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Abstract

We describe a distributed computing platform to lead
large scale dictionary attacks against cryptosystems com-
pliant to OpenPGP standard. Moreover, we describe a sim-
plified mechanism to quickly test passphrases that might
protect a specifiedprivate key. Only passphrases that pass
this test complete the full (much more time consuming) val-
idation procedure. This approach greatly reduces the time
required to test a set of possible passphrases.

1 Introduction

A dictionary attack is a technique for defeating a cryp-
tographic system by searching its decryption key or pass-
word/passphrase in a list of words or combinations of these
words. Although it is widely accepted that the main fac-
tor for the success of a dictionary attack is the choice of a
suitable list of possible words, the efficiency and reliabil-
ity of the platform used for the attack may become critical
factors as well. Hereafter, we present a distributed architec-
ture for performing dictionary attacks that can exploit re-
sources available in local/wide area networks (in P2P style)
by hiding all details of communication among participating
nodes. As an example of possible cryptographic challenge
for which the platform can be used, we selected the decryp-
tion of the privatekeyringof the GnuPG software package.
From this viewpoint, the present work can be considered a
replacement and an extension ofpgpcrack(that is no longer
available), an utility used for cracking PGP encrypted files.
Note that the structure of the OpenPGPsecring is much
more complex with respect to the original PGP. To the best
of our knowledge, no equivalentfast cracking system ex-
ists for OpenPGP. Other scalable distributed cracking sys-

tems were proposed in [3] and [9]. Due to the lack of space
we can not present a detailed comparison, but we just men-
tion that our system pays much more attention to reliability
and portability issues than the cited systems. The paper is
organized as follows: Section 2 describes the features of
OpenPGP, the standard to which GnuPG makes reference;
Section 3 describes our approach to the attack of the GnuPG
keyring; Section 4 introduces the architecture we propose
for the distributed attack; Section 5 gives some information
about the current implementation; in Section 6 we present
some preliminary results and, finally, Section 7 concludes
with future perspectives of this activity.

2 OpenPGP Standard

OpenPGP is a widely used standard for encryption and
authentication of email messages. It is defined by the
OpenPGP Working Group in the Internet Engineering Task
Force (IETF) Proposed Standard RFC 2440 [5]. OpenPGP
derives from PGP (Pretty Good Privacy), a software pack-
age created by Phil Zimmermann in the beginning of
nineties. GnuPG [2] is a well-known example of software
package compliant to OpenPGP standard available in the
public domain. New commercial versions of PGP are also
compliant to OpenPGP standard.

The OpenPGP standard adopts a hybrid cryptographic
scheme. For instance, message encryption uses both sym-
metric and asymmetric key encryption algorithms. The
sender uses the recipient’s public key to encrypt a shared
key (i.e. a secret key) for a symmetric algorithm. That key is
used to encrypt the plaintext of the message. The recipient
of a PGP encrypted message decrypts it using the session
key for a symmetric algorithm. The session key is included
in the message in encrypted form and it is decrypted in turn
by using the recipient’s private key. These keys are stored in
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Figure 1. OpenPGP keyring

Figure 2. The three phases of the attack

two separate data structures, called “keyrings”: private keys
in the private keyring, public keys in the public keyring.
Every keyring is a list of records, each of which associated
to a different key. In order to prevent disclosures, private
keys are encrypted with a symmetric algorithm, by using a
hash of a user-specified passphrase as secret key. For what
concerns GnuPG, as shown in Figure 1, the asymmetric en-
cryption algorithm is El Gamal [7], the hash algorithm is
SHA1 [6] and the symmetric encryption is CAST5 [4], used
in CFB mode [5].

3 Attack Strategy

One of the most critical issues regarding OpenPGP se-
curity is the secrecy of passphrases protecting private keys.
The knowledge (by any means achieved) of the passphrase
allows a malicious user to perform critical operations as sig-
nature and decryption of messages belonging to the legiti-
mate owner of the passphrase. For this reason, the goal of
the attack is to find the passphrase, starting from a private
keyring in OpenPGP format. The attack is divided in three
phases, each of which receives as input the output of the
preceding step, as shown in Figure 2.

The first phase is devoted to build the dictionary used
for passphrases generation that represents the second phase.
The third phase consists of the test of every generated
passphrase.

3.1 Dictionary Compilation Phase

In this phase, the basic dictionary is created starting from
a set of text files. This a pretty simple procedure: each dif-
ferent word is placed in the list that constitutes the dictio-

Figure 3. The first phase: the build of the dic-
tionary

nary. In order to increase chances of success, the content of
these text files should contain information somehow related
to the legitimate owner of the passphrase under attack. This
process is depicted in Figure 3.

3.2 Passphrase Generation Phase

This second phase produces a list of passphrases by ap-
plying a set of generation rules to all words found in the
dictionary. Every rule involves the current word and a cho-
sen number of subsequent words and allows for the gen-
eration of passphrases, by performing permutations of the
order of words and/or substitutions of single characters. In
this way, the obtained passphrases are reasonably compliant
with rules of natural language.

For instance, if we apply rules that involve a word and
four subsequent words to generate passphrases with a length
ranging from one to five words, for each word in the dictio-
nary we obtain 39 possible passphrases:

• the current word as in the dictionary, then the same
word with all lower case letters and all upper case let-
ters (3 passphrases).

• the current word and the following one, taken in the
original order and in the reverse order, with all lower
case letters, all upper case letters and the unmodified
case (6 passphrases).

• all possible permutations of the current word and the
two subsequent words, with all lower case letters and
all upper case letters (18 passphrases).

• the current word and the three subsequent words, taken
with the order and the case in the dictionary and in
reverse order, with all lower case letters and all upper
case letters (6 passphrases).

• the current word and the four subsequent, taken with
the order and the case in the dictionary and in reverse
order, with all lower case letters and all upper case let-
ters (6 passphrases).



Figure 4. The second phase: generation of
passphrases.

Figure 5. The third phase: verification of the
passphrase.

Note that in the generation of passphrases with four and
five words, some permutations are not considered, since
they yield sequences unlikely for human memorization. The
generation phase is depicted in Figure 4.

3.3 Passphrase Verification Phase

This phase is thecoreof the attack and the most expen-
sive from the computational point of view. Each passphrase
generated in the previous phase is checked by following an
incrementalapproach aimed at minimizing the cost of the
controls required by the OpenPGP standard. For this rea-
son, a symmetric key for CAST5 algorithm is derived from
every passphrase, by applying the SHA1 algorithm in iter-
ated and salted mode. Such a key is used to try a decryption
of encrypted components relating to private key. This pro-
cess is represented in Figure 5.

In order to check whether the passphrase under test is
the right one, it is necessary to verify the plaintext obtained
from the decryption procedure. This operation is performed
taking into account how the OpenPGP standard represents
components relating to private keys in keyrings.

Figure 6. Validation test

As shown in Figure 6, a private key is represented as a
Multi Precision Integer (MPI), followed by its hash, com-
puted with SHA1. For this reason, in the first step we verify
if the left part of plaintext is a well-formed MPI. In case of
success, we double check whether the result of SHA1 ap-
plied to the MPI matches with the hash found in the plain-
text. Only for those passphrases that pass this second test,
we control the fulfillment of the algebraic relationship that
should be between the MPI and the corresponding public
key. If this final check is successful, then the passphrase
under test is the correct one. Note that the first two controls
have a low computational cost but they may producefalse
positives. The last control isexactbut it is very expensive
from the computational viewpoint. GnuPG does not carry
out the first control that is already very selective. By fol-
lowing this multi-step procedure our validation test is much
more effective.

4 Distributed Architecture

The attack described in the previous section has been de-
ployed over a loosely coupled distributed architecture. The
three phases of the attack are scattered over the nodes of this
network. There is a main node and two different groups of
peers that share their computational resources.

4.1 General Requirements

Since this network has been conceived to work with het-
erogeneous systems in a geographic context, the proposed
architecture guarantees the following requirements:

scalability: the number of network nodes can be increased,



Figure 7. Nodes organization.

augmenting the overall computational power.

load balancing: the computational load must be dis-
tributed among nodes in proportion to their capabili-
ties, so that to avoid local starvation.

flexibility: since the availability of each node in the net-
work is aleatory, the architecture must be able to adapt
itself to variations of available resources by changing
the distribution of charge.

fault tolerance: possible failures of a node must not sub-
vert the overall computation, thus the system must able
to re-assign the workload and to resume local compu-
tation.

4.2 Overall Organization

The proposed architecture consists of three levels, each
of which implements a specific phase of attack, as repre-
sented in Figure 7. Each level receives information from
the upper level, elaborates them and then supplies the lower
level.

The first level is constituted by a single “root” node, de-
noted asr, that is responsible for the compilation of the
dictionary. The second level consists of a variable number
of nodes, named “generators” and denoted asg, that form
the “generation network”, indicated asG. Such a network is
devoted to generation of passphrases starting from the dic-
tionary compiled in the first phase by the “root” node. The
third level consists of a variable number of nodes, named
“verifiers” and denoted asv, that form the “verification net-
work”. Such a network is in charge of verifying whether any
of the generated passphrases decrypt the private key given
in input. Noder and the sets of nodes G and V form the
network system

∑
=< r,G, V >.

System
∑

has a tree-like topology where generator
nodes play the role of children of root noder. Verifier nodes
v are divided in groups, each of which is assigned to a gen-
erator nodeg, as depicted in Figure 7. Each node acts as
client with respect to the father node and as server with re-
spect to the child node.

Every node performs a specific task:

• root noder compiles the dictionaryD, divides it in
partitionsPi(D) and assigns theith partition to the
generator nodegi;

• each generator nodegi extracts fromPi(D) a list of
passphrasesL and divides it in partitionsPj(L). Every
partitionPj(L) is assigned to a verifier nodevi

j (where
the superscripti indicates thatvj is a child ofgi);

• each verifier nodevi
j checks all passphrases in the as-

signed partitionPj(L) with respect to the private key
provided in input.

This model of interaction, represented in Figure 8, makes
easier to achieve a reasonable load-balancing by assigning
more work to groups with more verifier nodes. Every node
of the network needs to know only the identifier of its father
node, of the “root” node and of all its child nodes (if any),
in order to communicate with them. Moreover, for each of
its child nodes, a father node checks the status of available
resources and stores the last messages sent to it. Informa-
tion stored in a node are maintained until child nodes do
not confirm the completion of operations assigned to them.
Note that child nodes never communicate each other.

Communication occurs by means of message exchanges
that require receiver’s confirmation. A node only accepts
messages coming from the father, its children and, possibly,
the root. Messages can be grouped as follows:

task messages:used to exchange information about the at-
tack.

maintenance messages:used for handling asynchronous
events of the network.

heart-beating messages:aimed at detecting failures and
sending information about available resources.

4.3 System Life-cycle

An instance of the system begins with just the root node.
As new nodes join the network to participate in the attack,
(this is done by sending a message to the root node), gener-
ation and verification networks are populated. A new node
is assigned to the generation network if there are no gener-
ator nodes (this is the typical situation in the beginning), or
if all existing generator nodes serve the maximum number



Figure 8. Interaction among nodes

of verifier nodes (this maximum number can be tuned at run
time). Otherwise, the new peer becomes a verifier node and
it is assigned as child to the generator node having the low-
est number of children. The expansion model of the system
is shown in Figure 9.

An instance of the system ends when the correct
passphrase for the given private key is found. The verifier
node on which a candidate passphrase passes successfully
the first two controls described in section 3.3 sends it to its
father generator node. This node performs further controls
(the final test described in section 3.3) and, on success, then
forwards the passphrase to the root node that, as a conse-
quence, stops the system. This process is depicted in Figure
10. For what concerns the single nodes, every peer can be
in one of the following states:

running: the node is performing its own task;

serving: the node is executing the assigned task and per-
forming a maintenance operation that involves one or
more child nodes;

stopped: the node is not executing a task because it is in-
volved in a maintenance operation launched by its fa-
ther node or by itself;

The root node can be in either running or serving state, a
generator node can be in running, serving or stopped state,
a verifier node can be in either running or stopping state.
State transitions occur when a message is received, or as a
consequence of a local event.

Each node is able to produce local events that are han-
dled by executing maintenance operations. Nodes gener-
ate events that are compatible with their current state. An
event triggers a transition in a state where the correspond-
ing maintenance operation must be executed. Three kinds
of events are possible:

Figure 9. Propagation scheme

Figure 10. Shutdown scheme

soft-quitting (SQ): produced when a node explicitly
leaves out the system;

hard-quitting (HQ): generated when a node detects an
unexpected quitting of a child, for example due to a
child failure.

swapping (SW): event that occurs when a node exchanges
its role with a child.

Each node manages its soft-quitting related operations
and hard-quitting related operations of its children. Verifier
nodes, since do not have children, do not need to manage
hard-quitting and swapping events. Finally, the root node
can not swap its role with a child.

If the root node quits the network, the entire instance
of the system halts. When a failure (HQ operation) occurs



in a generator node, the root appoints one of the orphan
verifier nodes as new generator node for the remaining or-
phans nodes and assigns to it left pending partitions by the
failed generator node. When a generator node wants to quit
the system (SQ operation), it elects a substitute, choosing
it among its child (verifier) nodes, and supplies to it all the
information required to complete the task. Finally, the out-
going node informs the root node and quits.

When a failure occurs in a verifier node (HQ operation),
the father generator node forwards to other child nodes the
pending list of passphrases previously assigned to the bro-
ken node and informs the root. When a verifier node wants
to quit the system (SQ operation), it informs its father gen-
erator node about the number of checked passphrases in
the pending list. The generator node then supplies resid-
ual passphrases to its other child verifier nodes and informs
the root note. Finally, generator nodes, in case of varia-
tion of their own resources with respect to those available
to child verifier nodes, may swap their role with one of the
child verifier nodes (SW operation), in order to assign to the
verification network the most performing nodes.

5 Implementation

The system has been implemented in a single applica-
tion, nameddcrack, that is able to perform all the three
phases of the attack,i.e.,dictionary compilation, passphrase
generation and passphrase verification. In such a way, the
same application runs on every node of system. The code
has been implemented in ANSI C taking into account the re-
quirement of being usable in a multi-platform environment.
To this purpose, the application relies only on portable com-
ponents as shown in Figure 11. In particular, the Apache
Portable Runtime (APR) [1] is a set of APIs that guaran-
tees software portability across heterogeneous platforms,
through a replacement of functions that are not supported in
the underlying operating system. For instance, the use of the
APR environment allows to exploit synchronization mech-
anisms like the “condition-variables”, unavailable in the na-
tive Windows environment. As to the networking issues,
we resorted to the MIDIC middleware, a software layer
that provides advanced communication services. MIDIC,
in turn, relies on the JXTA technology [8] in order to enable
communication between P2P applications, independently of
network complexity. For example, if a node accesses to the
network through a firewall that enables only HTTP traffic,
the middleware automatically establishes a HTTP tunnel in
order to guarantee reachability. Both MIDIC and JXTA ex-
ploits the APR environment.

The application is subdivided in components, each of
which implements a specific function in the node where it
runs. The subdivision is made on the basis of a logical clas-
sification of activities common to all nodes:

Figure 11. Software structure

execution of task: each task is made of components, the
worker that acquires and processes information about
the attack andserver that makes available results of
required computations;

maintenance operations:such operations are managed by
acontrollercomponent, for what concerns quitting the
system and failures, and by arecruiter component for
the entry of new nodes in the system.

heart-beating activity: this activity is carried out by a
beatercomponent for sending heart-beating messages
to child nodes and by aHeartcomponent for receiving
such messages.

Active components of the application for the three
classes of nodes and communication flows between them
are shown in Figure 12. Task messages are sent from the

Figure 12. Communication scheme

Work component to the Server component of the applica-
tion running on the father node. Heart-beating messages
are sent from the Beater component of the application run-
ning on the father node to the Heart component running on
the child nodes. Maintenance messages are exchanged be-
tween the controller component of the application running
on a child node and the corresponding component in the fa-
ther node.

Each component runs in a thread whose implementation
depends on the platform (but this is transparent to the appli-
cation since it relies on the APR environment). Cooperation



between threads follows thework-crewmodel. Moreover,
threads in charge of components that may require simul-
taneous communication (i.e., the server, controller and re-
cruiter components) generate aservicethread to which the
communication is demanded. Cooperation between com-
ponent threads and service threads follows theboss-worker
model.

6 Experimental Results

We measured the performances of the proposed architec-
ture in a test-bed constituted by a 100baseT Ethernet LAN
with 20 personal computers, equipped with a 2.8 Ghz In-
tel Pentium IV processor and 512Mb of RAM running the
Linux operating system. As sample target of the attack, we
selected the GnuPG cryptographic software with an ElGa-
mal key having a length of 768 bits.

To generate the dictionary we started from the text of
“Divina Commedia” (a famous epic poem of Italian liter-
ature) and, as a consequence, generated passphrases are in
Italian. In order to evaluate the throughput of the system we
chose a passphrase that could not be found with this dictio-
nary, forcing the system to generate and test all passphrases
that could be derived from the input text and the defined
passphrase generation rules.

Before starting the full experiment, we carried out some
preliminary tests, in order to find out how many verifier
nodes could be fed by a single generator node. Therefore,
the following parameters have been evaluated:k, the num-
ber of passphrases that can be checked by a verifier node in
a second;tg, the time required to a generator node to gener-
atek passphrases;ts, the time required to a generator node
to compress and sendk passphrases to a verifier node; Our
tests showed that a verifier node is able to check about 1000
passphrases per second. A generator node requires 0.6 ms
to generate 1000 passphrase and about 10ms to compress
and send them. Thus, a generator node needs about 11ms
to set up the workload that a verifier node carries out in one
second. As a consequence, the adequate ratioR between
the number of generator nodes and verifier nodes is given
by:

R = 1/(tg + ts) = (1/0, 011) ∼ 90

In other words, with these settings, each generator node
could feed up to 90 verifier nodes.

In the test environment, we used a variable number of
nodes but, since the time required to generate, compress and
send passphrases is about two orders of magnitude smaller
than the time used for verification, in all tests, we used a
single generator task that coexisted with the root task on a
single node (same computer) of the network.

The results we obtained are very encouraging, since the
throughput of the system (measured as the inverse of the

time required to test all possible passphrases) increases in a
linear way with respect to the number of verifier nodes. We
compared these results with those produced by a commer-
cial solution for Grid computing (AGA by Avanade) and
found that the throughput of our solution is (about) 20%
higher (obviously with the same number of nodes). Finally,
no appreciable difference has been found with respect to the
operating system of the nodes (PCs we used were dual-boot,
so we could test Linux and Windows on the same hard-
ware). As to the reliability of the platform, we checked it
in a separate set of tests in which we used up to three gen-
erator nodes. Failures of both verifier and generator nodes
were successfully managed by the infrastructure by follow-
ing the procedures described in section 4.3.

7 Conclusions

We presented an architecture to perform distributed dic-
tionary attacks. The system has been tested on aprivate
keyringof the GnuPG cryptosystem after a careful study of
the features of the encryption system. In particular we de-
vised a technique to quickly check candidate passphrases
by limiting the execution of the most expensive control to
a subset of the passphrases selected according to much less
expensive controls. There are a number of possible direc-
tions for future activities. For instance taking into account
the results reported in section 6, it is possible to introduce
new generation rules and increase their complexity. Besides
that, since there are many applications with features simi-
lar to cryptographic challenges, another interesting possibil-
ity could be to employ the distributed architecture for other
computational tasks.
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