

FORMAL ANALYSIS OF EXECUTIONS OF ORGANIZATIONAL
SCENARIOS BASED ON PROCESS-ORIENTED MODELS

Viara Popova and Alexei Sharpanskykh

Vrije Universiteit Amsterdam
Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
E-mail: {popova, sharp}@few.vu.nl

KEYWORDS
Process-oriented models, Formal analysis, Workflow
Management

ABSTRACT

This paper presents formal techniques for analysis of
executions of organizational scenarios based on process-
oriented models of organizations. A part of these
techniques is dedicated to establishing the
correspondence between formalized executions (i.e.,
traces) and process-oriented models. Other techniques
provide the analyst with wide possibilities to analyze
organizational dynamics and to evaluate organizational
performance. For the proposed formal analysis the
order-sorted predicate Temporal Trace Language (TTL)
is used. The analysis is supported by the dedicated
software tool TTL Checker. The analysis approaches are
illustrated by a case study in the context of an
organization from the security domain.

INTRODUCTION

Process management in many modern organizations is
supported by dedicated software systems, such as
Workflow Management Systems (WfMS). WfMSs are
used to guide/control the execution of organizational
scenarios based on certain internal models. These
models describe/prescribe ordering and timing relations
on processes, modes of use of resources, allocations of
actors to processes etc. WfMS models are expressed
using different formalisms: Petri-Nets, Workflow Nets,
process algebra, logical specifications. An approach
proposed in this paper makes use of models specified in
an expressive order-sorted predicate language LPR
described in (Popova and Sharpanskykh 2006). The
actual execution of organizational scenarios may diverge
from the dynamics (pre)defined by a process-oriented
model. To capture this difference many WfMSs record
data about actual executions (e.g., starting and finishing
time points of processes, types and amounts of resources
used/consumed/produced/broken, names of actors who
perform processes).

To guarantee the correct operation of an organization
supported by a WfMS (1) a correct formal process-
oriented model should be provided and (2) actual
executions of organizational scenarios should
correspond to this formal model. For establishing the

correctness of process-oriented (or workflow) models a
number of formal verification techniques exist (e.g.,
Aalst and Hee 2002) aimed at identifying errors and
inconsistencies in models, irrespectively of actual
executions of these models. The verification techniques
related to models used in this paper are described in
(Popova and Sharpanskykh 2006). However, not many
formal techniques and tools exist for establishing if the
organization actually behaves as it is specified by the
model (i.e., for validating a model). In (Barjis et al.
2002; Desel et al. 2003) validation is performed by
simulation of organizational scenarios. Although
simulation techniques can provide useful insights into
relationships and dynamics of an organization, they
often abstract from the complexity of dynamics of real
organizations. To perform analysis based on the actual
organizational execution, data gathered by a WfMS can
be used. For example, in (Aalst et al. 2005) it is shown
how the analysis based on linear temporal logic (LTL)
can be used for establishing the correspondence between
the observed and the expected organizational behavior.
In this paper different types of formal, automatically
supported analysis of actual executions based on
process-oriented models will be described. These types
include checking the conformity to a formal process-
oriented model and to the formal organization, analysis
of organizational emergent properties and organizational
performance evaluation. The analysis is based on the
predicate-based Temporal Trace Language (TTL),
which allows more expressivity than LTL used in (Aalst
et al 2005).

The presentation is organized as follows. First, the
overview of the proposed analysis framework is given.
Then, the specification of process-oriented models is
briefly discussed and a language used for formalizing
executions is introduced. Next, TTL and the dedicated
software environment TTL Checker are considered.
Finally, different types of trace-based analysis are
discussed and illustrated by a case study from the
security domain. The paper concludes with a discussion.

TRACE-BASED ANALYSIS: OVERVIEW

In (Popova and Sharpanskykh 2007a) a general
organization modeling and analysis framework is
introduced including different views on organizations. In
particular, the performance-oriented view describes

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

organizational goal structures, performance indicators
structures, and relations between them. Within the
organization-oriented view organizational roles, their
authority, responsibility and power relations are defined.
In the agent-oriented view different types of agents with
their capabilities are identified and principles for
allocating agents to roles are formulated. Finally,
process-oriented view describes static structures of tasks
and resources, the flow of control, and addresses the
actual execution of organization processes. The views
are related to each other by means of common concepts,
which enables different types of analysis across views.
This paper describes a part of the process-oriented view
related to actual execution of organizational scenarios
based on process-oriented models formalized in LPR.
Data about actual executions are structured in the form
of a trace - a formal structure that consists of a time-
indexed sequence of states. Each state is characterized
by a set of organizational and environmental events that
occur in the state. Events are specified by atoms in a
sorted predicate language LEX, described in this paper.
The formal analysis of actual executions is performed by
checking organizational properties expressed in TTL on
traces using the TTL Checker tool. The TTL Checker
has a graphical interface, using which TTL formulae can
be inputted and traces that represent organization
executions can be loaded and visualized (see for
example Fig.1). The tool generates a positive answer, if
the specified property is satisfied by the execution
model (i.e., holds w.r.t. the loaded trace(s)). If a formula
is not satisfied, a counterexample is provided. The tool
also allows performing statistical analysis on multiple
traces. More details on the TTL and the tool are given
further in the paper. Here we identify the types of trace
analysis that can be performed using the TTL Checker.

Each process-oriented model (pre)defines a set of
scenarios of organization behavior. The actual execution
of an organization may diverge from scenarios described
by the model. In some organizations a certain degree of
deviation is allowed, whereas other organizations
require a strict adherence to the model (e.g., military
organizations, nuclear power plants). In the second case
the verification of the conformity of an actual execution
to a formal organization model is of special importance.
This is the first type of analysis considered in this paper.

Every correct process-oriented model guarantees the
satisfaction of a set of (global) constraints over
processes, resources and agents identified in the
organization. These constraints are usually specified
based on different organizational and general normative
documents (e.g., a strategy description, laws, policies,
etc.). In general, if a trace conforms to the
corresponding process-oriented model, then all
constraints imposed on and satisfied by the model are
also satisfied by the trace. However, when the checking
of the conformity of the trace to the model fails, then the
satisfaction of the constraints by the trace is not

guaranteed any more. In this case the analysis of the
conformity of a trace to a formal organization (i.e.,
organizational constraints) should be performed, which
is the second type of analysis considered in this paper.
Often process-oriented models allow (different degrees
of) autonomy of agents in executing organizational
scenarios. For example, in many organic organizations
processes are defined loosely to ensure flexibility. To
analyze the functioning of such organizations, an
approach called analysis of the emergent organizational
behavior is proposed in the paper.

Finally, the paper proposes a method for the evaluation
of organizational performance based on checking the
satisfaction of organizational goals related to processes.
The types of analysis described above may be performed
both during the execution and after the execution of
organizational scenarios.

THE SPECIFICATION OF THE PROCESS-
ORIENTED MODEL

Process-oriented models are expressed using the LPR
language, which is briefly described in this section. For
more details see (Popova and Sharpanskykh 2006). The
model describes the following objects (represented by
sorts in LPR): tasks, processes (particular instances of
tasks in control flows), resource types describing
information and material artifacts, resources (specific
instances of resource types having specified amounts),
agents, roles (sets of functionalities that can be assigned
to agents), goals, performance indicators (measures
based on which the goals are defined). Each object has a
number of characteristics. For example, a task is
characterized by a minimum duration (denoted by
task_name.min_duration); a resource type has a
characteristic expiration duration; resources are
characterized by an amount. Furthermore, relations are
defined over the objects. For example, the relation
task_produces(t:TASK, rt:RESOURCE_TYPE, v:VALUE)
specifies that task t produces amount v of resource type
rt. Resource types that can be shared by several
processes are specified in
resource_sharable(rt:RESOURCE_TYPE, L:PROCESS_LIST).

The set of specified processes together with the set of
ordering relation defined on them form a workflow. An
example of an ordering relation is starts_after(p1:

PROCESS, p2:PROCESS). It defines that process p1 starts
after process p2. Furthermore, three types of structures
specifying the flow of control between processes are
defined: and-, or- and loop-structures. Branches of and-
structures start simultaneously and are all executed.
Only one branch of an or-structure can be executed
depending on the or-condition. Loop structures contain
processes that can be repeated depending on the loop-
condition within a maximum number of iterations.
Relations between roles, agents and processes are
defined as follows: role_perfoms_process(r:ROLE,

p:PROCESS) and agent_plays_role(a:AGENT, r:ROLE).

Relations to goals and PIs are defined as follows:
is_realized_by(g:GOAL, L:TASK_LIST) defining that goal g
can be realized by performing tasks in list L and
measures(i:PI, p:PROCESS) specifying that performance
indicator i is a measure over some aspect of the
performance of process p.

EXECUTION LANGUAGE LEX

For the formalization of a trace, a dedicated sorted
predicate language LEX is used, which is based on LPR.
Each sort included into LEX represents a set of individual
objects of a certain type that occur in the trace (e.g., the
sort PROCESS_EX contains all names of processes that
have been executed in the trace). To distinguish the
names of sorts of LEX from the names of sorts in LPR, all
sort names of LEX finish with the EX postfix. To define
events a number of relations are introduced into LEX (see
Table 1).

Table 1: Relations defined in LEX

Predicate specification Informal description
process_started: PROCESS_EX A process has started
process_finished: PROCESS_EX A process has finished
resource_used_by: RESOURCE_EX
x PROCESS_LIST_EX x VALUE

A certain resource amount
is used by a process

resource_consumed_by:
RESOURCE_EX x PROCESS_EX x
VALUE

A certain resource amount
is consumed by a process

resource_produced_by:
RESOURCE_EX x PROCESS_EX x
VALUE

A certain resource amount
is produced by a process

resource: RESOURCE_EX x
RESOURCE_TYPE_EX

Identifies a resource of a
certain resource type

resource_expired: RESOURCE_EX A resource is expired
resource_invalid: RESOURCE_EX x
VALUE

A certain resource amount
became invalid (e.g.
broken)

available_resource_amount:
RESOURCE_EX x VALUE

Specifies the available
amount of the resource

pi_has_value: PI_EX x VALUE Identifies the value of a PI
agent_is_assigned_to_role:
AGENT_EX x ROLE_EX

Specifies the assignment of
an agent to a role

agent_performs_process:
AGENT_EX x PROCESS_EX

Identifies that an agent
performs a certain process

env_object_changed_state_into:
ENV_OBJECT_EX x
OBJ_STATE_EX

Specifies a changed state
of an environmental object

env_object_changed_char_into:
ENV_OBJECT_EX x OBJ_CHAR_EX
x VALUE

Specifies the value of a
certain characteristic of an
environmental object

decision_taken:
DECISION_VARIABLE_EX x
DECISION_VAR_VALUE_EX

Identifies the value of a
decision variable

LANGUAGE TTL AND TTL CHECKER TOOL

To analyze traces the language TTL is used. TTL is a
variant of order-sorted predicate logic, which allows
reasoning about dynamic properties of systems. TTL
properties considered in this paper are specified based
on state properties expressed as formulae in LEX. For
enabling dynamic reasoning, TTL includes special sorts:
TIME (a set of linearly ordered time points), STATE (the

set of all state names of a system), TRACE (the set of all
trace names), STATPROP (the set of all state property
names). In TTL, formulae of the state language (LEX in
this case) are used as objects. Further we shall use t with
subscripts and superscripts for variables of the sort
TIME; and γ with subscripts and superscripts for
variables of the sort TRACE. A state of a system in a
trace is denoted using a function symbol state of type
TRACE x TIME → STATE. The set of function symbols of
TTL includes:
∧, ∨, →, ↔: STATPROP x STATPROP→ STATPROP,
not: STATPROP→ STATPROP,
∀∀∀∀, ∃∃∃∃: VARS x STATPROP→ STATPROP,
which are counterparts to the Boolean propositional
connectives and quantifiers.

The states of a system are related to names of state
properties via the satisfaction relation denoted by the
infix predicate |= (or by the prefix predicate holds):
state(γ,t)|= p (or holds(state(γ,t)), which denotes that the
state property with a name p holds in trace γ at time
point t. For example, state(trace1,10)|= process_started(p2)

denotes that the process p2 has started in the trace1 at the
time point 10. Both state(γ,t) and p are terms of TTL. All
other TTL terms are constructed by induction in the
standard predicate logic way.

Transition relations between states are described by
dynamic properties, which are expressed by TTL-
formulae. The set of atomic TTL-formulae is defined as:
(1) If v1 is a term of sort STATE, and u1 is a term of the sort

STATPROP, then holds(v1,u1) is an atomic TTL formula.
(2) If τ1, τ2 are terms of any TTL sort, then τ1=τ2 is an atomic

TTL formula.
(3) If t1, t2 are terms of sort TIME, then t1<t2 is an atomic TTL

formula.

The set of well-formed TTL-formulae is defined
inductively in a standard way using Boolean
propositional connectives and quantifiers. TTL has
semantics of the order-sorted predicate logic. A more
detailed specification of the syntax and the semantics for
the TTL is given in (Sharpanskykh and Treur 2006).

The analysis based on checking of TTL formulae on
(one or more) traces is supported by the TTL Checker
tool. Besides the logical analysis the tool allows
statistical post-processing of the verification results. For
this the following functions are used:
case(logical_formula, value1, value2): if logical_formula is
true, then the case function is mapped to value1,
otherwise – to value2.
sum([summation_variables], case(logical_formula, value1, 0)):
logical_formula is evaluated for every combination of
values from the domains of each from the
summation_variables; and for every evaluation when the
logical formula is evaluated to true, value1 is added to
the resulting value of the sum function.

To provide support for analysts not skilled in logics, the
tool allows defining parameterized templates (macros),
which can be instantiated in different ways. Further
details about the TTL Checker can be found in (Bosse et
al. 2006). Examples of analysis cases that also include
statistical processing will be given further in this paper.

TRACE CONFORMITY TO A MODEL

As described earlier the process-oriented model consists
of objects, characteristics and relations defined in LPR.
Every such model can be translated to a set of
constraints that should be satisfied by actual execution
traces. The constraints are represented as properties in
TTL using LEX as a state language. Each property is
based on a specific combination of language constructs
(ordering relations, and-/or-/loop-structures, object
characteristics, etc.) In the following we define rules on
how to translate different parts of the model
specification to TTL properties. Due to the space
limitations only a part of the properties is given in this
paper, for the rest of them we refer to (Popova and
Sharpanskykh 2007b).

The first property we consider represents the restriction
that only processes specified in the model are allowed to
be performed. It is formalized in TTL as follows. For
specific process names p1, ..., pn:

C1: ∀t, p:PROCESS_EX state(γ, t) |= process_started(p) � p =
p1 | ... | p = pn

The next properties represent the constraints that
processes not part of any or-structure start and finish in
the trace. For p1 a process not in any or-branch:

C2: ∃t1 state(γ, t1) |= process_started(p1)
C3: ∃t1 state(γ, t1) |= process_finished(p2)

The execution of processes in or- and loop-structures
depends on the evaluation of conditions defined for
these structures. In this case it needs to be checked
whether the processes that have started also finish in the
trace: For p1 a process in a loop-structure/or-branch:

C4: ∃t1 state(γ, t1) |= process_started(p1)
 � ∃t2: state(γ, t2) |= process_finished(p1)

Additionally for processes not in loop-structures:
C5: ∃t1 state(γ, t1) |= process_started(p1)
 � (∀t3 t3 � t1 � state(γ, t3) |= ¬process_started(p1)

The next property checks if the actual duration of a
process is within the range defined by the corresponding
task. For a process p1, a task tk, durations d1 and d2
such that [is_instance_of(p, tk), tk.min_duration=d1,

tk.max_duration=d2]:

C6: ∃t1, t2 state(γ, t1) |= process_started(p1) & state(γ, t2) |=
process_finished(p2) � d1 � t2-t1 & t2-t1 � d2

Ordering relations are translated to constraints in the
following way. For p1, p2 such that starts_with(p1, p2):

C7: ∃t1 state(γ, t1) |= process_started(p1)
 � state(γ, t1) |= process_started(p2)
C8: ∃t1 state(γ, t1) |= process_started(p2)
 � state(γ, t1) |= process_started(p1)

Similarly for finishes_with and starts_during (C9, C10,
C11). For p1, p2, d such that starts_after(p2, p1, d) except
for beginning and ending of and-, or-, or loop-structures:

C12: ∃t1 state(γ, t1) |= process_finished(p1)
 � ∃t2: state(γ, t2) |= process_started(p2) & d = t2-t1

For and-structures it is checked if the order of execution
of processes in these structures matches the specified
and-conditions (C13, C14, C15). An and-condition
designates all, any or specific processes at the end of the
branches of an and-structure that should finish before
the workflow can continue.

For or-structures it should be checked if exactly one of
the branches is executed and it matches the specified or-
condition. An or-condition is an expression based on a
decision variable (related to a decision process), state or
a characteristic of an environmental object. For p, p1,...,
pn, d, and a condition based on the decision variable dv
such that [starts_after(begin_or(id),p,d),starts_after(p1,
begin_or(id)), ..., starts_after(pn, begin_or(id)), or_cond(id, dv),
or_branch(p1, val1),..., or_branch(pn, valn)] (similarly for
other conditions):

C16: ∃t1 state(γ, t1) |= �process_finished(p) � ∃t2 (state(γ, t2) |=
process_started(p1) & ∀t3 state(γ, t3) |= [¬process_started(p2)
∧ ... ∧ ¬process_started(pn)] & ∃t4 state(γ, t4) |=
decision_taken(dv, val1) & t4 � t2 & (∀t5 t5 � t4 & t5 � t2 &
state(γ, t5) |= decision_taken(dv, val) � val = val1) | ... |
(state(γ, t2) |= process_started(pn) & ∀t6 state(γ, t6) |=
[¬process_started(p1) ∧ ... ∧ ¬process_started(pn-1)] & ∃t7
state(γ, t7) |= decision_taken(dv, valn) & t7 � t2 & (∀t8 t8 � t7 &
t8 � t2 & state(γ, t8) |= decision_taken(dv, val) � val = valn)) &
d = t2-t1

Furthermore it should be checked that the processes in
the other branches are not executed (C17) and that the
process after the or-structure starts correctly:

For p1, ..., pn, p, d such that [starts_after(end_or(id), p1), ...,
starts_after(end_or(id), pn), starts_after(p, end_or(id), d)]:
C18: ∃t1 state(γ, t1) |= [process_finished(p1) ∨ ... ∨
process_finished(pn)] � ∃t2 state(γ, t2) |= process_started(p) &
d = t2-t1

For every loop-structure the correct execution order is
checked w.r.t. a loop condition and a maximal number
of iterations (C19).

The following properties concern resources and resource
types and how they are used/consumed/produced/shared
by processes. For resource type rt, task tk, amount v and
process p such that [is_instance_of(p, tk), task_uses(tk, rt, v)]
for every time point t in the trace it will be checked that
the resource that is used matches the specification:

C21: sum([L:PROCESS_LIST_EX], case(∃t1, t2 state(γ, t1) |=
process_started(p) & state(γ, t2) |= process_finished(p) & t1 � t
& t � t2 & state(γ, t) |= resource_used_by(r, L, v1) & is_in_list(p,
L) & ∃t4 state(γ, t4) |= resource(r, rt), v1, 0)) = v
Similarly, the properties C20 and C22 are defined for
consumed / produced resources.

In the model, the resources available at the beginning of
the workflow are represented as produced by the
BEGIN process. Thus it should be checked if the
available amount at the beginning of the trace matches
the amount produced by the BEGIN process. For
resource r such that [process_output(BEGIN, r),
is_resource_type(r, rt), r.amount=v]:

C23: sum([r:RESOURCE_EX], case(state(γ, 0) |=
[available_resource_amount(r, v1) ∧ resource(r, rt)], v1, 0)) = v

It should also be checked whether the resources are
shared between lists of processes for which this is
allowed. For resource type rt and list of processes L
such that [resource_sharable(rt, L)]:

C24: ∃t1 ∃L1:PROCESS_LIST_EX state(γ, t1) |=
resource_used_by(r, L1, v) & ∃t2 state(γ, t2) |= resource(r, rt) �
is_sublist_of(L1, L)

Finally it should be checked if role/process assignments
to agents are correct. For role r, agent a, process p such
that [role_performs_process(r,p),agent_plays_role(a, r)]:

C25: ∃t1, t2 state(γ, t1) |= process_started(p) & state(γ, t2) |=
process_finished(p) � ∀t3 t1 � t3 & t3 � t2 & state(γ, t3) |=
[agent_performs_role(a, r) ∧ agent_performs_process(a, p)]

The above listed properties are general and can be
checked in any order on the execution trace. However in
many cases it would be beneficial to enforce certain
order of checking. Often when one constraint is violated
that causes the violation of others but finding all of them
might not add much more information on what went
wrong. It is therefore useful to alert the analyst of the
first time point at which a violation of a constraint
occurs. The approach proposed here is to consider the
events of the trace in their natural temporal order. For
each event that represents a starting or finishing point of
a process only a selection of the relevant general
constraints instantiated for a specific time point(s) and a
specific event(s) are checked.

In the following we define the sets of relevant
constraints w.r.t. the type of event occurring in the trace.
The first constraints to be checked are C23 (available
resource at the first time point) and C2 (checks if a
process starts) for the first process(es) in the workflow
that should start at the first time point unconditionally. If
at the first time point an or-structure begins then it
should be checked that only one branch is executed and
it matches the evaluation of the condition (C16).
Afterwards the (partially) ordered list of starting and
finishing points of processes is considered. For every

starting point the following types of constraints are
considered (in this order): (1) the process is defined in
the model (C1), (2) the process has not been executed
before if not in loop-structures (C5), (3) constraints
w.r.t. the conditions for and-structures (C13, C14, C15),
(4) constraints related to starts_with and starts_during
(C7, C8, C11), (5) the process finishes (C3, C4).

For every finishing point the following constraints are
checked (in this order): (1) resource-related constraints
(C20, C21, C22, C24), (2) agent-/role-related
constraints (C25), (3) durations (C6), (4) constraints
related to finishes_with (C9, C10), (5) constraints on the
next process (C12, C16, C17, C18, C19). From all types
of considered constraints those are selected that refer to
the specific process to which the starting or finishing
point belongs. When more events coincide finishing
points are considered before starting points.

The above described approach assumes the availability
of the whole execution trace at the beginning of the
analysis. In some situations it might be necessary to
perform such analysis while the trace is being generated.
This gives the possibility to react as soon as an event in
the execution deviates from the model and take
appropriate measures. With some adjustments, the
generic properties can be used here as well, as described
in (Popova and Sharpanskykh 2007b).

CONFORMITY TO A FORMAL ORGANIZATION

A formal organization is specified by a fixed set of rules
that define (prescribe) organizational structure and
behavior and are formalized as predicate logic
constraints imposed on a process-oriented model.

In (Popova and Sharpanskykh 2006) different types of
constraints are described (e.g., domain-specific, physical
world constraints). Some of these constraints are strict
and should not be violated in any organizational
scenario; e.g., “all employees involved in a certain
process, which has a risk factor for human health, should
be provided with the necessary safety means” . Other
rules are less strict and can be (temporally) violated;
e.g., “ the average amount of a certain resource produced
by an organization is required to be greater than a
certain number” .

In the following several examples of formal organization
properties that can be checked on traces are considered.

P1: In the trace γ1 the process p1 is executed (after some time)
after the process p2 has finished:
∃t1, t2 t1�t2 state(γ, t1) |= process_finished(p2) & state(γ, t2) |=
process_started(p1)

P2: For the specified set of traces TR the average overall
amount of resources of type r produced by an organization up
to a time point t should be at least n:
sum([γ:TR, t’:between(0, t), r’:RESOURCE_EX],
case(∃a’:PROCESS_EX ∃am:VALUE_EX state(γ, t’)|= [

resource_produced_by(r’, a’, am) ∧ resource(r’, r)], am, 0)) /
sum([γ:TR], case(true, 1, 0)) ≥ n,
here between(0, t) represents a set of all natural numbers in the
interval [0, t].

P3: In the trace γ1 the overall amount of working hours of an
agent a at time point t (e.g., a time point in the end of some
working period) should not exceed n:
(sum([t’: between(0, t), p’:PROCESS_EX], case(state(γ1, t’)|= [
agent_performs_process(a, p’) ∧ process_finished(p’)], t’, 0)) –
sum([t’’: between(0, t), p’: PROCESS_EX], case(state(γ1, t’)|= [
agent_performs_process(a,p’) ∧ process_started(p’)], t’’,0))) � n

ANALYSIS OF EMERGENT PROPERTIES

Emergent properties are not specified and not implied
by an organizational model and are related only to
(result from) an actual execution(s) of an organization.
Such properties may be checked for different reasons:
e.g., to optimize the organizational operation by
discovering and eliminating bottlenecks. Many
emergent properties include a post-processing of the
checking results by applying different statistical
functions: e.g., sum, average, minimum, maximum, and
are often expressed over multiple traces. Consider
several examples:

E1: For the specified set of traces TR, determine a frequency
of finishing the process p on time (i.e., duration should be
within the interval [min_duration, max_duration]).
sum([γ:TR], case(∃t1,t2 state(γ, t1)|= process_started(p) &
state(γ, t2)|= process_finished(p) & (t2-t1) � max_duration &
(t2-t1) ≥ min_duration], 1, 0)) / sum([γ:TR], case(∃t1 state(γ,
t1)|= process_started(p), 1, 0))

E2: In the trace γ1 at the time point t calculate the average
workload of agents of an organization:
(sum([t1: between(0, t), p’:PROCESS_EX, a’:AGENT_EX],
case(state(γ1, t1) |= [agent_performs_process(a’, p’) ∧
process_finished(p’)], t1, 0) – sum([t2: between(0, t),
p’:PROCESS_EX, a’:AGENT_EX], case(state(γ1, t2)|=
[agent_performs_process(a’, p’) ∧ process_started(p’)], t2, 0)))
/ sum([a’:AGENT_EX], case(true, 1, 0))

E3: Maximum duration of a process p in all executions:
∃γ1, t1, t2 state(γ1, t1)|= process_started(p) & state(γ1, t2)|=
process_finished(p) & ∀γ’≠γ1 ∀t1’, t2’ [state(γ’, t1’) |=
process_started(p) & state(γ’, t2’)|= process_finished(p) & (t2’-
t1’)<(t2-t1)]

PERFORMANCE EVALUATION

The performance of an organization at a certain time
point (for a certain period) is evaluated by determining
the satisfaction of key organizational goals. These goals
range from high-level abstract goals to very specific
ones. High-level goals are decomposed to more specific
goals which are easier to measure, thus, forming goal
decomposition structures. Goals are defined and
discussed in (Popova and Sharpanskykh 2006) as part of
the performance-oriented view on organizations.
Example of goals are: ‘ It is desired to maintain high
degree of product quality’ , ‘ It is desired to achieve high

customer satisfaction’ , ‘ It is desired to maintain number
of work-related accidents per year to less than 3’ , etc.

Goals are formulated based on performance indicators
(PIs), which are associated with certain organizational
processes. Examples of PIs are: product quality,
customer satisfaction, number of accidents, productivity,
etc. The values of these PIs are measured (directly or
indirectly) during or after the process execution
depending on the goal evaluation type and in the end or
during a certain period of time (goal horizon). Then, by
comparing the measured values with the corresponding
goal expressions, the satisfaction of the goals is
determined. Further, the obtained goal satisfaction
measure is propagated by applying the rules defined in
(Popova and Sharpanskykh 2006), upwards in the goal
hierarchy for determining the satisfaction of high level
goals. An example of this type of analysis is given
further in the frames of the case study.

CASE STUDY

The application of different types of analysis will be
illustrated in the context of an organization from the
security domain. The main purpose of the organization
is to deliver security services to different types of
customers. The organization has well-defined multi-
level structure that comprises several areas serving
groups of locations (security objects) and has predefined
(to a varying degree) job descriptions for employees
(approx. 230.000 persons). The allocation of employees
to security objects is based on plans created by planning
groups.

The planning process consists of the forward (or long-
term) planning and the short-term planning. The forward
planning is a process of creation of plans describing the
allocation of security officers within the whole
organization for a long term (4 weeks). Forward plans
are created based on customer contracts by forward
planners. During the short-term planning, plans that
describe the allocation of security officers to locations
within an area for a short term (a week) are created and
updated based on the forward plan and up-to-date
information about the security employees. Based on
short term plans, daily plans are created. Within each
area the short-term planning is performed by the area
planning team that consists of planners and is guided by
a team leader.

The position of the forward planners in the
organizational structure has changed as a result of a
reorganization in the past. Before the reorganization
each planning team had a forward planner who was
mainly responsible for the creation of long-term plans
for the area. After the reorganization the forward
planners were combined into a centralized forward
planning group. A number of reasons for such a change
are identified in the reorganization reports. In the
following it will be shown how the proposed analysis

techniques could be used for automated justification of
the identified performance bottlenecks and other
problems in the organization.

(1) Uneven workload of forward planners in different
area planning teams.
This statement can be checked by calculating the
workload for the forward planners in different areas and
comparing the results. For this the following property
can be used with a – the agent name, for whom the
workload is calculated, and t – the time point up to
which the workload is calculated:

sum([t1: between(0, t), p’:PROCESS_EX], case(state(γ1, t1) |=
[agent_performs_process(a, p’) ∧ process_finished(p’)], t1, 0)) -
sum([t2: between(0, t), p’:PROCESS_EX], case(state(γ1, t2)|=
[agent_performs_process(a, p’) ∧ process_started(p’)], t2, 0)),
here a is an agent name and

If multiple traces are available, the average workload of
every agent can be calculated as it is demonstrated in
property E2. A side-effect of high workload could be the
undue execution of some processes assigned to the
forward planner. This can be established by verifying
the correspondence of the actual execution to the model.

(2) Certain forward planning tasks require collaboration
with other forward planners. In the previous
organization this has been achieved by informal (i.e., not
specified by a formal organizational model) cooperation
between forward planners from different areas.

This statement can be justified in two steps. First by
performing the analysis of the correspondence of a trace
to the model, it can be established that in the trace exist
processes performed by agents that are not allocated to
the roles, to which these processes are assigned. Then,
the number (or frequency) of such processes until the
time point t for each role r can be calculated as follows:

sum([p’:PROCESS_EX], case(∃t1<t ∃a:F_PLANNER
state(γ1, t1) |= [agent_performs_process(a,p’) ∧
 ¬agent_performs_role(a1, r)], 1, 0))

For multiple traces (a set TR), the average number of
such processes for role r can be calculated as follows:
sum([γ:TR, p’:PROCESS_EX], case(∃t1<t ∃a:F_PLANNER
state(γ, t1) |= [agent_performs_process(a, p’) ∧
¬agent_performs_role(a1, r)], 1, 0)/sum([γ:TR], case(true, 1, 0))

(3) Planning activities within each area were isolated
from each other. Sometimes this led to situations, when
customer requests in one area were not satisfied due to
lack of security officers, whereas in other areas available
employees were in plenty.

Such situations could be identified by calculating the
(average) number of customer requests that were not
accomplished by the organization until the time point t:
sum([t1: between(0, t)), r’: CUSTOMER_REQUEST],
case(state(γ1, t1) |= env_object_changed_state_into(r’, active)
& ∀t2 t2>t1 state(γ1, t2) |= ¬env_object_changed_state_into(r’,
satisfied), 1, 0))

In the following section we illustrate in more detail the
different types of analysis of execution traces using the
activities of the short-term planners after the
reorganization of the planning departments.

EXAMPLES OF TRACE ANALYSIS

Based on company documents such as job descriptions,
company policy, procedures, etc., a process-oriented
model was created for the planning departments. Part of
this model dedicated to the creation of daily plans and
short-term plans within one day is considered here. In
the first half of the day security employees should
provide their data change forms (requests for changes in
the allocation schedule) to the unit manager (defined as
process p3) who then checks and improves the data (p4)
and puts it in the system (p5). At the same time the
planners are working on other tasks, for example during
the last week of the month they create a new short-term
plan (STP) for the next month (p1). In the second half of
the day they work on creating a daily plan (p6) for the
next day (using the data change information in the
system), inputting it in the system (p7) and informing all
concerned (p8). Then they update the current short-term
plan if necessary (p9) and so on. Part of the
specification of the model is shown below:

starts_after(begin_and(and1), BEGIN, 0)
starts_after(begin_or(or1)
begin_and(and1), 0)
starts_after(p3, begin_and(and1), 0)
starts_after(p4, p3, 0)
starts_after(p5, p4, 0)
starts_after(p2, begin_or(or1), 0)
or_cond(or1,week_state)
or_branch(last,p1)
or_branch(other,p2)
starts_after(end_or(or1), p1, 0)
starts_after(end_or(or1), p2, 0)
starts_after(begin_and(and1), p5, 0)
starts_after(begin_and(and1), end_or(or1), 0)
and_cond(and1, all)
starts_after(p6, end_and(and1), 0.5)
...
role_performs_process(sec_officer, p3)
role_performs_process(planner, p1)
...
is_instance_of(p1, t1)
task_produces(t1, STP, 1)
t1. min_duration = 3.5h
t1.max_duration = 4h
...

Based on this specification constraints are generated (as
discussed earlier). For example, the first few lines of the
specification generate the following constraints for the
first time point of an execution trace:

state(γ, 0) |= process_started(p3) (based on C2)
state(γ, 0) |= process_started(p2) & (∀t3 state(γ, t3) |=
¬process_started(p1)) & state(γ, 0) |=
¬env_object_changed_state_into(week, last) | (state(γ, 0) |=
process_started(p1) & (∀t3 state(γ, t3) |=
¬process_started(p2)) & state(γ, 0) |=
env_object_changed_state_into(week, last) (based on C17)

∀p:PROCESS_EX state(γ, 0) |= process_started(p) � p = p1 |
p = p2 | p = p3 (based on C1)

Also based on company documents traces were created
corresponding to this model. One such trace is used to
illustrate the analysis of whether an execution trace
agrees with the model. The trace represents a day from
the last week of the month. Part of this trace is shown in
Fig. 1. In the left part the atoms are listed and in the
right part the time line is shown consisting of 12 hours.
The time line is relative to the trace and not expressed in
absolute date and time stamps. The absolute time line
can always be calculated given the time stamp of the
beginning of the trace. For each atom, the time interval
for which it is true is displayed by a dark-grey bar while
a light-grey bar designates that the value is false. For
example for the whole duration of the trace agent a1 is
assigned to play the role of a security officer and
process_started(p1) is only true for time point 0.

The trace in Fig. 1 contains a process that is not in the
model, p12. It is executed instead of process p3.
According to p3, the security officers should deliver the
change forms to the unit manager however on that day
the unit manager was unavailable and the forms were
brought directly to the planners (p12) who then had to
check and improve them and input them in the system.
These extra tasks prevented the planners from finishing
their work on creating a short-term plan on time.
Therefore all other processes during the rest of the day
were shifted later than the model specified.

Figure 1: The execution trace used for illustration

The trace is considered time point by time point taking
into account the starting and finishing points of
processes. We assume that the analysis is performed in
real time, i.e. only the part of the trace up to the current
time point is available. At time point 0 the three
constraints given above are checked. They are satisfied
since the only two processes starting are p3 and p1 and at
this time point the state of the object week is indeed
‘last’. Next the following properties are scheduled to be
checked at every time point t until satisfied:
state(γ, t) |= process_finished(p1)

state(γ, t) |= process_finished(p3)

If that does not happen before the end of the trace then it
is considered that this constraint is violated. Also the
minimal and maximal duration of the processes should
be according to the model:

state(γ, t) |= process_finished(p1) � t � 3.5
state(γ, t) |= process_finished(p1) � t � 4
state(γ, t) |= process_finished(p3) � t = 1

Next resource-related constraints are considered. The
only relevant resource is the collection of data change
forms DCF which is considered as a whole and only one
collection can be produced. Thus C22 is not relevant.
Also agent-/role-related constraint C25 is scheduled for
checking at every time point t until the process finishes.

state(γ,t) |= ¬process_finished(p1)
 � state(γ,t) |= [agent_plays_role(a2,planner) ∧
 agent_performs_process(a2, p1)]
state(γ,t) |= ¬process_finished(p3)
� state(γ,t) |= [agent_plays_role(a1,sec_officer) ∧
 agent_performs_process(a1, p3)]

From all the scheduled constraints one fails at time point
0.5 when process p3 finishes – its duration is below the
specified minimal duration of 1 hour. At this step the
analysis stops – the trace does not agree with the model
and the first process that violates the constraints is p3.
Then, at this point it can be checked whether and which
important organizational properties are satisfied (i.e.,
conformity to the formal organization). One of the
properties extracted from the organizational documents
of the company is that a daily plan for the next day is
available before the end of the current working day,
expressed as follows:

∃t, p:PROCESS_EX, r:RESOURCE_EX
state(γ,t) |= [resource_produced_by(r, p) ∧
 resource(r, daily_plan)]
This property is satisfied by the trace.

Another property says that if the planners need to update
the short-term plan then this should be performed only
after the daily plan is available:

∃t1, t2, p:PROCESS_EX, r:RESOURCE_EX
state(γ, t1) |= [resource_produced_by(r, p) ∧ resource(r,
daily_plan)] & state(γ, t2) |= �process_started(p9) � t1 � t2
This property is also satisfied.

Analyzing this trace it can be seen that the reason why
the planners get overloaded is because the unit manager
was not available to perform the processes assigned to
him. Based on this, the analyst might decide to check in
what percentage of the traces it happens that the work
load of the unit manager is less than 3 hours. This can be
checked by the following emergent property:
sum([p:PROCESS_EX], case(∃t1, t2 state(γ, t1)� |=�
[process_started(p) ∧ agent_performs_process(a, p) ∧
agent_performs_role(a, unit_manager)] & state(γ, t2)� |=�
process_finished(p), t2-t1, 0)) < 3

Also it can be determined if the events specified in the
trace had an impact on the organizational performance.
One of the high-level goals of the organization
considered in the case study is the goal G1: ‘ It is required
to maintain good level of satisfaction of the employees’ . This
general goal is decomposed into more specific goals
among which is the goal G1.1: ‘ It is required to maintain
that the level of work load is moderate’ . This is again
decomposed into even more specific goals among which
is the goal G1.1.1: ‘ It is required to achieve that the number
of working hours per day for each employee is not more that
8’ . This goal is based on the performance indicator P1:
‘working hours per day per employee’ which can be
evaluated for every trace for the last point t of the trace.
∀v:VALUE state(γ, t) |= pi_has_value(P1, v) � v � 8

For the trace in Fig. 1 it will be calculated and included
at the end of the trace that pi_has_value(P1, 11) which is
more than 8. Thus goal G1.1.1 is not satisfied and
contributes negatively to the satisfaction of G1.1 which
is propagated upwards in the goals structure.

DISCUSSION

This paper introduces automated techniques for
manifold formal analysis of actual executions based on
process-oriented models of organizations. On the one
hand these techniques allow identifying errors and
inconsistencies in executions of organizational
scenarios, on the other hand they provide means for the
evaluation and improving of organizational
performance. For the proposed analysis techniques the
TTL language and the environment TTL Checker are
used, which allow high expressivity in specification of
properties, including precise timing relations, references
to multiple states (execution histories), arithmetical
operations and checking properties on multiple traces.
All these possibilities make TTL more expressive
language than the standard modal logics (e.g., LTL,
CTL, ATL) and calculi. Although TTL is an intuitive,
close to the natural language, to define complex
properties some skills in logics are needed. To support
designers (e.g., managers) not skilled in logics, the used
tool allows defining parameterized templates (macros)
for TTL formulae, which can be instantiated in different
ways which can also be used.

In the proposed approach traces are based on the actual
execution of organizational scenarios. Such traces can
be obtained in different ways: (1) automatically
generated by a WfMS; (2) if data about the execution
are represented in the form of informal logs obtained
based on a process-oriented model in LPR, they can be
formalized (manually or automatically) using the
language LEX; (3) in case data about the execution are
represented in some other formal language, the
translation between this language and LEX (if possible) is
performed. Note that the translation and further analysis
of traces obtained by (3) is possible only if a model

based on which an original trace is generated can be
related to an equivalent model in LPR. Traces can be also
generated based on a process-oriented model by
performing simulations. Such traces can be used for
diagnosis of inconsistencies, redundancies and errors in
organizational structure and behavior. This type of
analysis and the dedicated software are described in
(Broek et al. 2006).

REFERENCES

Aalst, W. van der; Beer, H.; and Dongen, B. van. 2005.
“Process Mining and Verification of Properties: An
Approach based on Temporal Logic” . In On the Move to
Meaningful Internet Systems. Springer-Verlag, Berlin.

Aalst, W. van der and Hee, K.M van. 2002. Workflow
Management: Models, Methods, and Systems. MIT press,
Cambridge, MA.

Barjis, J; Shishkov, B and Dietz, J. 2002. “Validation of
Business Components via Simulation” . In Proceedings of
the 2002 Summer Computer Simulation Conference.

Bosse, T.; Jonker, C.M.; Meij, L. van der; Sharpanskykh, A.
and Treur, J. 2006. “Specification and Verification of
Dynamics in Cognitive Agent Models” . In Proceedings of
the Sixth International Conference on Intelligent Agent
Technology, IAT'06. IEEE Computer Society Press.

Broek, E.; Jonker, C.; Sharpanskykh, A.; Treur, J. and Yolum,
P. 2006. Formal Modeling and Analysis of Organizations.
In Coordination, Organization, Institutions and Norms in
Agent Systems I, LNAI 3913, Springer

Desel, J.; Juhas, G.; Lorenz, R. and Neumair, C. 2003.
„Modelling and Validation with VipTool” . LNCS 2678,
380-389.

Popova, V. and Sharpanskykh, A. 2006. “Process-Oriented
Organization Modeling and Analysis Based on
Constraints” . Technical Report 062911AI, VUA,
http://hdl.handle.net/1871/10545

Popova, V. and Sharpanskykh, A. 2007a. “Formal Modelling
of Goals in Agent Organizations” . In Proceedings of the
AOMS Workshop (joint with IJCAI 2007).

Popova, V. and Sharpanskykh, A. 2007b. “Formal analysis of
executions of organizational scenarios based on process-
oriented models” . Technical Report 071601AI, VUA,
http://hdl.handle.net/1871/10643

Sharpanskykh, A. and Treur, J. 2006. “Verifying Interlevel
Relations within Multi-Agent Systems”. In Proceedings of
the 17th European Conference on Artificial Intelligence,
ECAI'06. IOS Press.

Alexei Sharpanskykh is a PhD student at the Vrije
Universiteit Amsterdam. He received his Master degree in
Computer Science at the Zaporizhzhya National Technical
University (Ukraine). Currently he is doing research in
modelling and analysis of multi-agent organizations in the
context of a number of projects in the areas of logistics,
incident management and air traffic control.

Viara Popova received her MSc degree in Computer Science
at Sofia University, Bulgaria, and a PhD degree at Erasmus
University Rotterdam in the area of Machine Learning and
Data Mining. Subsequently she worked as a post-doctoral
researcher at the Vrije Universiteit Amsterdam in the area of
modeling and analysis of multi-agent organizations with a
focus on logistics and incident management.

