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ABSTRACT 

This paper presents formal techniques for analysis of 
executions of organizational scenarios based on process-
oriented models of organizations. A part of these 
techniques is dedicated to establishing the 
correspondence between formalized executions (i.e.,  
traces) and process-oriented models. Other techniques 
provide the analyst with wide possibilities to analyze 
organizational dynamics and to evaluate organizational 
performance. For the proposed formal analysis the 
order-sorted predicate Temporal Trace Language (TTL) 
is used. The analysis is supported by the dedicated 
software tool TTL Checker. The analysis approaches are 
illustrated by a case study in the context of an 
organization from the security domain. 
 
INTRODUCTION 

Process management in many modern organizations is 
supported by dedicated software systems, such as 
Workflow Management Systems (WfMS). WfMSs are 
used to guide/control the execution of organizational 
scenarios based on certain internal models. These 
models describe/prescribe ordering and timing relations 
on processes, modes of use of resources, allocations of 
actors to processes etc. WfMS models are expressed 
using different formalisms: Petri-Nets, Workflow Nets, 
process algebra, logical specifications. An approach 
proposed in this paper makes use of models specified in 
an expressive order-sorted predicate language LPR 
described in (Popova and Sharpanskykh 2006). The 
actual execution of organizational scenarios may diverge 
from the dynamics (pre)defined by a process-oriented 
model. To capture this difference many WfMSs record 
data about actual executions (e.g., starting and finishing 
time points of processes, types and amounts of resources 
used/consumed/produced/broken, names of actors who 
perform processes). 
 
To guarantee the correct operation of an organization 
supported by a WfMS (1) a correct formal process-
oriented model should be provided and (2) actual 
executions of organizational scenarios should 
correspond to this formal model. For establishing the 

correctness of process-oriented (or workflow) models a 
number of formal verification techniques exist (e.g., 
Aalst and Hee 2002) aimed at identifying errors and 
inconsistencies in models, irrespectively of actual 
executions of these models. The verification techniques 
related to models used in this paper are described in 
(Popova and Sharpanskykh 2006). However, not many 
formal techniques and tools exist for establishing if the 
organization actually behaves as it is specified by the 
model (i.e., for validating a model). In (Barjis et al. 
2002; Desel et al. 2003) validation is performed by 
simulation of organizational scenarios. Although 
simulation techniques can provide useful insights into 
relationships and dynamics of an organization, they 
often abstract from the complexity of dynamics of real 
organizations. To perform analysis based on the actual 
organizational execution, data gathered by a WfMS can 
be used. For example, in (Aalst et al. 2005) it is shown 
how the analysis based on linear temporal logic (LTL) 
can be used for establishing the correspondence between 
the observed and the expected organizational behavior. 
In this paper different types of formal, automatically 
supported analysis of actual executions based on 
process-oriented models will be described. These types 
include checking the conformity to a formal process-
oriented model and to the formal organization, analysis 
of organizational emergent properties and organizational 
performance evaluation. The analysis is based on the 
predicate-based Temporal Trace Language (TTL), 
which allows more expressivity than LTL used in (Aalst 
et al 2005). 
 
The presentation is organized as follows. First, the 
overview of the proposed analysis framework is given. 
Then, the specification of process-oriented models is 
briefly discussed and a language used for formalizing 
executions is introduced. Next, TTL and the dedicated 
software environment TTL Checker are considered. 
Finally, different types of trace-based analysis are 
discussed and illustrated by a case study from the 
security domain. The paper concludes with a discussion. 
 
TRACE-BASED ANALYSIS: OVERVIEW 

In (Popova and Sharpanskykh 2007a) a general 
organization modeling and analysis framework is 
introduced including different views on organizations. In 
particular, the performance-oriented view describes 
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organizational goal structures, performance indicators 
structures, and relations between them. Within the 
organization-oriented view organizational roles, their 
authority, responsibility and power relations are defined. 
In the agent-oriented view different types of agents with 
their capabilities are identified and principles for 
allocating agents to roles are formulated. Finally, 
process-oriented view describes static structures of tasks 
and resources, the flow of control, and addresses the 
actual execution of organization processes. The views 
are related to each other by means of common concepts, 
which enables different types of analysis across views. 
This paper describes a part of the process-oriented view 
related to actual execution of organizational scenarios 
based on process-oriented models formalized in LPR. 
Data about actual executions are structured in the form 
of a trace - a formal structure that consists of a time-
indexed sequence of states. Each state is characterized 
by a set of organizational and environmental events that 
occur in the state. Events are specified by atoms in a 
sorted predicate language LEX, described in this paper. 
The formal analysis of actual executions is performed by 
checking organizational properties expressed in TTL on 
traces using the TTL Checker tool. The TTL Checker 
has a graphical interface, using which TTL formulae can 
be inputted and traces that represent organization 
executions can be loaded and visualized (see for 
example Fig.1). The tool generates a positive answer, if 
the specified property is satisfied by the execution 
model (i.e., holds w.r.t. the loaded trace(s)). If a formula 
is not satisfied, a counterexample is provided. The tool 
also allows performing statistical analysis on multiple 
traces. More details on the TTL and the tool are given 
further in the paper. Here we identify the types of trace 
analysis that can be performed using the TTL Checker. 
 
Each process-oriented model (pre)defines a set of 
scenarios of organization behavior. The actual execution 
of an organization may diverge from scenarios described 
by the model. In some organizations a certain degree of 
deviation is allowed, whereas other organizations 
require a strict adherence to the model (e.g., military 
organizations, nuclear power plants). In the second case 
the verification of the conformity of an actual execution 
to a formal organization model is of special importance. 
This is the first type of analysis considered in this paper.  
 
Every correct process-oriented model guarantees the 
satisfaction of a set of (global) constraints over 
processes, resources and agents identified in the 
organization. These constraints are usually specified 
based on different organizational and general normative 
documents (e.g., a strategy description, laws, policies, 
etc.). In general, if a trace conforms to the 
corresponding process-oriented model, then all 
constraints imposed on and satisfied by the model are 
also satisfied by the trace. However, when the checking 
of the conformity of the trace to the model fails, then the 
satisfaction of the constraints by the trace is not 

guaranteed any more. In this case the analysis of the 
conformity of a trace to a formal organization (i.e., 
organizational constraints) should be performed, which 
is the second type of analysis considered in this paper. 
Often process-oriented models allow (different degrees 
of) autonomy of agents in executing organizational 
scenarios. For example, in many organic organizations 
processes are defined loosely to ensure flexibility. To 
analyze the functioning of such organizations, an 
approach called analysis of the emergent organizational 
behavior is proposed in the paper. 
 
Finally, the paper proposes a method for the evaluation 
of organizational performance based on checking the 
satisfaction of organizational goals related to processes.  
The types of analysis described above may be performed 
both during the execution and after the execution of 
organizational scenarios. 
 
THE SPECIFICATION OF THE PROCESS-
ORIENTED MODEL  

Process-oriented models are expressed using the LPR 
language, which is briefly described in this section. For 
more details see (Popova and Sharpanskykh 2006). The 
model describes the following objects (represented by 
sorts in LPR): tasks, processes (particular instances of 
tasks in control flows), resource types describing 
information and material artifacts, resources (specific 
instances of resource types having specified amounts), 
agents, roles (sets of functionalities that can be assigned 
to agents), goals, performance indicators (measures 
based on which the goals are defined). Each object has a 
number of characteristics. For example, a task is 
characterized by a minimum duration (denoted by 
task_name.min_duration); a resource type has a 
characteristic expiration duration; resources are 
characterized by an amount. Furthermore, relations are 
defined over the objects. For example, the relation 
task_produces(t:TASK, rt:RESOURCE_TYPE, v:VALUE) 
specifies that task t produces amount v of resource type 
rt. Resource types that can be shared by several 
processes are specified in 
resource_sharable(rt:RESOURCE_TYPE, L:PROCESS_LIST). 
 
The set of specified processes together with the set of 
ordering relation defined on them form a workflow. An 
example of an ordering relation is starts_after(p1: 

PROCESS, p2:PROCESS). It defines that process p1 starts 
after process p2. Furthermore, three types of structures 
specifying the flow of control between processes are 
defined: and-, or- and loop-structures. Branches of and-
structures start simultaneously and are all executed. 
Only one branch of an or-structure can be executed 
depending on the or-condition. Loop structures contain 
processes that can be repeated depending on the loop-
condition within a maximum number of iterations. 
Relations between roles, agents and processes are 
defined as follows: role_perfoms_process(r:ROLE, 

p:PROCESS) and agent_plays_role(a:AGENT, r:ROLE). 



 

 

Relations to goals and PIs are defined as follows: 
is_realized_by(g:GOAL, L:TASK_LIST) defining that goal g 
can be realized by performing tasks in list L and 
measures(i:PI, p:PROCESS) specifying that performance 
indicator i is a measure over some aspect of the 
performance of process p. 
 
EXECUTION LANGUAGE LEX 

For the formalization of a trace, a dedicated sorted 
predicate language LEX is used, which is based on LPR. 
Each sort included into LEX represents a set of individual 
objects of a certain type that occur in the trace (e.g., the 
sort PROCESS_EX contains all names of processes that 
have been executed in the trace). To distinguish the 
names of sorts of LEX from the names of sorts in LPR, all 
sort names of LEX finish with the EX postfix. To define 
events a number of relations are introduced into LEX (see 
Table 1). 
 

Table 1: Relations defined in LEX 
 

Predicate specification Informal description 
process_started: PROCESS_EX A process has started 
process_finished: PROCESS_EX A process has finished 
resource_used_by: RESOURCE_EX 
x PROCESS_LIST_EX x VALUE 

A certain resource amount 
is used by a process 

resource_consumed_by: 
RESOURCE_EX x PROCESS_EX x 
VALUE 

A certain resource amount 
is consumed by a process 

resource_produced_by: 
RESOURCE_EX x PROCESS_EX x 
VALUE 

A certain resource amount 
is produced by a process 

resource: RESOURCE_EX x 
RESOURCE_TYPE_EX 

Identifies a resource of a 
certain resource type 

resource_expired: RESOURCE_EX A resource is expired 
resource_invalid: RESOURCE_EX x 
VALUE 

A certain resource amount 
became invalid (e.g. 
broken) 

available_resource_amount: 
RESOURCE_EX x VALUE 

Specifies the available 
amount of the resource 

pi_has_value: PI_EX x VALUE Identifies the value of a PI 
agent_is_assigned_to_role: 
AGENT_EX x ROLE_EX 

Specifies the assignment of 
an agent to a role 

agent_performs_process: 
AGENT_EX x PROCESS_EX 

Identifies that an agent 
performs a certain process 

env_object_changed_state_into: 
ENV_OBJECT_EX x 
OBJ_STATE_EX 

Specifies a changed state 
of an environmental object 

env_object_changed_char_into: 
ENV_OBJECT_EX x OBJ_CHAR_EX 
x VALUE 

Specifies the value of a 
certain characteristic of an 
environmental object 

decision_taken: 
DECISION_VARIABLE_EX x 
DECISION_VAR_VALUE_EX 

Identifies the value of a 
decision variable 

 
LANGUAGE TTL AND TTL CHECKER TOOL 

To analyze traces the language TTL is used. TTL is a 
variant of order-sorted predicate logic, which allows 
reasoning about dynamic properties of systems. TTL 
properties considered in this paper are specified based 
on state properties expressed as formulae in LEX. For 
enabling dynamic reasoning, TTL includes special sorts: 
TIME (a set of linearly ordered time points), STATE (the 

set of all state names of a system), TRACE (the set of all 
trace names), STATPROP (the set of all state property 
names). In TTL, formulae of the state language (LEX in 
this case) are used as objects. Further we shall use t with 
subscripts and superscripts for variables of the sort 
TIME; and γ with subscripts and superscripts for 
variables of the sort TRACE. A state of a system in a 
trace is denoted using a function symbol state of type 
TRACE x TIME → STATE. The set of function symbols of 
TTL includes:  
∧, ∨, →, ↔: STATPROP x STATPROP→ STATPROP,  
not: STATPROP→ STATPROP,  
∀∀∀∀, ∃∃∃∃: VARS x STATPROP→ STATPROP,  
which are counterparts to the Boolean propositional 
connectives and quantifiers.  
 
The states of a system are related to names of state 
properties via the satisfaction relation denoted by the 
infix predicate |= (or by the prefix predicate holds): 
state(γ,t)|= p (or holds(state(γ,t)), which denotes that the 
state property with a name p holds in trace γ at time 
point t. For example, state(trace1,10)|= process_started(p2) 

denotes that the process p2 has started in the trace1 at the 
time point 10. Both state(γ,t) and p are terms of TTL. All 
other TTL terms are constructed by induction in the 
standard predicate logic way. 
 
Transition relations between states are described by 
dynamic properties, which are expressed by TTL-
formulae. The set of atomic TTL-formulae is defined as: 
(1) If v1 is a term of sort STATE, and u1 is a term of the sort 

STATPROP, then holds(v1,u1) is an atomic TTL formula. 
(2) If τ1, τ2 are terms of any TTL sort, then τ1=τ2 is an atomic 

TTL formula.  
(3) If t1, t2 are terms of sort TIME, then t1<t2 is an atomic TTL 

formula.  
 
The set of well-formed TTL-formulae is defined 
inductively in a standard way using Boolean 
propositional connectives and quantifiers. TTL has 
semantics of the order-sorted predicate logic. A more 
detailed specification of the syntax and the semantics for 
the TTL is given in (Sharpanskykh and Treur 2006). 
 
The analysis based on checking of TTL formulae on 
(one or more) traces is supported by the TTL Checker 
tool. Besides the logical analysis the tool allows 
statistical post-processing of the verification results. For 
this the following functions are used: 
case(logical_formula, value1, value2): if logical_formula is 
true, then the case function is mapped to value1, 
otherwise – to value2. 
sum([summation_variables], case(logical_formula, value1, 0)):  
logical_formula is evaluated for every combination of 
values from the domains of each from the 
summation_variables; and for every evaluation when the 
logical formula is evaluated to true, value1 is added to 
the resulting value of the sum function.  
 



 

 

To provide support for analysts not skilled in logics, the 
tool allows defining parameterized templates (macros), 
which can be instantiated in different ways. Further 
details about the TTL Checker can be found in (Bosse et 
al. 2006). Examples of analysis cases that also include 
statistical processing will be given further in this paper. 
 
TRACE CONFORMITY TO A MODEL 

As described earlier the process-oriented model consists 
of objects, characteristics and relations defined in LPR. 
Every such model can be translated to a set of 
constraints that should be satisfied by actual execution 
traces. The constraints are represented as properties in 
TTL using LEX as a state language. Each property is 
based on  a specific combination of language constructs 
(ordering relations, and-/or-/loop-structures, object 
characteristics, etc.) In the following we define rules on 
how to translate different parts of the model 
specification to TTL properties. Due to the space 
limitations only a part of the properties is given in this 
paper, for the rest of them we refer to (Popova and 
Sharpanskykh 2007b). 
 
The first property we consider represents the restriction 
that only processes specified in the model are allowed to 
be performed. It is formalized in TTL as follows. For 
specific process names p1, ..., pn: 

 
C1: ∀t, p:PROCESS_EX state(γ, t) |= process_started(p) � p = 
p1 | ... | p = pn 
 
The next properties represent the constraints that 
processes not part of any or-structure  start and finish in 
the trace. For p1 a process not in any or-branch: 
 
C2: ∃t1 state(γ, t1) |= process_started(p1) 
C3: ∃t1 state(γ, t1) |= process_finished(p2) 
 
The execution of processes in or- and loop-structures 
depends on the evaluation of conditions defined for 
these structures. In this case it needs to be checked 
whether the processes that have started also finish in the 
trace: For p1 a process in a loop-structure/or-branch: 
 
C4: ∃t1 state(γ, t1) |= process_started(p1)  
       � ∃t2: state(γ, t2) |= process_finished(p1) 

Additionally for processes not in loop-structures: 
C5: ∃t1 state(γ, t1) |= process_started(p1)  
       � (∀t3 t3 � t1 � state(γ, t3) |= ¬process_started(p1) 
 
The next property checks if the actual duration of a 
process is within the range defined by the corresponding 
task. For a process p1, a task tk, durations d1 and d2 
such that [is_instance_of(p, tk), tk.min_duration=d1, 

tk.max_duration=d2]: 
 

C6: ∃t1, t2 state(γ, t1) |= process_started(p1) & state(γ, t2) |= 
process_finished(p2) � d1 � t2-t1 & t2-t1 � d2 
 
Ordering relations are translated to constraints in the 
following way. For p1, p2 such that starts_with(p1, p2): 

 
C7: ∃t1 state(γ, t1) |= process_started(p1)  
       � state(γ, t1) |= process_started(p2) 
C8: ∃t1 state(γ, t1) |= process_started(p2)  
       � state(γ, t1) |= process_started(p1) 
 
Similarly for finishes_with and starts_during (C9, C10, 
C11). For p1, p2, d such that starts_after(p2, p1, d) except 
for beginning and ending of and-, or-, or loop-structures: 
 
C12: ∃t1 state(γ, t1) |= process_finished(p1)  
        � ∃t2: state(γ, t2) |= process_started(p2) & d = t2-t1 
 
For and-structures it is checked if the order of execution 
of processes in these structures matches the specified 
and-conditions (C13, C14, C15). An and-condition 
designates all, any or specific processes at the end of the 
branches of an and-structure that should finish before 
the workflow can continue.  
 
For or-structures it should be checked if exactly one of 
the branches is executed and it matches the specified or-
condition. An or-condition is an expression based on a 
decision variable (related to a decision process), state or 
a characteristic of an environmental object. For p, p1,..., 
pn, d, and a condition based on the decision variable dv 
such that [starts_after(begin_or(id),p,d),starts_after(p1, 
begin_or(id)), ..., starts_after(pn, begin_or(id)),  or_cond(id, dv), 
or_branch(p1, val1),..., or_branch(pn, valn)] (similarly for 
other conditions): 
 

C16: ∃t1 state(γ, t1) |= �process_finished(p) � ∃t2 (state(γ, t2) |= 
process_started(p1) & ∀t3 state(γ, t3) |= [¬process_started(p2) 
∧ ... ∧ ¬process_started(pn)] & ∃t4 state(γ, t4) |= 
decision_taken(dv, val1) & t4 � t2 & (∀t5 t5 � t4 & t5 � t2 & 
state(γ, t5) |= decision_taken(dv, val) � val = val1) | ... | 
(state(γ, t2) |= process_started(pn) & ∀t6 state(γ, t6) |= 
[¬process_started(p1) ∧ ... ∧ ¬process_started(pn-1)] &  ∃t7 
state(γ, t7) |= decision_taken(dv, valn) & t7 � t2 & (∀t8 t8 � t7 & 
t8 � t2 & state(γ, t8) |= decision_taken(dv, val) � val = valn)) & 
d = t2-t1 
 
Furthermore it should be checked that the processes in 
the other branches are not executed (C17) and that the 
process after the or-structure starts correctly:  
 
For p1, ..., pn, p, d such that [starts_after(end_or(id), p1), ..., 
starts_after(end_or(id), pn), starts_after(p, end_or(id), d)]: 
C18: ∃t1 state(γ, t1) |= [process_finished(p1) ∨ ... ∨ 
process_finished(pn)] � ∃t2 state(γ, t2) |= process_started(p) & 
d = t2-t1 
 
For every loop-structure the correct execution order is 
checked w.r.t. a loop condition and a maximal number 
of iterations (C19). 
 
The following properties concern resources and resource 
types and how they are used/consumed/produced/shared 
by processes. For resource type rt, task tk, amount v and 
process p such that [is_instance_of(p, tk), task_uses(tk, rt, v)] 
for every time point t in the trace it will be checked that 
the resource that is used matches the specification: 
 



 

 

C21: sum([L:PROCESS_LIST_EX], case(∃t1, t2 state(γ, t1) |= 
process_started(p) & state(γ, t2) |= process_finished(p) & t1 � t 
& t � t2 & state(γ, t) |= resource_used_by(r, L, v1) & is_in_list(p, 
L) & ∃t4 state(γ, t4) |= resource(r, rt), v1, 0)) = v 
Similarly, the properties C20 and C22 are defined for 
consumed / produced resources. 
 
In the model, the resources available at the beginning of 
the workflow are represented as produced by the 
BEGIN process. Thus it should be checked if the 
available amount at the beginning of the trace matches 
the amount produced by the BEGIN process. For 
resource r such that [process_output(BEGIN, r), 
is_resource_type(r, rt), r.amount=v]: 
 

C23: sum([r:RESOURCE_EX], case(state(γ, 0) |= 
[available_resource_amount(r, v1) ∧ resource(r, rt)], v1, 0)) = v 
 
It should also be checked whether the resources are 
shared between lists of processes for which this is 
allowed. For resource type rt and list of processes L 
such that [resource_sharable(rt, L)]: 

 
C24: ∃t1 ∃L1:PROCESS_LIST_EX state(γ, t1) |= 
resource_used_by(r, L1, v) & ∃t2 state(γ, t2) |= resource(r, rt) � 
is_sublist_of(L1, L) 
 

Finally it should be checked if role/process assignments 
to agents are correct. For role r, agent a, process p such 
that [role_performs_process(r,p),agent_plays_role(a, r)]: 

 
C25: ∃t1, t2 state(γ, t1) |= process_started(p) & state(γ, t2) |= 
process_finished(p) � ∀t3  t1 � t3 & t3 � t2 & state(γ, t3) |= 
[agent_performs_role(a, r) ∧ agent_performs_process(a, p)] 
 
The above listed properties are general and can be 
checked in any order on the execution trace. However in 
many cases it would be beneficial to enforce certain 
order of checking.  Often when one constraint is violated 
that causes the violation of others but finding all of them 
might not add much more information on what went 
wrong. It is therefore useful to alert the analyst of the 
first time point at which a violation of a constraint 
occurs. The approach proposed here is to consider the 
events of the trace in their natural temporal order. For 
each event that represents a starting or finishing point of 
a process only a selection of the relevant general 
constraints instantiated for a specific time point(s) and a 
specific event(s) are checked.  
 
In the following we define the sets of relevant 
constraints w.r.t. the type of event occurring in the trace. 
The first constraints to be checked are C23 (available 
resource at the first time point) and C2 (checks if a 
process starts) for the first process(es) in the workflow 
that should start at the first time point unconditionally. If 
at the first time point an or-structure begins then it 
should be checked that only one branch is executed and 
it matches the evaluation of the condition (C16). 
Afterwards the (partially) ordered list of starting and 
finishing points of processes is considered. For every 

starting point the following types of constraints are 
considered (in this order): (1) the process is defined in 
the model (C1), (2) the process has not been executed 
before if not in loop-structures (C5), (3) constraints 
w.r.t. the conditions for and-structures (C13, C14, C15), 
(4) constraints related to starts_with and starts_during 
(C7, C8, C11), (5) the process finishes (C3, C4). 
 
For every finishing point the following constraints are 
checked (in this order): (1) resource-related constraints 
(C20, C21, C22, C24), (2) agent-/role-related 
constraints (C25), (3) durations (C6), (4) constraints 
related to finishes_with (C9, C10), (5) constraints on the 
next process (C12, C16, C17, C18, C19). From all types 
of considered constraints those are selected that refer to 
the specific process to which the starting or finishing 
point belongs. When more events coincide finishing 
points are considered before starting points. 
 
The above described approach assumes the availability 
of the whole execution trace at the beginning of the 
analysis. In some situations it might be necessary to 
perform such analysis while the trace is being generated. 
This gives the possibility to react as soon as an event in 
the execution deviates from the model and take 
appropriate measures. With some adjustments, the 
generic properties can be used here as well, as described 
in (Popova and Sharpanskykh 2007b).  
 
CONFORMITY TO A FORMAL ORGANIZATION 

A formal organization is specified by a fixed set of rules 
that define (prescribe) organizational structure and 
behavior and are formalized as predicate logic 
constraints imposed on a process-oriented model.  
 
In (Popova and Sharpanskykh 2006) different types of 
constraints are described (e.g., domain-specific, physical 
world constraints). Some of these constraints are strict 
and should not be violated in any organizational 
scenario; e.g., “all employees involved in a certain 
process, which has a risk factor for human health, should 
be provided with the necessary safety means” . Other 
rules are less strict and can be (temporally) violated; 
e.g., “ the average amount of a certain resource produced 
by an organization is required to be greater than a 
certain number” .  
 
In the following several examples of formal organization 
properties that can be checked on traces are considered. 
 
P1: In the trace γ1 the process p1 is executed (after some time) 
after the process p2 has finished: 
∃t1, t2 t1�t2 state(γ, t1) |= process_finished(p2) & state(γ, t2) |= 
process_started(p1) 
 
P2: For the specified set of traces TR the average overall 
amount of resources of type r produced by an organization up 
to a time point t should be at least n: 
sum([γ:TR, t’:between(0, t), r’:RESOURCE_EX], 
case(∃a’:PROCESS_EX ∃am:VALUE_EX state(γ, t’)|= [ 



 

 

resource_produced_by(r’, a’, am) ∧ resource(r’, r)], am, 0)) / 
sum([γ:TR], case(true, 1, 0)) ≥ n,  
here between(0, t) represents a set of all natural numbers in the 
interval [0, t]. 
 
P3: In the trace γ1 the overall amount of working hours of an 
agent a at time point t (e.g., a time point in the end of some 
working period) should not exceed n: 
(sum([t’: between(0, t), p’:PROCESS_EX], case(state(γ1, t’)|= [ 
agent_performs_process(a, p’) ∧ process_finished(p’) ], t’, 0)) – 
sum([t’’: between(0, t), p’: PROCESS_EX], case(state(γ1, t’)|= [ 
agent_performs_process(a,p’) ∧ process_started(p’)], t’’,0))) � n 

 
ANALYSIS OF EMERGENT PROPERTIES 

Emergent properties are not specified and not implied 
by an organizational model and are related only to 
(result from) an actual execution(s) of an organization. 
Such properties may be checked for different reasons: 
e.g., to optimize the organizational operation by 
discovering and eliminating bottlenecks. Many  
emergent properties include a post-processing of the 
checking results by applying different statistical 
functions: e.g., sum, average, minimum, maximum, and 
are often expressed over multiple traces. Consider 
several examples:  
 
E1: For the specified set of traces TR, determine a frequency 
of finishing the process p on time (i.e., duration should be 
within the interval [min_duration, max_duration]). 
sum([γ:TR], case(∃t1,t2 state(γ, t1)|= process_started(p) & 
state(γ, t2)|= process_finished(p) & (t2-t1) � max_duration & 
(t2-t1) ≥ min_duration], 1, 0)) / sum([γ:TR], case(∃t1 state(γ, 
t1)|= process_started(p), 1, 0)) 
 
E2: In the trace γ1 at the time point t calculate the average 
workload of agents of an organization: 
(sum([t1: between(0, t), p’:PROCESS_EX, a’:AGENT_EX], 
case(state(γ1, t1) |= [ agent_performs_process(a’, p’) ∧ 
process_finished(p’) ], t1, 0) – sum([t2: between(0, t), 
p’:PROCESS_EX, a’:AGENT_EX], case(state(γ1, t2)|=  
[ agent_performs_process(a’, p’) ∧ process_started(p’) ], t2, 0))) 
/ sum([a’:AGENT_EX], case(true, 1, 0)) 
 
E3: Maximum duration of a process p in all executions: 
∃γ1, t1, t2 state(γ1, t1)|= process_started(p) & state(γ1, t2)|= 
process_finished(p) & ∀γ’≠γ1 ∀t1’, t2’ [ state(γ’, t1’) |= 
process_started(p) & state(γ’, t2’)|= process_finished(p) & (t2’-
t1’)<(t2-t1)] 

 
PERFORMANCE EVALUATION 

The performance of an organization at a certain time 
point (for a certain period) is evaluated by determining 
the satisfaction of key organizational goals. These goals 
range from high-level abstract goals to very specific 
ones. High-level goals are decomposed to more specific 
goals which are easier to measure, thus, forming goal 
decomposition structures. Goals are defined and 
discussed in (Popova and Sharpanskykh 2006) as part of 
the performance-oriented view on organizations. 
Example of goals are: ‘ It is desired to maintain high 
degree of product quality’ , ‘ It is desired to achieve high 

customer satisfaction’ , ‘ It is desired to maintain number 
of work-related accidents per year to less than 3’ , etc.  
 
Goals are formulated based on performance indicators 
(PIs), which are associated with certain organizational 
processes. Examples of PIs are: product quality, 
customer satisfaction, number of accidents, productivity, 
etc. The values of these PIs are measured (directly or 
indirectly) during or after the process execution 
depending on the goal evaluation type and in the end or 
during a certain period of time (goal horizon). Then, by 
comparing the measured values with the corresponding 
goal expressions, the satisfaction of the goals is 
determined. Further, the obtained goal satisfaction 
measure is propagated by applying the rules defined in 
(Popova and Sharpanskykh 2006), upwards in the goal 
hierarchy for determining the satisfaction of high level 
goals. An example of this type of analysis is given 
further in the frames of the case study.  
 
CASE STUDY 

The application of different types of analysis will be 
illustrated in the context of an organization from the 
security domain. The main purpose of the organization 
is to deliver security services to different types of 
customers. The organization has well-defined multi-
level structure that comprises several areas serving 
groups of locations (security objects) and has predefined 
(to a varying degree) job descriptions for employees 
(approx. 230.000 persons). The allocation of employees 
to security objects is based on plans created by planning 
groups.  
 
The planning process consists of the forward (or long-
term) planning and the short-term planning. The forward 
planning is a process of creation of plans describing the 
allocation of security officers within the whole 
organization for a long term (4 weeks). Forward plans 
are created based on customer contracts by forward 
planners. During the short-term planning, plans that 
describe the allocation of security officers to locations 
within an area for a short term (a week) are created and 
updated based on the forward plan and up-to-date 
information about the security employees. Based on 
short term plans, daily plans are created. Within each 
area the short-term planning is performed by the area 
planning team that consists of planners and is guided by 
a team leader.  
 
The position of the forward planners in the 
organizational structure has changed as a result of a 
reorganization in the past. Before the reorganization 
each planning team had a forward planner who was 
mainly responsible for the creation of long-term plans 
for the area. After the reorganization the forward 
planners were combined into a centralized forward 
planning group. A number of reasons for such a change 
are identified in the reorganization reports. In the 
following it will be shown how the proposed analysis 



 

 

techniques could be used for automated justification of 
the identified performance bottlenecks and other 
problems in the organization.  
 
(1) Uneven workload of forward planners in different 
area planning teams.  
This statement can be checked by calculating the 
workload for the forward planners in different areas and 
comparing the results. For this the following property 
can be used with a – the agent name, for whom the 
workload is calculated, and t – the time point up to 
which the workload is calculated: 
 
sum([t1: between(0, t), p’:PROCESS_EX], case(state(γ1, t1) |= 
[agent_performs_process(a, p’) ∧ process_finished(p’)], t1, 0)) - 
sum([t2: between(0, t), p’:PROCESS_EX], case(state(γ1, t2)|= 
[agent_performs_process(a, p’) ∧ process_started(p’)], t2, 0)), 
here a is an agent name and 
 
If multiple traces are available, the average workload of 
every agent can be calculated as it is demonstrated in 
property E2. A side-effect of high workload could be the 
undue execution of some processes assigned to the 
forward planner. This can be established by verifying 
the correspondence of the actual execution to the model. 
 
(2) Certain forward planning tasks require collaboration 
with other forward planners. In the previous 
organization this has been achieved by informal (i.e., not 
specified by a formal organizational model) cooperation 
between forward planners from different areas. 
 
This statement can be justified in two steps. First by 
performing the analysis of the correspondence of a trace 
to the model, it can be established that in the trace exist 
processes performed by agents that are not allocated to 
the roles, to which these processes are assigned. Then, 
the number (or frequency) of such processes until the 
time point t for each role r can be calculated as follows:  
 
sum([p’:PROCESS_EX], case(∃t1<t ∃a:F_PLANNER  
state(γ1, t1) |= [agent_performs_process(a,p’) ∧   
                         ¬agent_performs_role(a1, r)], 1, 0))  
 
For multiple traces (a set TR), the average number of 
such processes for role r can be calculated as follows: 
sum([γ:TR, p’:PROCESS_EX], case(∃t1<t ∃a:F_PLANNER 
state(γ, t1) |= [agent_performs_process(a, p’) ∧ 
¬agent_performs_role(a1, r)], 1, 0)/sum([γ:TR], case(true, 1, 0)) 
 
(3) Planning activities within each area were isolated 
from each other. Sometimes this led to situations, when 
customer requests in one area were not satisfied due to 
lack of security officers, whereas in other areas available 
employees were in plenty.  
 
Such situations could be identified by calculating the 
(average) number of customer requests that were not 
accomplished by the organization until the time point t: 
sum([t1: between(0, t)), r’: CUSTOMER_REQUEST], 
case(state(γ1, t1) |= env_object_changed_state_into(r’, active) 
& ∀t2 t2>t1 state(γ1, t2) |= ¬env_object_changed_state_into(r’, 
satisfied), 1, 0))  

 
In the following section we illustrate in more detail the 
different types of analysis of execution traces using the 
activities of the short-term planners after the 
reorganization of the planning departments. 
 
EXAMPLES OF TRACE ANALYSIS 

Based on company documents such as job descriptions, 
company policy, procedures, etc., a process-oriented 
model was created for the planning departments. Part of 
this model dedicated to the creation of daily plans and 
short-term plans within one day is considered here. In 
the first half of the day security employees should 
provide their data change forms (requests for changes in 
the allocation schedule) to the unit manager (defined as 
process p3) who then checks and improves the data (p4) 
and puts it in the system (p5). At the same time the 
planners are working on other tasks, for example during 
the last week of the month they create a new short-term 
plan (STP) for the next month (p1). In the second half of 
the day they work on creating a daily plan (p6) for the 
next day (using the data change information in the 
system), inputting it in the system (p7) and informing all 
concerned (p8). Then they update the current short-term 
plan if necessary (p9) and so on. Part of the 
specification of the model is shown below: 
 
starts_after(begin_and(and1), BEGIN, 0) 
starts_after(begin_or(or1)  
begin_and(and1), 0) 
starts_after(p3, begin_and(and1), 0) 
starts_after(p4, p3, 0) 
starts_after(p5, p4, 0) 
starts_after(p2, begin_or(or1), 0) 
or_cond(or1,week_state) 
or_branch(last,p1) 
or_branch(other,p2) 
starts_after(end_or(or1), p1, 0)  
starts_after(end_or(or1), p2, 0) 
starts_after(begin_and(and1), p5, 0) 
starts_after(begin_and(and1), end_or(or1), 0) 
and_cond(and1, all)  
starts_after(p6, end_and(and1), 0.5)  
... 
role_performs_process(sec_officer, p3) 
role_performs_process(planner, p1)  
... 
is_instance_of(p1, t1) 
task_produces(t1, STP, 1)  
t1. min_duration = 3.5h  
t1.max_duration = 4h  
... 

Based on this specification constraints are generated (as 
discussed earlier). For example, the first few lines of the 
specification generate the following constraints for the 
first time point of an execution trace: 
 
state(γ, 0) |= process_started(p3) (based on C2) 
state(γ, 0) |= process_started(p2) & (∀t3 state(γ, t3) |= 
¬process_started(p1)) & state(γ, 0) |= 
¬env_object_changed_state_into(week, last) | (state(γ, 0) |= 
process_started(p1) & (∀t3 state(γ, t3) |= 
¬process_started(p2)) & state(γ, 0) |= 
env_object_changed_state_into(week, last) (based on C17) 

∀p:PROCESS_EX state(γ, 0) |= process_started(p) � p = p1 | 
p = p2 | p = p3 (based on C1) 
 



 

 

Also based on company documents traces were created 
corresponding to this model. One such trace is used to 
illustrate the analysis of whether an execution trace 
agrees with the model. The trace represents a day from 
the last week of the month. Part of this trace is shown in 
Fig. 1. In the left part the atoms are listed and in the 
right part the time line is shown consisting of 12 hours. 
The time line is relative to the trace and not expressed in 
absolute date and time stamps. The absolute time line 
can always be calculated given the time stamp of the 
beginning of the trace. For each atom, the time interval 
for which it is true is displayed by a dark-grey bar while 
a light-grey bar designates that the value is false. For 
example for the whole duration of the trace agent a1 is 
assigned to play the role of a security officer and 
process_started(p1) is only true for time point 0. 
 
The trace in Fig. 1 contains a process that is not in the 
model, p12. It is executed instead of process p3. 
According to p3, the security officers should deliver the 
change forms to the unit manager however on that day 
the unit manager was unavailable and the forms were 
brought directly to the planners (p12) who then had to 
check and improve them and input them in the system. 
These extra tasks prevented the planners from finishing 
their work on creating a short-term plan on time. 
Therefore all other processes during the rest of the day 
were shifted later than the model specified.  
 

 
 
Figure 1: The execution trace used for illustration 
 

The trace is considered time point by time point taking 
into account the starting and finishing points of 
processes. We assume that the analysis is performed in 
real time, i.e. only the part of the trace up to the current 
time point is available. At time point 0 the three 
constraints given above are checked. They are satisfied 
since the only two processes starting are p3 and p1 and at 
this time point the state of the object week is indeed 
‘last’. Next the following properties are scheduled to be 
checked at every time point t until satisfied: 
state(γ, t) |= process_finished(p1) 

state(γ, t) |= process_finished(p3) 
 
If that does not happen before the end of the trace then it 
is considered that this constraint is violated. Also the 
minimal and maximal duration of the processes should 
be according to the model: 
 
state(γ, t) |= process_finished(p1) � t � 3.5 
state(γ, t) |= process_finished(p1) � t � 4 
state(γ, t) |= process_finished(p3) � t = 1 
 
Next resource-related constraints are considered. The 
only relevant resource is the collection of data change 
forms DCF which is considered as a whole and only one 
collection can be produced. Thus C22 is not relevant.  
Also agent-/role-related constraint C25 is scheduled for 
checking at every time point t until the process finishes. 
 
state(γ,t) |= ¬process_finished(p1)  
 � state(γ,t) |= [agent_plays_role(a2,planner) ∧   
                                     agent_performs_process(a2, p1)] 
state(γ,t) |= ¬process_finished(p3)  
� state(γ,t) |= [agent_plays_role(a1,sec_officer) ∧   
                                         agent_performs_process(a1, p3)] 
 
From all the scheduled constraints one fails at time point 
0.5 when process p3 finishes – its duration is below the 
specified minimal duration of 1 hour. At this step the 
analysis stops – the trace does not agree with the model 
and the first process that violates the constraints is p3. 
Then, at this point it can be checked whether and which 
important organizational properties are satisfied (i.e., 
conformity to the formal organization). One of the 
properties extracted from the organizational documents 
of the company is that a daily plan for the next day is 
available before the end of the current working day, 
expressed as follows: 
 
∃t, p:PROCESS_EX, r:RESOURCE_EX  
state(γ,t) |= [resource_produced_by(r, p) ∧  
                                                           resource(r, daily_plan)] 
This property is satisfied by the trace. 
 
Another property says that if the planners need to update 
the short-term plan then this should be performed only 
after the daily plan is available: 
 
∃t1, t2, p:PROCESS_EX, r:RESOURCE_EX  
state(γ, t1) |= [resource_produced_by(r, p) ∧ resource(r, 
daily_plan)] & state(γ, t2) |= �process_started(p9) � t1 � t2 
This property is also satisfied.  
 
Analyzing this trace it can be seen that the reason why 
the planners get overloaded is because the unit manager 
was not available to perform the processes assigned to 
him. Based on this, the analyst might decide to check in 
what percentage of the traces it happens that the work 
load of the unit manager is less than 3 hours. This can be 
checked by the following emergent property: 
sum([p:PROCESS_EX], case(∃t1, t2 state(γ, t1)� |=� 
[process_started(p) ∧ agent_performs_process(a, p) ∧ 
agent_performs_role(a, unit_manager)] & state(γ, t2)� |=� 
process_finished(p), t2-t1, 0)) < 3  



 

 

 
Also it can be determined if the events specified in the 
trace had an impact on the organizational performance. 
One of the high-level goals of the organization 
considered in the case study is the goal G1: ‘ It is required 
to maintain good level of satisfaction of the employees’ . This 
general goal is decomposed into more specific goals 
among which is the goal G1.1: ‘ It is required to maintain 
that the level of work load is moderate’ . This is again 
decomposed into even more specific goals among which 
is the goal G1.1.1: ‘ It is required to achieve that the number 
of working hours per day for each employee is not more that 
8’ . This goal is based on the performance indicator P1: 
‘working hours per day per employee’  which can be 
evaluated for every trace for the last point t of the trace.  
∀v:VALUE state(γ, t) |= pi_has_value(P1, v) � v � 8 
 
For the trace in Fig. 1 it will be calculated and included 
at the end of the trace that pi_has_value(P1, 11) which is 
more than 8. Thus goal G1.1.1 is not satisfied and 
contributes negatively to the satisfaction of G1.1 which 
is propagated upwards in the goals structure.  
 
DISCUSSION 

This paper introduces automated techniques for 
manifold formal analysis of actual executions based on 
process-oriented models of organizations. On the one 
hand these techniques allow identifying errors and 
inconsistencies in executions of organizational 
scenarios, on the other hand they provide means for the 
evaluation and improving of organizational 
performance. For the proposed analysis techniques the 
TTL language and the environment TTL Checker are 
used, which allow high expressivity in specification of 
properties, including precise timing relations, references 
to multiple states (execution histories), arithmetical 
operations and checking properties on multiple traces. 
All these possibilities make TTL more expressive 
language than the standard modal logics (e.g., LTL, 
CTL, ATL) and calculi. Although TTL is an intuitive, 
close to the natural language, to define complex 
properties some skills in logics are needed. To support 
designers (e.g., managers) not skilled in logics, the used 
tool allows defining parameterized templates (macros) 
for TTL formulae, which can be instantiated in different 
ways which can also be used. 
 
In the proposed approach traces are based on the actual 
execution of organizational scenarios. Such traces can 
be obtained in different ways: (1) automatically 
generated by a WfMS; (2) if data about the execution 
are represented in the form of informal logs obtained 
based on a process-oriented model in LPR, they can be 
formalized (manually or automatically) using the 
language LEX; (3) in case data about the execution are 
represented in some other formal language, the 
translation between this language and LEX (if possible) is 
performed. Note that the translation and further analysis 
of traces obtained by (3) is possible only if a model 

based on which an original trace is generated can be 
related to an equivalent model in LPR. Traces can be also 
generated based on a process-oriented model by 
performing simulations. Such traces can be used for 
diagnosis of inconsistencies, redundancies and errors in 
organizational structure and behavior. This type of 
analysis and the dedicated software are described in 
(Broek et al. 2006). 
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