approach, avoid the redundancy in
work during the exploration of the B&B tree, and prove
that Napster-like P2P model is efficient for computing
systems.

Unlike the farmer-worker approach, the Napster-like
P2P approach can be compared easily with the sequen-
tial B&B since no node of the tree is visited more than
one time. We plan to study the variation of efficiency
according to the number of peers. It is also planned to
use the approach with an other P2P paradigm to push
far the scalability limits of the Napster-like P2P model.
The objective is to exploit more and more processors
and to solve more and more complex instances.

ACKNOWLEDGMENT

We would like to thank the National French Re-
search Agency (ANR). This work is part of the CHal-
lenge in Combinatorial Optimization (CHOC) project
supported by the ANR through the High-Performance
Computing and Computational Grids (CIGC) program.
Our thanks are also addressed to the persons in charge,
to the engineers and to the technicians of the Grid’5000
clusters.

REFERENCES

[1] K. Aida and Y. Futakata. High-performance parallel and
distributed computing for the BMIeigenvalue problem. Par-
allel and Distributed Processing Symposium., Proceedings
International, IPDPS 2002, Abstracts and CD-ROM, pages
71-78, 2002.

[2] K. Aida and T. Osumi. A case study in running a parallel
branch and bound application on the grid. Applications and
the Internet, 2005. Proceedings. The 2005 Symposium on,
pages 164-173.

[3] K. Anstreicher, N. Brixius, J.P. Goux, and J. Linderoth.
Solving large quadratic assignment problems on computa-
tional grids. Mathematical Programming, 91(3):563-588,
2002.

[4] Franck Cappello. Calcul Global Pair a Pair : extension des
systemes Pair a Pair au calcul. Lettre de I’IDRIS, pages
14-25, month=Janvier,, 2002.

[5] D.Gelenter and T.G.Crainic. Parallel Branch and Bound Al-
gorithms: Survey and Synthesis. Operation Research, pages
42:1042-1066, 1994.

[6] E.Taillard. Banchmarks for basic scheduling problems. Eu-
ropean Journal of European Research, pages 23:661-673,
1993.

[7] Johnson D.S. Garey M.R. and Sethi R. The complexity of
flow-shop and job-shop scheduling. Mathematics of Opera-
tions Research, 1:117-129, 1976.

[8] A. Iamnitchi and I. Foster. A Problem-Specific Fault-
Tolerance Mechanism for Asynchronous, Distributed Sys-
tems. 29th International Conference on Parallel Processing
(ICPP), Toronto, Canada, August, pages 21-24, 2000.

[9] N.Inc. The Napster homepage. Online: hitp://www. nap-
ster. com, 2000.

[10] Du J. and Leung J. Y.-T. Minimizing Total Tardiness on
One Machine is NP-hard. Mathematics of operations re-
search, 15:483-495, 1990.

[11] G. Kan. Gnutella. Peer-to-Peer: Harnessing the Benefits
of a Disruptive Technology, 2001.

[12] N. Melab. Contributions & la résolution de problémes
d’optimisation combinatoire sur grilles de calcul. PhD the-
sis, LIFL, USTL, Novembre 2005.

[13] M. Mezmaz, N. Melab, and E-G. Talbi. A Grid-enabled
Branch and Bound Algorithm for Solving Challenging Com-
binatorial Optimization Problems. In In Proc. of 21th

IEEE Intl. Parallel and Distributed Processing Symp., Long
Beach, California, March 2007.

[14] V. T’kindt and J-C. Billaut. Multicriteria Scheduling - The-
ory, Models and Algorithms. Springer-Verlag, 2002.

[15] H. Trienekens and A. de Bruin. Towards a taxonomy of
parallel branch and bound algorithms. Report EUR-CS-
92-01, Department of Computer Science,Erasmus University
Rotterdam, 1992.

