TPMC: A Model Checker For Time—Sensitive
Security Protocols

Massimo Benerecetti
Dept. of Physical Sciences

Nicola Cuomo
Dept. of Mathematics

Adriano Peron
Dept. of Physical Sciences

Universita di Napoli “Federico I1”, Napoli, Italy

bene@na.infn.it

Abstract— In this paper we face the problem of ver-
ifying security protocols where temporal aspects ex-
plicitly appear in the description. In previous work,
we proposed Timed HLPSL, an extension of the speci-
fication language HLPSL (originally developed in the
Avispa Project), where quantitative temporal aspects
of security protocols can be specified. In this work
we present a model checking tool for the analysis of
security protocols which employs THLPSL as a spec-
ification language and UPPAAL as the model check-
ing engine. To illustrate how our framework applies,
we also provide a specification of the Wide Mouthed
Frog protocol and show some experimental results on
a number of security protocols.

I. INTRODUCTION

Much work has been devoted to formal specifica-
tion and analysis of cryptographic protocols, leading
to a number of different approaches and encouraging
results (e.g. see [18]). Most of the proposed protocol
specification languages and verification techniques
are limited to cryptographic protocols where quanti-
tative temporal information is not crucial (e.g. delay,
timeout, timed disclosure or expiration of informa-
tion do not affect the correctness of the protocol),
and details about some low level timing aspects of
the protocol are abstracted away (e.g. timestamps,
duration of channel delivery etc). In this context,
the specification language HLPSL has been proposed
within the Avispa Project (see [1]), for the specifica-
tion of industrial-strength security protocols. HLPSL
allows for modular specifications, specification of con-
trol flow patterns, data-structures, and security prop-
erties. It is also sufficiently high-level to be used by
protocol engineers.

In this paper we focus on the problem of specify-
ing and verifying security protocols where temporal
aspects directly affect the correctness of the proto-
col, and, therefore, need to be explicitly considered
both in the specification and the verification. Ex-
amples of time sensitive protocols are, for instance,
the non-repudiation Zhou-Gollmann protocol [19],
the TESLA authentication protocol [15] and the well
known Wide Mouthed Frog protocol [4].

The formal framework generally employed to mo-
del temporal features, in the context of finite state
machines, is that of Timed Automata [3], and the

Proceedings 21st European Conference on Modelling and Simulation

Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

ncuomo@na.infn.it

peron@na.infn.it

corresponding model checking verification techniques

are supported by a variety of tools. The model checker
KRONOS [9], developed at VERIMAG, supports mo-
del checking of branching time requirements. The

UPPAAL toolkit [17] allows for checking safety and

bounded liveness properties. However, Timed Au-

tomata cannot be employed by protocol designer as

a specification formalism in itself, being a rather low

level formalism, lacking the ability of expressing par-

allelism and synchronization on structured messages

built over cryptographic primitives. In a previous

paper [5] we proposed Timed HLPSL (THLPSL for

short), as temporal extension of the specification lan-

guage HLPSL. The temporal feature introduced in

THLPSL are: (a) temporal constraints of the control

flow (the usual delays and timeouts associated with

performing a transition) with respect to the occur-

rence of some event, (b) duration of a transition, (c)

temporal constraints on the availability and usabil-

ity of messages (message disclosure and expiration

time) with respect to the occurrence of some event,

and (d) delay in channel delivery. The semantics

of THLPSL is formally defined in [5] by a map-

ping onto eXtended Timed Automata [7] (XT As for

short), the variant of timed automata employed by

UPPAAL which, differently from the basic model of
Timed Automata, allows for an explicit representa-

tion of concurrency and communication in the form

of handshaking.

In this paper we describe the TPMC (Timed Pro-
tocols Model Checker) tool we developed for the anal-
ysis of timed security protocols. TPMC employs
THLPSL as a specification language and UPPAAL
as the model checking engine. The analysis of a
protocol in TPMC consists in a translation of its
THLPSL specification into the input language of UP-
PAAL according to the semantics presented in [5].
For the sake of ease of definition, such a seman-
tics maps THLPSL specification onto pure XT As,
without exploiting the full expressive power of the
UPPAAL language, which allows for shared integers
variables, and integer and boolean arrays. The use of
this additional features allows for exponentially more
succinct UPPAAL specifications. As a consequence,

the mapping implemented in TPMC is not the one
described in the formal semantics, but a semanti-
cally equivalent one which, taking advantage of the
full expressivity of UPPAAL X T As, can be more ef-
ficiently employed for implementation purposes. We
also provide an experimental evaluation of the tool
on a number of security protocols.

The idea of using Timed Automata for specifying
real time systems and proving security properties is
not new (e.g., see [6], [10], [12], [16]). Our approach
differs from [6], [12] in that Timed Automata are not
the specification language itself, but the back-end of
an high level specification language.

The rest of the paper is organized as follows: in
the next section we informally present the specifica-
tion language THLPSL; in Section III we provide the

specification the Wide-Mouthed protocol in THLPSL.

In Section IV we describe the translation of THLPSL
specifications into UPPAAL XTAs. Finally we con-
clude giving some experimental evaluation of our tool
in Section V.

II. TiMmep HLPSL

In this section we informally describe the main fea-
tures of the specification language THLPSL, a timed
extension of the specification language HLPSL [1]
and give an intuition of its semantics. A formal def-
inition of the THLPSL syntax and the semantics,
which is given in terms of XT As [7], can be found
in [5].

A strong limitation of the original HLPSL is that
it does not allow for explicit specification of temporal
aspects such as delays, timeouts, timing constraints
on the validity of messages, etc., therefore making it
unsuited to specify protocols where temporal aspects
may affect correctness. THLPSL extends HLPSL
by allowing for expressing the following temporal as-
pects:

a) temporal constraints on the control flow of par-
ticipants to a protocol session;

b) duration of a transition, expressed as lower and
upper bounds on its duration;

¢) temporal constraints on the availability and us-
ability of messages (message disclosure and expira-
tion time);

d) duration of channel delivery, expressed as lower
and upper bounds on the channel delay.

THLPSL allows for structured definitions of proto-
cols. A protocol specification consists in the descrip-
tion of a set of roles. It is possible to distinguish be-
tween two kinds of roles: basic roles which describe
the behavior of a participant to a protocol; composi-
tion roles that compose in parallel instances of basic
roles (one for each participant to the protocol ses-
sions) instantiating their parameters with constants.

Roles can be parameterized (with the obvious ex-

ception of the main role) and can exploit local vari-
ables defined within a local declaration section. De-
clared variables can be initialized by means an ini-
tialization predicate. Local variables, formal parame-
ters and constants are typed. THLPSL supports var-
ious kinds of types. Common built-in types are the
following: agent type (for agent names); channel
type (for communication channel names); public_key
and symmetric key type (for public and symmetric
keys used by cryptographic primitives); text type
(for text messages); nat type (for natural numbers);
function type (for hash functions). Type text may
have additional attributes enclosed within brackets.
For instance, the type text(fresh) is the type for
freshly generated nonces.

The type channel may have additional attributes
enclosed within brackets, e.g., C: channel (dy,1b,ub)
specifies a channel controlled by a Dolev-Yao (DY)
intruder [8] with minimum transmission delay 1b (a
rational number in Q>,) and maximum transmission
delay up (a rational number in Q>, U {oo});

THLSPL provides some form of flexibility in the
specification of the constraints on delay/timeout and
message disclosure/expiration, by allowing to express
these constraints with respect to the occurrence of a
transition executed by a participant in the protocol.
To this purpose, THLPSL is equipped with a variable
type role_instance for role instances, which can
only be used for formal parameters of roles (and not
for the declaration of local variables). Intuitively,
a formal parameter RI of type role_instance will
be instantiated with a number between 1 and n in
the definition of the main composition role, where
exactly n roles are composed in parallel. Therefore,
if RI is instantiated with number i, then it refers
to the i-th role instance in the parallel composition.
This allows for expressing time constraints relative
to occurrences of events (referred to by transition
labels) taking place within specific role instances.

Participants to a protocol session communicate by
sending and receiving structured messages. Struc-
tured messages are represented by message terms
which are inductively composed from variables and
constants in the following way:

e Variables and constants are terms;

e X[dt,et,RI,1lab] is a term (timed term), where
RI is a formal parameter of type role_instance, X
a variable of type text, text (fresh) or key, dt is a
rational number in @, and ut a rational number in
Q>, U {oo} and 1lab is a transition label.

e V’ is a term, with V any variable (priming);

e {T}_K is a term, with K variable of type symmet-
ric_key public_key and T a term (encryption);

e T1.T2 is a term, with T1, T2 terms (pairing);

e H(T) is a term, with T a term and H a variable of
type function (hashing);

e inv(K) and {T}_inv(K) are terms, with K a vari-
able of type public key (private key and signature).
Priming of variables is used for variable assignments,
to refer to the values of the variables after the assign-
ment. A term of the form X[dt,et,RI,lab] repre-
sents a term X that will be disclosed between time
dt and et relative to the execution of the transition
labeled 1lab within role instance RI, and it will ex-
pire after the temporal bound et. Moreover, we add
a predicate of the form EXP(X), with X a variable
of type text, text (fresh) or key, which intuitively
holds true if X is assigned to a message which has
expired. We also assume an additional label start
which represents a fictitious transition taken at time
0 to initialize the main role.

A protocol run start from a, chosen, composition
role called main role. The behavior of a basic role is
described by means of a state-transition formalism.
Intuitively, a state of the role instance is determined
by the content of its local variables and the value of
its actual parameters. Set of states of the role are
declaratively denoted by standard boolean expres-
sions over the value of variables and primed variables
(e.g. a Boolean expression represents the set of role
states where the Boolean expression holds true). A
transition allows to leave a state of the role receiving
a message (from another participant to the proto-
col) and to reach another state delivering a message.
Transitions are declared in a role by a sequence of
transition schemas.

A timed transition schema has the form:

lab. Pred Rec_Op >>(t1,t2,1b,ub,RI,labl)
Primed_Pred /\ Send_Op

where,

e lab is a label identifying the current transition in
the protocol schema;

e Pred is the triggering predicate defining the set of
states from which the transition take place. It is a
conjunction of a state predicate SPred, and possi-
blZ a message predicate MPred. SPred has the form
/\i:1 X; = ¢;, where X; is a state variable, namely
a variable not occurring in any message term in the
role, and ¢; is a constant. MPred is a conjunction
of (negations) of atoms either of the form X =Y
or EXP(X), where X and Y are message variables
occurring in message terms within the role.

e Rec_0Op is an optional receive operation on a chan-
nel of the form C(T), where C is a channel variable
and T a term;

e Primed_Pred specifies the resulting state of the
transition and has the form A;_, X! = ¢;, where X/
is a primed variable not occurring in any message
term of the role and ¢; is a constant. In the result-
ing state, the variables occurring in Primed_Pred are
assigned the current value of the corresponding con-

stant, and the remaining variables keep their current
value;
o Send_Op is an optional send operation on a chan-
nel of the form C(T), where C is a channel variable
and T a term. Possible primed variables in T are
assigned newly generated values (e.g., fresh nonces
generation);
o RIis a formal parameters of the current role of type
role_instance, t1 and 1b are rational numbers in
Q>/, t2 and ub rational numbers in Q>, U {cc}, and
lab1l is a transition label. These parameters specify
a transition that will be enabled between time t1 and
t2 relative to the execution of the transition labeled
labl within the role of role instance RI, that will
complete between time 1b and ub.
THLPSL also allows for untimed transitions. For in-
stance, a transition without any temporal constraints
(neither delay/time out nor duration constraints) can
be specified by >>(0,00,0,00,RI,start).

An urgent transition schema has the form:

lab. Pred ->(t1,t2,RI,labl) Primed_Pred

where all the parameters have the same interpreta-
tion as in the previous case. The intuitive semantics
of an urgent transition is a transition which is en-
abled between time t1 and t2, relative to the exe-
cution of the transition labeled 1abl within the role
instance RI, and is forced to trigger as soon as en-
abled, i.e. without any further delay. Notice that
triggering of an urgent transition does not depend
upon synchronization with other roles, as it cannot
send or receive messages. Urgent transitions are in-
tended to model activities local to a role, which have
no duration and must not affect the overall timing.

The composition section of a composition role is
used to instantiate other basic and composition roles
using the following syntax:

Rl(actual_parms) /\ R2(actual_parms) /\ ...

The intended meaning is that composed roles ”run”
in parallel with interleaving semantics.

III. SPECIFICATION OF THE WIDE MOUTHED
FroG proTOCOL IN THLPSL

In this section we consider the well known Wide
Mouthed Frog authentication protocol [4]. The pro-
tocol involves three participants: Alice, Bob and the
Server. Alice sends a message to the Server con-
taining the identity of Bob (the intended receiver),
a fresh session key K, and a timestamp Ty, en-
crypted with a symmetric key K 45, shared by Alice
and the Server. The Server then checks if the times-
tamp is recent and, if this is the case, forwards the
session key and a new timestamp 7Tp to Bob, en-
crypted with a symmetric key Kpg, shared by Bob

and the Server. Bob can now check if the timestamp
Ts is recent and, if this is the case, accepts the ses-
sion key as valid. Following is a description of the
protocol steps:

1 A—S5: fl,{lgyj(ab;114}}(AS
28— B:{AKuw,Ts}kps

The idea is that the participants use the timestamps
to assess validity of the session key. A session key
should be considered valid if the associated times-
tamp is recent enough. The protocol is known to be
vulnerable to reply attacks, where an intruder sim-
ply repeatedly intercepts the message sent by the
Server and, exploiting the structural similarity of
the encrypted components in the two messages, re-
peatedly replies it back to the Server, who interprets
it as a request to establish a new session key be-
tween the participants. If the intruder replies are
fast enough, it can succeed in forcing the Server to
keep the timestamps updated indefinitely, causing a,
possibly compromised, session key to be associated
to a fresh timestamp.

In order to model the validity of timestamps and
session keys in THLPSL, we associate to each of
them an expiration time. In particular, the initiator
assigns an expiration time to the session key, wide
enough to cover the estimated maximum delays of
both the communication channels from Alice to the
Server and from the Server to Bob. Similarly, Alice
(resp., the Server) assigns the expiration time to each
generated timestamp. An attack would be detected
if Bob receives an expired session key associated with

a non expired timestamp.

Below is a possible specification of the protocol,
where we assume a maximum delay 5 to the channels
connecting the participants. The expiration of the
session key is set to the sum of the channels delays.
The role for agent Alice is specified as follows:

role Alice(A,B,S:agent, SND:channel(dy,0,5),
Kas:symmetric_key, AI:role_instance)
played_by A def= :
local Stat:nat, Ta:text(fresh), Kab:symmetric_key
init Stat=0
transition
a0. Stat=0 >>(0,00,0,0,AI,start) Stat’=1 /\
SND(A.{Ta’[0,5,AI,a0] .B.Kab[0,10,AI,a0] }_Kas)
end role

Notice that the role Alice is parametrized with re-
spect to three agent names (A, B,S), one dy channel
SND, one symmetric key Kas, and one role instance
parameter AI. The played_by keyword states that
the agent playing the role corresponds to the first
agent parameter A. In the local variable declaration
section the variable Stat, of type natural number, a
fresh nonce variable Ta and a symmetric key Kab are
declared. The init clause opens the variable initial-
ization section, while the transition clause opens
the section containing transition schemas. The tran-
sition schema, labeled a0, is a send timed transition

which takes from a state where variable Stat is equal
to 0 to a state where Stat is equal to 1, and all the
remaining variables, except Ta, remain unchanged.
The additional effect of the transition is that the
term A.{Ta’[0,5,AT,a0] .B.Kab[0,10,AT,a0]}_Kas
is sent over the channel SND, where Ta’ [0,5,AI,a0]
represents a fresh timestamp generated and assigned
to Ta by the transition, with disclosure/expiration
interval between time 0 and 5 relative to the execu-
tion of the transition a0 of the current role instance
AT.
The role for agent Bob is specified as follows:
role Bob(A,B,S:agent, RCV:channel(dy,0,5),
Kbs:symmetric_key, BI:role_instance)

played_by B def=

local Stat, Valid:nat, Ts:text, Kab:symmetric_key
init Stat=0

transition

b0. Stat=0 /\ RCV({Ts’.A.Kab’}_Kbs)

>>(0,00,0,0,BI,start) Stat’=1
bl. Stat=1 /\ not EXP(Ts) /\ not EXP(Kab)
->(0,00,BI,start)
Stat’=2 /\ Valid’=1
b2. Stat=1 /\ not EXP(Ts) /\ EXP(Kab)
->(0,00,BI,start)
Stat’=2 /\ Valid’=0

end role

As to Bob’s role, the first transition is a receive
transition which requires that another party syn-
chronously sends a message along the channel RVC,
and that the sent message conforms to the struc-
ture of the term {Ts’.A.Kab’}_Kbs. The primed
variables Ts’ and Kab’ in the received term are as-
signed, after the transition is executed, the value of
the corresponding subterm in the unifying received
message. The last two transitions are urgent transi-
tions (always enabled) which test the validity of the
timestamp and of the key and accept (resp., reject)
the key by assigning the value 1 (resp., 0) to the
boolean variable Valid.

The Server role is specified as follows:
role Server(A,B,S:agent, RCV,SND:channel(dy,0,5),

Kas,Kbs:symmetric_key, SI:role_instance)
played_by S def=

local Stat:nat, Ts:text(fresh),

Ta:text, Kab:symmetric_key

init Stat=0

transition

s00. Stat=0 /\ RCV(A.{Ta’.B.Kab’}_Kas)

>>(0,00,0,0,SI,start) Stat’=1

s01. Stat=1 /\ not EXP(Ta) >>(0,00,0,0,SI,start)

Stat’=3 /\ SND({Ts’[0,5,8I,s02].A.Kab}_Kbs)
end role

Notice that both the Server and Bob check for
non expiration of timestamps (not EXP(Ta) and not
EXP(Ts)) before proceeding (resp., before accepting
the session key). Moreover, the Server sets expiration
of the timestamps it generates relative to the tran-
sition generating it. To model possible acceptance
by Bob of an invalid key, we use a variable Valid in

Bob’s role, which is set to 0 (transition b2) if the ac-
cepted key has already expired, and to 1 (transition
bl), otherwise.

The main role Main instantiates one instance of
role Alice, one of the role Bob and three of the role
Server. Roles are instantiated by associating actual
parameters (i.e., constants) to formal ones. The re-
sulting role instances are composed in parallel.
role Main()

def=
composition

Alice(A,B,S,Snda,Kas,0) /\ Bob(A,B,S,Rcvb,Kbs,1)

/\ Server(A,B,S,Snda, ,Rcvb,Kas,Kbs,2)

/\ Server(B,A,S,Sndb,Rcva,Kbs,Kas,3)

/\ Server(A,B,S,Snda,Rcvb,Kas,Kbs,4)
end role

A simple property requiring acceptance only for
valid keys is the following CTL formula
AG—(Alice0.Stat = 1ABobl.Stat = 2A—Bobl.Valid),
which can be checked by the model checker UPPAAL.
The property is false, as it is possible for role instance
bob to accept as valid a key after it has expired.

IV. FroM THLPSL SPECIFICATIONS TO
UPPAAL XTAs

In this section we shall show how to encode a
THLPSL specification into a XT'A suitable for mo-
del checking in UPPAAL.

UPPAAL XTA are an extension of Timed Au-
tomata. A Timed Automaton T'A is a finite state
automaton enriched with a set of real-valued clocks
whose value can constrain the triggering of transi-
tion (for a formal definition and a account of the se-
mantics see [3]). Transitions of a T A have the form

(I, 9,a,\,I"y € §, written also [(2.l ', which repre-
sents a transition from the location [to the location
" on input symbol a; the guard ¢ is a constraint
on clocks, and specifies when the transition is en-
abled; and the update set A C C'K states the set of
clocks to be reset on executing the transition. An
eXtended Time Automaton[7] is the parallel compo-
sition A || ... || A, of a collection of Timed Au-
tomata Ajp,...,A,, in the style of CCS [14]. Au-
tomata communicate by means of channels and the
communication style is handshaking. Input symbols
of T A are replaced by channel names in XT A. If a is
the name of a communication channel, then the sym-
bol a? denotes the receiving action over channel a,
while the symbol a! denotes the sending action over
channel a. In addition, XT A can use (boolean and
integer) variables and arrays. Therefore, the guard
¢ of a XTA transition may also constraints values
of variables and array elements besides clocks. The
update X is generalized allowing also assignments in-
volving variables and arrays.

As previously said, the formal semantics of THLPSL

has be given in [5] by translation into a network

of timed automata. In such a translation a timed
automaton is provided for each instance role and a
timed automaton is provided for the intruder. States
of both the participants and the intruder are struc-
tured and, in particular, encode besides control in-
formation also the knowledge of the playing part at
the represented stage of the interaction. Knowledge
is suitably encoded by sets of ground instances of
message term (ground messages).

The intruder’s knowledge is a monotonically in-
creasing set of structured messages. A DY intruder
can send to role instances any structured message
that it can derive from its knowledge. For every
received message the intruder can extract any pos-
sible submessage, compatibly with its knowledge of
the necessary cryptographic keys. Conversely, known
submessages can be recombined freely, using the al-
gebra of message operators. Since structured mes-
sage provide an unbounded use of pairing crypto-
graphic encoding operators, the number of message
the intruder can possibly build is unbounded. How-
ever, the messages composed by the intruder which
are relevant for the protocol are those unifiable with
the message patterns expected by the role instances.
Even considering a bounded set of messages, the fact
that the intruder can compose and/or modify com-
municated messages results in an explosion in the
number of states (which depend on the subset con-
struction of the set of received messages) and in the
number of transitions. For a succinct encoding, the
translation implemented in TPMC exploits the abil-
ity of UPPAL of handling XT A specifications en-
riched with variables and arrays. Arrays and vari-
ables are used both to encode the knowledge of the
role instances and of the intruder, as well as the
intruder’s ability to compose and decompose mes-
sages. In particular, the intruder’s knowledge is en-
coded by a boolean array K, where each location
represents either a structured message sent along a
channel, or a (sub)message obtained by composi-
tion/decomposition of known messages. A location
of the array K is set to true when the intruder knows
the corresponding (sub)message. Similarly, each role
instance ri is encoded by an array of integers N,
which contains the current ground instance associ-
ated to each variable occurring in a send or receive
operation of the corresponding role.

Communication between role instances is not di-
rect, but implemented by a pair of synchronizations,
one between the sender and the intruder and one be-
tween the intruder and the receiver. Since commu-
nication in the formalism of XT A takes the form of
pure communication, a different channel is provided
for each conveyed message. Therefore, for each pair
< M,CHN >, with m a structured ground mes-
sage sent (resp., received) by a role instance and

CHN a channel name (intuitively, the channel where
the message has been sent), a XT A syncronizzation
channel named C_CHN_s_m (resp., C_CHN_r_m) is cre-
ated.

Since delay/timeouts of timed transition and dis-
closure/expiration of timed messages are specified
relative to a transition label, in order to model these
timed feature a clock named CK_lab_ri is associated
to every pair (lab,ri), such that transition label 1ab
and role instance ri occur among the parameters of
some timed transition or timed message term. More-
over, a boolean array F is used to record, for each
transition label referenced within a timed message
term or timed transition, whether it has been already
executed. An additional clock named CK_start is
used to model timed constraints referencing the spe-
cial label start, corresponding to the initialization
time of the main role. To model the duration of tran-
sitions taken by role instances, a local clock named
d,; is associated to role instance ri. To model chan-
nels delays, to every channel CHN, for which a de-
lay constraint is specified, a clock CK_CHN is added.
Finally, in order to model disclosure/expiration of
timed messages, two boolean arrays D and E are used,
which record whether a timed message has been dis-
closed or has expired, respectively.

The translation of a THLPSL specification gen-
erates:

- an automaton for each role instance;

- an automaton for the intruder;

- an automaton (the Time Machine) responsible for
handling disclosure and expiration of timed messages.
As to the generation of the automata for the role in-
stances, the first step consists in collecting, by means
of a fixpoint construction, the set GM of ground mes-
sages and the set T'M C GM of timed messages pos-
sibly generated by the protocol participants and the
intruder, according to a typed model. This phase
defines, for each role instance ri, the following cor-
respondences, recorded in suitable data structures:
i. a function p,; : MVar,; — oGM mapping each
message variable of the role of ri onto a set of pos-
sible instances of that variable;

1. for every message term M occurring in a receive
operation in the role of ri, a function

XM Var!, (M) — 26 mapping the primed vari-
able occurring in M (Var,,(M)) onto sets of possible
instances of ground messages.

The function p,; encodes a set of possible evalua-
tions for the message variables of the role instance,
in the sense that for a message variable X, p.;(X)
gives the set of possible values of the vector element
N,.;|X], up to a suitable encoding of ground messages
into integers. Function x* encodes the result of a
structure preserving unification mechanism between
message terms expected by the receiver and ground
terms sent by a sender (see [5] for a formal account).

(b, a, \) (b < CK_d-ri < ub, _,)

&

Fig. 1. XTA transitions encoding a timed transition.

In the following we sketch the construction of the
instance role automaton for ri. For the sake of pre-
sentation, some of the technical details are omitted.
Each location of a role instance automaton repre-
sents a location in which some state predicate holds.
Let L be the set of atoms of the form X = ¢, such
that X = ¢ occurs in a transition SPred or of the
form X’ = ¢, such that X’ = ¢ occurs in a transition
Primed_Pred. The set of locations of the role in-
stance automaton for ri are in correspondence with
subsets of L.

The general form of a sending timed transition is:

lab. SPred /\ MPred >>(t1,t2,1b,ub,RI,labl)
Primed_Pred /\ CHM(M)

Each THLPSL transition defines a set of pairs of
XTA transitions, a pair for each possible instanti-
ation (given by the functions p,; and x) of the
message variables {X7, ..., X} occurring in the tran-
sition, as shown in Fig. 1. The first XT A transition
models the effect of the THLPSL transition, while
the second one models its duration. With reference
to Fig. 1, given 8 = {my,...,my} a possible instanti-
ation of the message variable { X7y, ..., X} } according
to pri:

« [is a location corresponding to a set of atoms in L
which contains all the atoms in SPred.

o I’ is a location corresponding to a set of atoms in
L which contains all the atoms of the form X = ¢,
such that X’ = c occurs in Primed_Pred, and all the
atoms X = c occurring in SPred such that X’ does
not occurs in Primed_Pred.

o 1" is a distinct copy of I’, introduced to model tran-
sition duration.

e ¢isaconjunction of: (i) atoms of the form N,.;[X;] =
m,; for every message variable X; occurring unprimed
in the message term M; (ii) atoms of the form N,;[X;] =
N[X;] (resp., not N [X;] = N,[X;]), for every
atom of the form X; = X, (resp., not X; = X})
occurring in MPred, and atoms of the form E[X;] =
1 (resp., E[X;] = 0), for every atom of the form
EXP(X;) (resp.,not EXP(X;)) occurring in MPred;
and (iil) the clock condition ¢; < CK_labl_ri < ¢s.
e a is C_CHM_s_m!, where m is the ground message
obtained by substituting { X, ..., Xx} by 6.

e)\ is a set of assignments contag F[lab_ri] := 1,
CK_d_ri := 0, CK_lab_ri := 0, N,;[X;] := m; for
each X; occurring primed in M.

Notice that the transition guard ¢ enables the tran-
sition when the current state: (i) assigns to the un-

primed variables the ground messages assigned by
0; and (ii) satisfies all the conjuncts in MPred. The
update A sets the flag F[1ab_ri] to record the execu-
tion of the transition, resets the clocks associated to
the transition, and assigns fresh values to the primed
variables in the message term sent. The general form
of a receive timed transition is:

lab. SPred /\ MPred /\ CHM(M)
>>(t1,t2,1b,ub,RI,labl) Primed_Pred

Each receive THLPSL transitions defines a set of
XTA transitions, one for each possible instantiation
(given by the functions p,.; and x) of the mes-
sage variables {Xi,..., Xx} occurring in the transi-
tion. Given 6 = {mq,...,my} a possible instantia-
tion of the message variable {X7,..., X} } according
to pri, and ¥ = {uq,...,u.} a possible matching, ac-
cording to xM, for the message variable {Y7,..., Y.}
occurring primed in M, a pair of XT A transitions as
in Fig. 1 is added, where:

e I, I, 1" and ¢ are defined as for send transitions;
e a is C_CHM_r_m? where m is the ground term ob-
tained by substituting the message variables in
{X1,..., X} which occur unprimed in M by 6 and
all the message variables in {Y7,...,Y.} by ¢;

o A s a set of assignments containing F[lab_ri] :=
1, CK_d_ri := 0, CK_lab_ri := 0, N;[Y;] := wy, for
eachY; € {Y1,.... Y. }.

To guarantee that the duration of a timed (send or
receive) transition is modeled correctly, the interme-
diate location in Fig. 1 is equipped with the invari-
ant! b < CK_d_ri < ub.

Since urgent transitions cannot send or receive mes-
sages, neither synchronization nor update is neces-
sary. Therefore, they are encoded as XTA transitions
between a starting location [to an ending location
" defined as in the previous cases, with the addition
that the starting location is set urgent, and the guard
condition is a conjunction of atoms of the same form
as those defined for cases (i7) and (i7) for timed send
or receive transitions.

To model a DY intruder, the intruder automaton
plays the role of the communication channel between
the role instances, and it is allowed to compose, de-
compose, forward, block and delay messages. The
automaton has a single location and loop transitions
for sending known messages to role instances, re-
ceiving messages sent by role instances and compos-
ing/decomposing messages.

For every ground message m € GM and channel
CHN, there is a loop transition for a send action,
whose decoration (¢, a, \) is
(K[m] =1 ACK_CHN >[b, CCHN.rm!,_),

Hnvariants are associated to locations; remaining in a loca-
tion is allowed as long as the invariant holds true.

where CK_CHN is the clock associated to channel CHN
to model channel delay.

For every a ground message m € GM and channel
CHN, there is a loop transition for a receive action,
whose decoration (¢, a, A) is
(-, C_.CHN_s m?, K[m] :=1; CK_CHN :=0)

Transitions for composition/decomposition of mes-
sages encode the standard rules of a DY intruder.
For instance, if the intruder knows two ground mes-
sages m1 and meo and my.mo € GM, then it also
knows m;j.mg (and vice versa). Similarly, if it knows
a ground messages {mj}; and a ground key k, and
my € GM, then it also knows m; (and vice versa).
The loop transitions for the above two composition,
decomposition actions have the following decorations:
the former is (K[mq] A K[mz], -, K[mi.mz] = 1)
((K[my.ma], -, K[mq] := 1; K[mg] := 1)), and the
latter is (K[{m1}i] AK[k], -, K[m1] := 1) ((K[m1] A
K[k]v - K[{ml}k] = 1)).

The Time Machine automaton (TM) is responsi-
ble for handling disclosure and expiration of timed
messages by updating the boolean arrays D and FE.
The array F'is used to record the execution of a tran-
sition referenced by some timed message (or timed
transition). Therefore, disclosure or expiration of a
timed message relative to a given transition is per-
formed only if the referenced transition of role in-

stance ri labeled 1ab has been executed (F[lab_ri] =1).

For every ground message m which is an instance
of a timed variable message X[dt,et,RI,1lab] in role
instance ri, a loop transition for disclosure is added,
whose decoration (¢, a, A) is

(F[lab_ri] =1 AnotD[m] ACK_lab_ri=dt,_,D[m] :=

and a loop transition for expiration is added whose
decoration (¢, a, \) is

(F[lab_ri] =1 AnotE[m] ACK_lab_ri =et,_,E[m]:=1)

To guarantee disclosure/expiration transition at
due time without any further delay, the location of
T M is equipped with an appropriate invariant. The
invariant is a conjunction, over all the ground in-
stances m of the timed message terms of the form
X[dt,et,RI,lab] within role instance ri, of con-
straints of the form:

(F[lab_ri]l A not D[m]) — CK_lab_ri <dt) A
(F[lab_ri]l A D[m] A not E[m]) — CK_lab_ri < et)

V. CONCLUSIONS

We have implemented a prototype model checker
TPMC in C++. The tool integrates a compiler from
THLPSL specifications to UPPAAL XT As with the
model checking engine provided by UPPAAL. To as-
sess the efficiency and scalability of the tool, we ran

Protocol | Inst CT VT Max Inst CcT VT
WMF 1-1-3 .01 .44 2-2-5 .06 | 337.37
WMFpg;| 1-1-3 .01 .03 2-2-5 .06 111.31
NSPK 3 .02 .86 5 .68 14.75
NSPKp; 3 .02 10 5 12 26.42
ISO1 1 .07 31 8 326.79 | 339.96
PBK 2 01 .02 8 .38 15.29
PBKri, 2 01 .02 8 .30 138.18

TABLE I. Experimental results.

TPMC on a number of timed and untimed proto-
cols. An excerpt of the results of our experiments
is given in Table I. The table shows the results of
TPMC for the original and fixed version (as proposed
by Lowe [13]) of the Wide Mouthed Frog protocol,
and the following untimed protocols: the Needam—
Schroeder Public Key protocol (both in the origi-
nal and fixed version), the PBK protocol (both in
the original and fixed version), and the ISO1 pro-
tocol (the specifications of these protocols are taken
from the AVISPA library of protocols [1]). All the
tests are parametric in the number of sessions, where
a session involves from two to three participants,
depending on the protocol analyzed. Clearly, the
bigger the number of sessions, the higher the num-
ber of agents and of ground messages sent /received,
leading to a growth in the state space to be ana-
lyzed. The column Inst. of the table reports the
number of sessions of the corresponding test except
for the Wide Mouthed Frog protocol, where it re-
ports the number of instances of role Alice, of role
Bob and of role Server, respectively. The property
verified for the Wide Mouther protocol is the one
reported in Section III, while the property checked
for all the untimed protocols is strong authentica-
tion. We only report the results for the minimal and
maximal instance of the protocols we tried to ana-
lyze with TPMC. The table reports both the time in
seconds spent by the compiler (CT) from THLPSL
to UPPAAL and the time in seconds spent by UP-
PAAL (VT) in the verification phase. The experi-
ments have been run on a 3.0GHz Pentium IV with
1Gb of memory running Linux (Slackware 11.0). On
all tests, TPMC correctly reports the expected at-
tack on the flown version of the protocol and no at-
tacks for the fixed versions. Notice that, TPMC al-
lows for both the specification of timed and untimed
protocols. Even though TPMC is not optimized for
handling untimed protocols, the tests show on those
protocols performances which are comparable with
those of available tools for untimed protocols (see,
e.g., [1]).

We are currently working on the specification and
verification of the TESLA protocol[15] as well as
other time dependent protocols. We also plan to
investigate different forms of intruder, e.g., intruders
with restricted abilities compared to a DY intruder,
or intruders whose actions take non negligible time.

We are also working on an extension of language for
security goals so as to allow for time dependent goals.

(1]
2]
(3]

(4]

(5]

[10]
1]
2]

(13]

(14]

(15]

(16]

(17]

(18]

19]

REFERENCES

AVISPA: Automated Validation of Internet Security Pro-
tocols and Applications. http://avispa-project.org.
R. Alur, T. Henzinger, M. Vardi, Parametric real-time
reasoning, STOC 1993, pp.592-601.

R. Alur, D. Dill, A theory of timed automata, Theoretical
Computer Science, 126, pp. 183-235, 1994.
M.Burrows,M.Abadi,and R.Needham, A logic of authen-
tication, ACM Trans. on Computer Systems, 8(1):18-36,
1990.

M. Benerecetti, N. Cuomo, and A. Peron, Timed HLPSL
for specification and verification of time sensitive proto-
cols. Proceedings of the Joint Workshop on Foundations
of Computer Security and Automated Reasoning for Se-
curity Protocol Analysis (FCS-ARSPA’06), Seattle, Au-
gust 15-16, 2006.

R. Barbuti, N. De Francesco, A. Santone, L. Tesei, A
Notion of Non-Interference for Timed Automata, Funda-
mente Informaticae, 54(2-3), 177-150, 2003.

J. Bengtsson, W. Yi: Timed Automata: Semantics, Al-
gorithms and Tools. Lectures on Concurrency and Petri
Nets 2003: 87-124

D. Dolev, A.C. Yao, On the Security of Public-Key
Protocols, IEEE Transactions on Information Theory,
29(2):198-208, 1983.

C. Daws, A. Olivero, S. Tripakis, S. Yovine, The tool
KRONOS, In Hybrid Systems III: Verification and Con-
trol, LNCS 1066, pp. 208-219, 1996.

R. Gorrieri E. Locatelli, F. Martinelli, A simple Language
for Real Time Cryptographic Protocol Analysis, ESOP
2003, LNCS 2618, pp. 114-128, 2003-03-27

Leslie Lamport, The Temporal Logic of Actions, in ACM
Transactions on Programming Languages and Systems,
Vol. 16(3), ACM Press, pp. 872-923,1994.

R. Lanotte, A. Maggiolo-Schettini, S. Tini, Timed Infor-
mation Flow for Timed Automata, submitted.

Gavin Lowe. A family of attacks upon authentication pro-
tocols. Technical Report 1997/5, Department of Mathe-
matics and Computer Science, University of Leicester,
1997.

R. Milner. A Calculus for Communicating Systems.
LNCS 92, 1980.

A. Perrig, R. Canetti, J. D. Tygar, D. Song, Efficient
Authentication and Signing of Multicast Streams over
Lossy Channels. IEEE Symposium on Security and Pri-
vacy 2000: 56-73.

M. Napoli, M. Parente, and A. Peron. Specification
and verification of protocols with time constraints. Elec-
tronic Notes in Theoretical Computer Science, 99:205—
227, 2004.

K. Larsen, P. Petterson, W. Yi, UPPAAL in a nut-
shell, Springer International Journal of Software Tools
for Technology Transfer, 1, 1997.

C. Meadows, Formal methods for cryptographic protocol
analysis: emerging issues and trends. IEEE Journal On
Selected Area in Communications, 21, 2003

J. Zhou, D. Gollmann, An Efficient Non-repudiation
Protocol, 10-th Computer Security Foundation Work-
shop (CSFW’97), Rockport, Massachusets, USA, 126-
132, 1997.

