AN EXPERIENCE-BASED INCIDENT RESPONSE SYSTEM

G. Capuzzi, E. Cardinale, I. Di Pietro, L. Spalazzi
Dipartimento di Ingegneria Informatica, Gestionale e dell’Automazione
Universita’ Politecnica delle Marche
60100 Ancona
E-mail: {capuzzi,cardinale,dipietro,spalazzi}@diiga.univpm.it

ABSTRACT

This paper presents a tool for attack detection, at-
tack identification and attack response. These activi-
ties have received a great attention by the research com-
munity and by several organizations (e.g., ISO/TEC and
CERT). Nevertheless, most of the work focuses on the
detection and the identification of intrusions instead of
attack identification and response. In our work, an in-
trusion is a detectable atomic action performed by an
attacker against a given target, whereas an attack may
go through several phases. Each phase involves differ-
ent methods and different goals. Therefore, according
to our meaning, an attack is a sequence of intrusions.

In our approach, the attack identification and re-
sponse can be fulfilled in four distinct phases. The first
phase deals with intrusion detection. This means col-
lecting data from several sensors on the network and
on computers, e.g., log files of operating systems and
system servers, firewalls, (network-, host-, application-
based) IDSs. The second phase deals with alarm corre-
lation. This means correlating all the data collected in
the previous phase to the end of providing an attack de-
scription in terms of sequence of events as complete as
possible. The third phase deals with identification by
means of an experience-based model. This means: the
tool has a case memory that contains past attacks de-
scribed in terms of their features and their correspond-
ing event sequences. This allows us to have a tool capa-
ble of identifying an attack on the base of its similarity
with previous experiences, and learning new kinds of
attacks. The fourth phase deals with response. We can
link to each past attack an appropriate response plan,
then, after the attack identification, we can reuse (after
an appropriate adaptation) the plan associated to the
recognized attack. This allows us to have a tool capa-
ble of identifying an attack on the base of its similarity
with previous experiences, and eventually learning new
kinds of attacks.

INTRODUCTION

What makes a security manager better than another
one? The trivial answer is: her/his experience. The
greater her/his experience, the greater it is the number
of attacks examinated in the past that can be recog-
nized if they occur again. The greater her/his expe-
rience, the greater it is the number of past attacks to

Proceedings 21st European Conference on Modelling and Simulation

Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

which the security manager has found an appropriate
responses, the greater it is the possibility of finding
a response to a new attack. This is the focus of our
work. We propose a system that, at first, supports the
security manager in all her/his activities related to at-
tack response (detection, identification, reporting and
response) and, second, is an experience based system.
Let us explain this idea depicting two different scenar-
ios. In the first scenario, let us suppose to have an
attack similar to a past attack: our system has to rec-
ognize it like a new occurrence of the past attack. If in
the past we have successfully responded to this attack
with certain actions, it is reasonable to suppose that
these actions may be applied to the new attack as well,
even if after an appropriate adaptation. Our system
has to retrieve the past plan and adapt it to the current
attack. This adapted plan is presented to the security
manager that decides whether it has to be modified
and/or executed. Part of plan actions must be exe-
cuted by security manager or other human operators;
the rest must be executed by computers. Therefore,
our system has to overview plan execution, automati-
cally run the part of the plan that that must be exe-
cuted by computers, and monitor results. In the second
scenario, let us suppose to have an attack that never
occurred. Even in this case, our system is able to se-
lect past attacks from its database (with their response
plans) that share some (few) characteristics with the
current attack. The security manager can thus build
a response plan for the current attack on the basis of
these past response plans. The description of the new
attack and the related response plan may be retained
and thus improving system experience.

The paper is structured as follows. Section provides
a system overview and the related work. In Section ,
we discuss attack detection, in other words: sensing,
normalization, and correlation. The case memory is
described in Section . Section deals with the entropic
filter that aims to reduce the number of falses. Section
deals with attack identification. In Section , we de-
scribe the structure of the response plan and the adap-
tation process. Some Conclusions are drawn in Section

SYSTEM OVERVIEW AND RELATED
WORK

A network and computer security incident is “any
adverse event whereby some aspect of computer secu-

N
vt
—_

. W’
Sensor3 —* jzer n

S

Fig. 1. The architecture of an experience-based system for
attack identification

rity could be threatened: loss of data confidentiality,
disruption of data or system integrity, or disruption
or denial of availability” [16]. Therefore, the security
policy of a given organization should provide appropri-
ate incident response plans, as remarked, for instance,
by ISO/IEC [11] and by CERT [4]. Incident response
can be defined as the detection of an attack to a com-
puter system, its identification and reporting, and the
implementation of appropriate responsive actions until
normal conditions have been restored. According to the
so called “Plan-Do-Check-Act” (PDCA) model that is
adopted in the international standard ISO/IEC 17799
[11], detection and identification activities of a response
plan are part of the “Check” phase, whereas the re-
porting and responsive activities are part of the “Act”
phase.

The aim of our work is the definition of an incident
response tool based on experience, that must be able to
plan and perform all the activities listed above: attack
detection, identification, and response. As far as we
know, there are no examples of systems that cover all
these activities, but systems that only deal with some
of them. For example, the tools described in [7] and [§]
deal with attack identification and management phases,
but not with response.

In our approach, incident response can be fulfilled
in three phases: attack detection, attack identification,
and attack response. As a consequence, our system has
the architecture depicted in Figure 1.

The first phase, attack detection, deals with sensing,
normalization, correlation, and filtering. This means
collecting data from several sensors on the network and
on computers, e.g., log files of operating systems and
system servers, firewalls, (network-, host-, application-
based) IDSs. These data must be normalized by nor-
malizers since each log file has its own format. Unfortu-
nately, these tools produce noise as well, hence we need
correlation and filtering to reduce the high volume of
the log messages. A first kinf of filter is made by nor-
malizers themselves. Indeed, log files of an operating
system or a web server contain attack alarms as well as
data that do not concern attacks. Furthermore, all the
data collected by normalizators must be grouped (cor-
related) in order to find sequences of events that refer
to the same attack. For this reason, data from normal-
izers are sent to the correlator module. The correlator
output is a set of attacks, each one represented like se-
quence of events. Nevertheless, after correlation, we
still have false or not significative attacks, and thus we

need a further filter. Therefore, the correlated event
sequences are passed through an entropic filter. For
each sequence of correlated events is computed its en-
tropy from the entropy of each event in the sequence.
The entropy of an event is a logarithmic function of its
frequency. Only the sequences with an entropy greater
than a given threshold are considered real attacks. This
step helps us to avoid a response for very common and
not significative sequences as sequences of portscanning
or ping. Intrusion Detection Systems (IDS) detect sin-
gle events (e.g., see [5], [6], [2], [14]), but they are not
able to draw the whole picture of an attack. They are
not effective to deal with many correlated intrusions
involving multiple entities of a computer and network
system over time.

The second phase deals with identification. In our
approach, the identification can be accomplished by
means of an experience-based model. This means: the
proposed system includes a case memory which con-
tains the experience of the system. In other words, it
contains a set of past attacks with their features and
the related response plans. Each attack is represented
as a set of features (attack description, priority, and
so on) and a sequence of alerts. For each attack as
well as for each event of an attack, the case memory
also records the entropy. The entropy of an attack is a
function of the entropy of its events. This allows us to
have a tool capable of identifying an attack on the base
of its similarity with previous experiences, and even-
tually learning new kinds of attacks. Indeed, when a
new sequence that is considered a real attack by the en-
tropic filter is passed to the attack recognizer, the tool
searches for the most similar past attack (contained in
the case memory) to the current one (according to an
appropriate similarity metric) and returns the corre-
sponding identification. We use four similarity metrics.
Two of them are simple but effective similarity met-
rics based on pattern-matching. The other ones are
based on the entropy of attacks. The attack recognizer
module selects the top ranked case with a similarity
greater than a given threshold. When no past attacks
have been found, the new attack can be retained in or-
der to improve the case base, i.e., the tool experience.
As far as we know, we have only few examples of se-
curity tools that are able to identify an attack. For
instance, [15] proposes a model based on attack pro-
files; these profiles can be used to identify an on-going
attack. Nevertheless, that work does not propose how
this can be automatically fulfilled. Moreover, we have
some products that work on attack identification, for
example [7] and [8]. These tools gather many types of
log messages and correlate them, in order to make it
easier to analyse them.

The third phase deals with attack response. In the
case memory, we have an appropriate response plan to
each past attack. Then, after the attack’s identifica-
tion, we reuse this plan properly adapted. Here the
idea is: if the the current attack is similar to the re-
trieved past attack, then an appropriate response plan
for the current attack should be similar to the plan

of the retrieved past attack. We should need only few
adaptations. We use a simple adaptation algorithm be-
fore executing the plan. This plan is returned to the
security manager who checks and corrects it. After its
validation, the security manager can allow plan execu-
tion. A plan is a sequence of actions, each action can
be an action that must be automatically executed by
a software, or an action that must be performed by
the security manager. After the execution stage, the
system stores the plan updating the case memory. In
this way, the system is able to learn from new cases
and to improve the effectiveness against new attacks.
There are tools that work in this phase, but they have
a different function. They provide response plans quite
different from ours, consisting of generic advices to cre-
ate a security plan for the network or several advices
to avoid insecure behaviours. Our system provides re-
sponse plans consisting of detailed actions to assess the
incident, restore the previous status, and improve the
security level of the network. We have just an exam-
ple where the returned plans are similar to our kind of
plans (see [17]). That system is based on classical Al
planning. When it receives alerts from IDSs, it estab-
lishes what are the goals to satisfy in order to react to
the attack. It has a set of actions described in terms
of preconditions and affect and combines them in order
to reach the goal from the current situation. This so-
lution is flexible when we have never recorder attacks.
Nevertheless, classical Al planning has been recognized
to be a complex task (usually it is undecidable). It is
based on the assumption to have “a complete theory”
able to describe all the possible actions we need to use.
Unfortunately, this is usually true only for toy exam-
ples. In our system , we prefer to trust the experience.
Indeed, an experience-based approach is known to be
extremely useful in the diagnosis and the management
of several different kinds of emergency [10], [3], [9], [13].
For instance, the work of [10] deals with alarm correla-
tion (i.e., with identification), even if not with response.
Furthermore, the system deals with fault alarms, not
intrusion alarms, and the goal is to obtain a fault tol-
erant network, not a secure network. The work of [3]
and the work of [9] deal with intrusion detection. There
the goal is to exploit learning to improve detection and
avoid the need of frequently updating the database of
known attacks. In our work, the goal is the improve-
ment of attack identification and response by means of
learning. We have just an example of application to
incident response [13]. There the goal is to improve de-
tection and to avoid the need of frequently update the
database of known attack.

ATTACK DETECTION

Attack detection is fulfilled in three steps: intrusion
detection, alarm normalization, alarm correlation.

Intrusion detection consists of sensing all the alerts
that can provide us information about possible attacks.
This mainly relies on sensing data, such as data ob-
tained by monitoring traffic on a network, activity logs

stored on a computer, or system state. We use both
signature recognition and anomaly detection sensors.

Sensed data include a lot of irrelevant information,
and cause difficulty for efficient and accurate attack de-
tection. For example, the log file of an operating system
contains a vaste range of log messages, only few of them
deal with intrusions, the rest deals with normal system
activities or errors. In other words, we have an event
log everytime a device is mounted or unmounted, ev-
erytime the clock must be synchronized, or everytime a
system error occurs. Furthermore, each sensor has its
own output data format. Therefore, the collected data
must be reduced in number and ordered in a single spe-
cific format. For this reason, for each sensor we have
developed a module to have a preliminary filtering of
sensed data and to normalize them in a specific format.
The preliminary filter is composed by a service-based
white-list: applications not included in the white-list
are not monitored. For example, we do not need to take
into account alarms related to FTP when the FTP ser-
vice is not active on that host. Concerning the normal-
ization, for alarm we consider the following parameters:
the tipology of the sensor that produced the alert, the
timestamp, the destination port, the source IP, the tar-
get IP and the related message. We developed different
modules in C+4 and Python, one for each sensor, to
normalize its output in the specified format. Normal-
ized alerts represent the input of the correlator.

The correlator is the module demanded to correlate
alerts coming from different sensors and producing an
attack descriptor list, composed of sequences of alerts.
It also reduces redundant alerts, by a fusion process.
This module is a variant of the correlator proposed by
[1]: we only considered the following subsystems:

o fusion: it correlates several instances of the same
event detected by different sensors; for instance, a mal-
formed packet sent to the DMZ subnet should be de-
tected by the perimetral sensor and by a sensor on the
DMZ

« session reconstruction: it correlates alerts, detected
by host intrusion detection and network intrusion
detection systems; for instance, an attack launched
against a web server should be detected by a NIDS
and by a HIDS installed on the web server

« focus recognition: it correlates one to many attacks
(for instance, a portscanning), consisting of alerts that
have the same source and different targets and many to
one attack (for instance a DDoS attack), consisting of
alerts that have the same target and different sources
o thread reconstruction: it links all the alerts of the
same attack, looking for alerts from the same source to
the same target

In addition, we did not consider the IDMEF format
for alerts description.

CASE MEMORY

In the case memory, each case consists of two com-
ponents: a static component and a dynamic compo-
nent. The dynamic component is given by the list of

Step Intrusion Type Sensor Source Target
1 TCP portscan NIDS2 207.46.176.50 172.16.113.84:80
2 SNMP trap tcp NIDS1 207.46.176.50 172.16.113.84:444
3 SNMP trap tcp NIDS2 207.46.176.50 172.16.113.84:444
4 SNMP AgentX/tcp request NIDS1 207.46.176.50 172.16.113.84:80
5 SNMP request tcp NIDS1 207.46.176.50 172.16.113.84:135
6 SCAN nmap XMAS NIDS1 207.46.176.50 172.16.113.84:80
7 BACKDOOR NetSphere Access NIDS1 207.46.176.50 172.16.113.84:69
Fig. 2. An example of attack.
1D Attack Type Intrusion Type Source Target Weight F1 F2 F3 F4
caseq FTP guess One to many horizontal scan int/ext any:any 8.50 0 0 0 0
One to many horizontal scan int/ext any:any 8.50
Info FTP-bad login int ftpserver:ftpport 11.43
Info FTP-bad login int ftpserver:ftpport 11.43
cases Webapp activity One to many horizontal scan int/ext any:any 8.50 42.9 50.0 25.8 28.5
TCP portscan int/ext any:any 8.57
SNMP trap tcp int/ext any:any 11.85
SNMP AgentX/tcp request int/ext any:any 11.70
cases Dagger TCP portscan int/ext any:any 8.57 71.4 83.3 43.9 48.5
SNMP trap tcp int/ext any:any 11.85
SNMP AgentX/tcp request int/ext any:any 11.70
SNMP request tcp int/ext any:any 11.85
SCAN nmap XMAS int/ext any:any 10.65
BACKDOOR Dagger 1.4.0 int/ext any:any 19.80
caseq NetSphere SNMP trap tcp int/ext any:any 11.85 85.7 | 83.3 61.7 57.7
SNMP trap tcp int/ext any:any 11.70
SNMP AgentX/tcp request int/ext any:any 11.70
SNMP request tcp int/ext any:any 11.85
SCAN nmap XMAS int/ext any:any 10.65
BACKDOOR NetSphere Access int/ext any:any 18.90

Fig. 3. A fragment of the Case Memory.

correlated alerts that form the attack. This part is
compared with the current attack in order to identify
which kind of attack is occurring. The static compo-
nent contains the type and a description of the attack,
its response plan and other information (in the future
its priority). After that the attack has been identi-
fied, this part can be used to prepare an appropriate
incident report and response plan. In Figure 3, we re-
ported a partial representation of attacks in the case
memory. Notice that, in the case memory are repre-
sented in an ”abstract” way. Let us explain this con-
cept with an example. Figure 2; reports an attempt
of opening a backdoor by a trojan horse. It consists
of six events: a portscanning, four fingerprinting at-
tempts and a trojan sent through the network. For each
event, the report of the current attack includes: attack
source and target IP addresses, sensor, and event de-
scription (i.e., the intrusion type). Let us suppose that
in the past we had an event of the kind SNMP trap tcp
with a given IP number (say 192.168.0.3) as target ad-
dress. One of the current events is an SNMP trap tcp
on a different TP number (say 172.16.113.84). It seems
quite natural to consider these two events similar (they
have the same event type), even if these two events
are not identical (they have a different target). Fvent
abstraction is the tool to find similarities without tak-
ing into account irrelevant details. In short, it consists
of substituting some values as source and target with
their type. For example, if the IP number 172.16.113.84
is the address of a web server, we can substitute the
number with the keyword webserver. Formally, let e =
(event_type, sensor, source, target) be an event, then
Abs(e) = (event_type, sensor_type, source_type,

target_type) is the abstraction of e, Type(e) =

intrusion_type

1

= <81,...

is

the event type of e.
,€n) be an attack, then Abs(I)

(Abs(e), ..., Abs(ey)) is the corresponding abstraction
of I and Type(I) = (Type(er),...,Type(ey)) the cor-
responding sequence of event types of I. The attack
abstraction mechanism could be based on a file or ta-
ble representing the description of the actual network
in the form of {host_I P : host_description} pairs.

ENTROPY-BASED FILTERING

Alert correlation allows us to analyze complex attack
descriptors rather than single events. The advantages
of this method are the ability of recognizing stateful at-
tacks (composed of several alerts) and the availability
of an abstract description of a generic attack, indepen-
dent from a specific network configuration. However,
this fashion leads to drawbacks, as well. The corre-
lation module does not perform any analysis on the
attacks it produces, thus it produces several false posi-
tives in the output list. For this reason, we developed a
filtering module, whose aim is to reduce the number of
falses. An index of significance is needed to recognize
trivial attacks. In our approach, we base this index on
the well-known information theory. We define this in-
dex in two steps. First, we define a weight for each type
of event. Second, we define a weight for a sequence of
events.

The event weight is a function of the frequency: the
lowest the frequency is, the highest the weight. An
event that occurs frequently (e.g. an ICMP echo re-
quest) usually is not really dangerous and, thus, its
detection provides us a little information. Formally,
for each event type ¢, we compute the probability p(t)

(based on the occurring frequency) that such event type
occurs and, thus, we can compute its entropy as follows:

wy = — log, p(t) (1)

Concerning the weight of an attack, it is useful to notice
that attacks can be roughly divided in two categories:
« significant event attacks: in which few relevant events
are enough to recognize a particular attack pattern.
To this category belong attacks based on malformed
packets. IDS are very sensible to unexpected packets
formats. In this case the attack could be composed of a
single event (e.g. the LAND attack has the same value
in the source and target fields of IP header).

o multitude event attacks: characterized by a large
number of events, rather than their type. An attack
can be performed with a big number of common and
legal packets. This is the case of flooding DoS attacks.
For example, a SYN flood DoS attack is done by send-
ing a lot of TCP SYN packets to a web server. SYN
packets are perfectly legal and they use to flow between
client and server in the three-way-handshake phase. A
DoS attack is detected if too many SYN packets come
from spoofed sources. A system that analyzes single
events would not be able to detect this kind of attacks.
Therefore, referring to these two categories, we defined
two indices of significance for attacks evaluation: the
stateless (or low) information content and the stateful
(or high) information content. The former is the aver-
age of event weights in attack sequence, while the latter
takes into account the multiplicity of each event type,
which raises the score of stateful attacks. In formulas:

Zwe Zwe~(1+a~n,4(e))

_ VeeA VeeA

I(A)low = NA I(A)high =

Na

(2)
where
e N4 = number of alert types in attack A
e n4(e) = number of alerts of type e in attack A
o o = multiplicity weight (0 < o < 1)
Filter module uses two different threshold parameters:
LT (low threshold) and HT (high threshold), for state-
less and stateful attacks information level evaluation,
respectively. Attacks can be classified in attacks that
we can ignore (¢rivial attacks) and attacks that we must
take into account (serious attacks):
o I(A)iow < LT and I(A)pign < HT = TRIV-
IAL
e I(A)jow > LT = SERIOUS (stateless)
o I(A)pign > HT = SERIOUS (stateful)

The filter passes to the next module (the attack rec-
ognizer module) only the serious attacks. The two
thresholds can be manually set by the security man-
ager, or automatically set by the system. The filter
has two techniques to set the thresholds, a run-time
mode and a training mode. The first set the thresholds
everytime an attack occurs, basing of the difference be-
tween the informative content of the new attack and the
average informative content of the case memory. The
second set the thresholds each epoch; an epoch con-
sists of a predefined (by the security manager) number
of attacks.

ATTACK IDENTIFICATION

The output of the entropic filter is a list of abstract
attacks, each attack composed by a sequence of events.
The filter eliminated most of false positives. Now, the
attack identification module has to retrieve past attacks
similar to the attack that passed the filter. The re-
trieval can be achieved by means of an appropiate sim-
ilarity function. In this paper, we propose the following
four:

Definition 1: Let I, = {ec1,...,€cn) be the current
attack, let I, = (e 1,. .., ek n) be the attack of the k-th
case in the case memory, let T'ype(I.) and Type(I}) be
the sequence of event types of I, and I, respectively.
Let ngc) (ngk)) be the number of how many times the
event type ¢ occurs in Type(l.) (Type(Ix)). Let
@) { 1if t € Type(I.) k) _ { 1if t € Type(Iy)

t 7] 0 otherwise t 7] 0 otherwise
be boolean functions that are true when I, (Ij respec-
tively) has at least an event whose type is t. Let w; the
entropy of the event type ¢. Then:

>

_ VteType(l.)

Fi(le, Ix) = c
> 7

VieType(l.)

>

Fy (I, 1) = WEType(IC)Z ©
my

VteType(l.)

>

_ VteType(l.)

F3(IC7I/€) - Z
VteType(l.)

>

VteType(l.
Fy(I., 1) = Tt)Z: @
t t
VteType(l.)

(

min(ntc), ngk))

min(m”, m{")

(

wy - min(ntc), ngk))

Wt ngc)

wy - min(mgc), mgk))

Fi(I.,I;;) depends on how many abstract events I,
shares with I. It is the ratio between the events that I,
shares with Ij (with their multiplicity) over the number
of events in I.. On the other hand, F5(I., I};) depends
on the number of event types shared by I. and ;. In
other words, it considers one event per type. For ex-
ample, let Type(I.) = (A, B, B,C) the current attack
and Type(I) = (A, B,C, D) the k — th attack in the
case memory, where A, B,C, D are the event types of
the corresponding events. When we apply Fi, we ob-
tain 0.75, as result; otherwise, applying F5 we obtain
1. This is due to the fact that it counts each event type
once. Notice that, F3 (Fy) is similar to Fy (F3), but it
also takes into account the entropy of each event type.
As a consequence, these functions have a discriminating
power better than F; and F5.

Definition 2: Let I. be the current attack, let
KB={I,...,In} be a set of past attacks, then
Sim,(I., KB) = I € KB is the most similar past at-
tack of I, (according to the similarity function Fy(.,.)),
and it is defined as follows:

Fo(I.,I) = Jaax, F.(1.,1;) (3)

According to this definition, the procedure to find the
most similar past attack is based on pattern match-
ing. When a new attack occurs, the pattern ab-
stracted by this attack (i.e., the abstract sequence of
alerts) is compared with patterns in the case memory
(the abstract sequence of past alerts) until a match
is found. Consider the attack reported in Figure 2
and the case memory depicted in Figure 3. Let us
suppose to use Fi(.,.) as similarity function, then
we obtain that Fy(I;,Casel) = 0, Fi(I;,Case2) =
0.5, F1(I.,Case3) = 0.67, and Fy(I.,Cased) = 0.83.
Therefore, we select the attack Case4 as the most sim-
ilar of the current one. On the other hand, applying
Fs(.,.), we obtain Fy(I.,Casel) = 0, Fy(I.,Case2) =
0.5, Fy(I;,Case3) = 0.67, and F»(I.,Cased) = 0.83 Fi-
nally, let us consider the weight in Figure 3. Applying
the other retrieval functions, we obtain F5(I., Casel) =
0, F3(I.,Case2) = 044, F;5(I.,Case3) = 0.63,
and F5(I.,Cased) = 0.88 and Fy(I.,Casel) = 0,
Fy(I.,Case2) = 0.44, Fy(I.,Case3) = 0.63, and
Fy(I.,Cased) = 0.88.

RESPONSE PLAN

The response plans we have used for our experi-
ments are compliant with CERT recommendation and
ISO17799. Indeed, each plan unfolds in three successive
phases: in the first phase it gathers details of the cur-
rent attack (incident assessment); in the second phase
it improves the security of the network; in the last one
it restores the normal status. As we can see in Figure 5,
the first phase of the response plan extracts information
related to the current attack: the name of the process,
the numbers of the ports, the file that opens not reli-
able connections, etc. The second phase of the plan im-
proves the security of the system, killing bad processes,
updating system and security tools, installing patches,
closing bad connections or suspicius ports, etc. Finally,
the third phase aims to reach a normal condition using
backup copies to restore services, software and files.

From the point of view of our system, the retrieved
response plan simply consists of a sequence of abstract
actions. Each abstract action must be translated in a
concrete action. In order to do that, for each abstract
action we have a set of concrete actions each of them
related to a given host, operating system, environment,
etc. Therefore, for each concrete action, we have ap-
propiate preoconditions to be satisfied. In other words,
a concrete action can be used as translation of a given
abstract if and only if its preconditions are satisfied. As
a consequence, a concrete plan consists fo a sequence
of concrete actions with true preconditions. Let us ex-
plain this by an example. In Figure 4, the first column

has the abstract actions of the plan, the second column
has the related concrete action and the third column
has the preconditions. Indeed, the first two actions
aim to check the current process list comparing it with
a reliable list, in order to detect bad processes. In the
second column, we have the concrete actions for Win-
dows OS and Linux OS. The system selects the second
one, because the machine runs a Linux OS. The same
process is applied to the other actions and the result
plan is in Figure 5. As we said our plans respect these
three phases suggested by CERT, but the adaptation
algorithm does not consider them.

When a new attack occurs, the retrieval module
searches for the closest past case in the case memory,
and returns its linked plan. This plan is related to the
similar attack, hence it is useful for the security man-
ager: it consists of several advices to block the attack
and restore the normal status. The plan is executed
semi-automatically: before executing each action, the
system asks a confirmation to the security manager,
who can accept or deny the execution. If he denies the
execution, he can change the action correct and exe-
cute it. After the execution, the new case with the
correct plan are retained in the case memory: in this
way, the system learns from new cases to improve the
effectiveness.

CONCLUSIONS

Our work deals with an incident response system and
the securiy manager activity. In this paper, we pre-
sented a tool for detecting and identifying complex at-
tacks (a sequence of alerts that have the same goal),
presenting a semi-automatic response plan to the secu-
rity manager.

It is an innovative system because it covers all the
phases of an attack response security system: from
identification to response. Attack identification has
been recognized as one of the most crucial activities,
if we want to have a possibility of responding appro-
priately to an attack (e.g., see [11], [4]). Obviously,
the attack identification process strongly depends on
the previous experience of the security manager, but
our system may help him with its identification system,
proposing appropriate response plans and automating
operations that can be.

Furthermore, every time a new attack is detected,
the security manager must learn it. This model of the
identification process relies on the observation that, as
can be noticed in the DARPA experiments [12], it is
infrequent to have twice the same attack, but it is very
common to have several “similar” attacks. These three
characteristics, experience-based reasoning, similarity-
based retrieval and learning are the base of the pro-
posed tool. Furthermore, our system is able to propose
response plans based on responsive actions adopted for
past similar attacks. Even if the kind of attack is new,
the system is still able to propose, to the security man-
ager, a response plan. If this plan is evaluated as ap-
propiate, it can also be retained to improve system
experience. Where it is possible, plans are automat-

Abstract Actions Concrete Actions Preconditions

check the process list taskmgr.exe OS=Microsoft Windows
ps -aux >> proclist.txt OS=Linux

compare the process list to the reliable one diff proclist.txt reliabprocs.txt >> badprocs.txt OS=Linux

winmerge.exe proclist.txt reliabprocs.txt
>> badprocs.txt

OS= Microsoft Windows

check the connection list

netstat >> ports.txt

OS=Microsoft Windows, Linux

compare the connection list to the reliable one

diff network.txt reliabnet.txt >> badconn.txt
fc network.txt reliabnet.txt >> badconn.txt

OS=Microsoft Windows, Linux
OS=Microsoft Windows

check the register list and compare it to \
the reliable list

diff regedit.txt reliabregedit>> modifiedKeys.txt

OS=DMicrosoft Windows

kill illegal processes

badprocs.txt >> kill -9
End Process

OS=Linux
OS=Microsoft Windows

remove vulnerabilities installing patches, \
updating systems

remove modified keys listed in \
modifiedkeys.txt

update windows

yum update
update explorer
update firefox
update antivirus

internet connection or update-CD/DVD

Fedora Linux with Internet connection
MS IExplorer

Mozilla Firefox

antivirus present

configure the firewall to reject traffic from \
the exploited ports

ports.txt >>access-list 101 deny tcp eq 25
ports.txt >> iptables -p —~dport -j REJECT,

CISCO firewall
iptables, Linux

restore the normal status of the network

use backup copies to restore services
use backup copies to restore corrupted softwares
use backup copies to restore damaged files

backup and backup utility
backup and backup utility
backup and backup utility

Fig. 4. The response plan linked to the case4.

Response plan

ps -aux >> proclist.txt

diff proclist.txt reliabprocs.txt >> badprocs.txt
Isof >> ports.txt

diff ports.txt reliabports.txt >> badports.txt

badprocs.txt >> kill -9

yum update
update firefox
update antivirus

badports.txt >> iptables -p —dport -j REJECT

use backup copies to restore services
use backup copies to restore corrupted softwares
use backup copies to restore damaged files

Fig. 5. The adapted plan.

ically executed, after the security manager validation.
From preliminary experiments done on the whole tool,
it arises that a tool based on the experience, and ca-
pable of learning, capturing what a security manager
usually does is quite hard to realize, but the prelim-
inary results are promising. As future work, we will
present experimental results.

REFERENCES

[1] F. Valeur and G. Vigna and C. Kruegel and R. Kemmerer,
A Comprehensive Approach to Intrusion Detection Alert
Correlation, IEEE Transaction on Dependable and Secure
Computer,2004,Volume 1,number 3, pages 146-169,July—
September.

[2] C. Kruegel and G. Vigna, Anomaly Detection of Web-
based Attacks, Proceedings of the 10t" ACM Conference
on Computer and communications security, 2003,pages 251—
261,Washington D.C.,October,ACM Press

[3] M. Esmaili and R. Safavi-Naini and B. Balachandran and
J. Pieprzyk, Case-Based Reasoning for Intrusion Detection,
Proceedings of the 12t" Annual Computer Security Applica-
tions Conference, 1996,pages 214-223,December

[4] CERT Coordination Center, Responding to In-
trusions, 2001,http: //www.cert.org/security-
improvement/modules/m06.html

[5] M. Roesch, Snort, 1998, http://www.snort.org/

(6] Tripwire Inc., Tripwire, http://www.tripwire.com/

[7] Cisco Systems, Inc., Cisco Security Monitoring, Analysis and
Response System, http://www.cisco.com/en/US/products/

[8] Arcsight, Inc., Arcsight Security Manager,
http://www.arcsight.com

9] E. Yilmaz and S. Stoecklin and D. G. Schwartz, Toward
a Generic Case-Based Reasoning Framework Using Adap-
tive Software Architectures, IKE,2003,pages 512-514,Las Ve-
gas,Nevada,June

[10] N. Amani and M. Fathi and M. Dehghan, A Case-
Based Reasoning Method for Alarm Filtering and Cor-
relation in Telecommunication Networks, Proceedings of
the Electrical and Computer Engineering, 2005,pages 2182—
2186,Canada,May

[11] International Organization for Standardization, ISO/IEC
17799 — BS7799 — Information technology: Code
of practice for information security management,
2002,http://www.iso17799software.com/

[12] MIT Lincoln Laboratory, DARPA, DARPA
Intrusion Detection Evaluation Data Sets,
1999,http://www.ll.mit.edu/IST /ideval/index.html

[13] M. Nick and B. Snoek and T. Willrich, Supporting the IT
Security of eServices with CBR-Based Experience Manage-
ment, Proceedings of 5t* International Conference on Case-
Based Reasoning Research and Development (ICCBR 2003),
2003,volume 2698, Trondheim,Norway,June

[14] P. Porras and P. Neumann, EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances, Pro-
ceedings of the 1997 National Information Systems Security
Conference, 1997

[15] N. Ye and B. Harish and T. Farley, Attack profiles to de-
riwe data observations, features, and characteristics of cy-
ber attacks, Information Knowledge Systems Management,
2005/2006,volume 5,I0S Press

[16] J. P. Wack, Establishing a Computer Security Incident Re-
sponse Capability (CSIRC), Computer Systems Laboratory,
National Institute of Standards and Technology, 1991,NIST
Special Publication 800-3,November

[17] R. Barruffi and M. Milano and R. Montanari, Planning
for security management, Intelligent Systems IEEE,Volume
16,Jan-Feb,2001,pages 74-80

[18] A. Aamodt and E. Plaza, Case-Based Reasoning: Foun-
dational Issues, Methodological Variations, and System ap-
proaches, Al Communications,1994,volume 7,number 1,pages
39-59

