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ABSTRACT 

In this paper, a novel approach to analysis and 
classification of complex machine operations is 
presented. The available data sets from different 
machine operations are first compressed and saved in 
the form of neural models that are called compressed 
information models (CIM). Here an original algorithm 
for unsupervised learning is proposed. It creates the so 
called growing neural models in a sense that the number 
of neurons is gradually increasing (growing) during the 
learning process, until predetermined model accuracy 
(the “average minimum distance”) is satisfied. The 
proposed algorithm has much faster convergence 
compared with the classical neural-gas learning that 
uses preliminary fixed number of neurons.   

A special Knowledge Base classification scheme is 
also proposed in the paper. It uses a fuzzy decision 
block for computing the difference degree between each 
CIM in the Knowledge Base with the CIM of the 
current machine operation. The fuzzy inference 
procedure uses two parameters for comparison the 
CIMs, namely the decision the Center-of-Gravity and 
the General Size of the CIM.  

An example for classification of 45 specially 
generated operations from a diesel engine of a hydraulic 
excavator is used to demonstrate the whole proposed 
technology and its applicability. This fuzzy 
classification scheme is also able to discover new 
operations that significantly differ from all previously 
known operations. 
 
INTRODUCTION  

Many industrial systems and complex machines, such as 
chemical and power plants, hydraulic excavators and 
other construction machines often work under different 
operating conditions, depending on the load, raw 
material characteristics, ambient temperature etc. 
Basically, such machines and systems are equipped with 
different sensors that are used for data acquisition in 

order to provide information about the daily operation 
of the system. This information is obtained in the form 
of large “raw data sets” which are further used for 
different types of off-line analysis, such as performance 
evaluation, classification and fault diagnosis, in order to 
detect possible deterioration trends or malfunctions and 
make respective decisions.  

The example, shown in the following Fig. 1. is from 
different operating conditions of the turbo  diesel engine 
of a hydraulic excavator. It is easy to notice that each 
operation form a kind of “cloud” in the parameter space 
with specific shape and location in the space. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Idling

Fault

Heavy
Load

Normal
  Load

Light
Load

Engine Speed [rpm]

Fuel Consumption

 
Figure 1: Example of Five Diffeent  Operations of a 

Turbo Diesel Engine 

However if many operation data are collected over a 
long period of time (many days or months of operation) 
it is not easy task even for an experienced operator to 
analyse and classify them into a number of  predefined 
groups of typical operations or as “new” or even 
“strange” (possibly abnormal or faulty) operations. The 
complexity of the problem arises from the fact that we 
have to analyse, compare and classify huge data sets to 
each other rather than classify single patterns (single 
data points in the feature space), as in the standard 
classification problem (Bishop, 1995; Bezdek et al. 
2005).  In the sequel of this paper we explain a novel 
approach to classification of large data sets. It is based 
on a preliminary information compression by use of 
special unsupervised learning algorithm for neural 
models, combined with fuzzy decision procedure for 
computing the difference degree between the neural 
models.  
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INFORMATION COMPRESSION BY USE OF 
NEURAL MODELS  
When a large number of “raw” data are collected for 
each machine operation, it is a good idea to initially 
preprocess by converting the raw data set into a more 
compact form, further called compressed information 
model (CIM). However such information compression 
procedure should be done carefully so that to preserve 
as much as possible the original data structure and the 
local density distribution of the data in the high 
dimensional parameter space.  

The learning methods for information compression 
generally belong to the group of the competitive 
unsupervised learning methods and algorithms (Bishop, 
1995; Kohonen, 2001; Martinetz et al. 1993; Kasabov, 
2001; Fritzke, 1994). Widely used are the Self-
Organized (Kohonen) Maps (Kohonen, 2001) and the 
Neural Gas Algorithm (Martinetz et al. 1993; Fritzke, 
1994). Because of their unsupervised nature, these 
methods are pure “data-driven” learning techniques, 
which try to locate the neurons from the neural model in 
the densest area of the input space.  

As a result of the unsupervised learning, the large 
amount of M data is replaced by much smaller number 
of N neurons (N << M) in the same parameter space.  

An example  for such information compression of a 
raw data set consisting of 800 two-dimensional data (M 
= 800; K = 2), into a neural model with  N = 32 
neurons is shown in Figure by using the newly 
proposed growing Neural Gas algorithm. This algorithm 
is explained in the next section.of the paper. 
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Figure 2: Illustration of Data Compression by 

Unsupervised Learned Neural Model with 32 Neurons 

The trained neural model is further used as a 
compressed information model (CIM) of the original 
raw data set. In order to compare two CIMs and find the 
similarity degree (or the difference degree) between 
them (i.e. between the respective raw data sets), we 
introduce here the following two parameters: 1) the 
weighted center-of-gravity COG and 2) the  average 
size AS of the CIM.  
1) The weighted center-of-gravity COG is a point in the 
K-dimensional space, computed in the following way:  

1 1
( ) , ,...,

N N

i j i i
i i

COG j C g g j 1,2 K
= =

= =∑ ∑    (1) 

Here , ,...,i jC j 1,2 K= denotes the center of the i-th 

neuron in the K-dimensional parameter space and 
0 1, ,...,ig i 1,2 N< ≤ = are the normalized weights 
of the neurons, computed as:  
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where , ,...,im M i 1,2 N≤ = is the number of all data 

points, , ,...,s is 1,2 m=x for which the i-th neuron is a 
winning neuron (i.e. the neuron with the shortest 
Euclidean distance to all of these data points). Please, 
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2) The average size AS is a K-dimensional vector 
1 2[ , ,..., ]Kz z z=Z with each element computed as  

double “average distance” between all the neurons N 
and the COG of the model, for each dimension, i.e.  
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2 ( ) ,
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N =
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The physical representation of the awerage size AS 
in the 2-dimensional space (K=2) is a rectangle with 
size 1 2z z× . A more general form of evaluating the size 
of the CIM is the so called “general size” GS, which is 
represented by the diagonal of this rectangle. In the K-
dimenisonal space  its computation is as follows:  

     2
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In order to evaluate in some way the “quality” of the 
neural model, produced by the unsupervised learning, 
we have introduced (Vachkov, 1996a, 196b) the notion 
of the “Average Minimal Distance” AVmin .It is 
computetd as a mean of the distances between all M 
data points and their respective “winning neurons” n*:  

( )2

*
1 1

1 M K

n j i j
i j

AVmin C x
M = =

= −∑ ∑           (5) 

AVmin serves is a convenient quality measure of the 
neural model, since it shows “how well” the model 
represents the real structure in a sense of local density 
distribution of the data from the original data set. A 
trained neural model that has small AVmin represents in 
a better way the original (raw data) structure, compared 
with another model that has bigger AVmin. However in 
order to achieve a higher model accuracy, we need a 
larger number of neurons N and more computation time..  

When a standard unsupervised learning is used for 
creating the neural model, such as the classical Neural 
Gas algorithm (Martinetz, 1993; Vachkov, 2006), the 
number N of the neurons is fixed (pre-determined) 



 

 

before the learning. Therefore the model accuracy in 
terms of AVmin will be known only after the end of the 
learning.  

THE GROWING UNSUPERVISED LEARNING 
ALGORITHM  

It is obvious that the standard Neural Gas learning 
algorithm with fixed number of neurons N cannot 
guarantee an optimal solution to the problem of “true 
information compression”.  

In the so called growing neural model (GNM), 
proposed in (Vachkov, 2006b), AVmin serves as a 
feedback for the current quality status of the neural 
model. This feedback is important for the subsequent 
decision whether to add new neurons or to stop learning.  

For each neuron , ,...,n n 1,2 N=  a K-dimensional 
subspace, called Voronoi Polygon  (Martinetz, 1993; 
Fritzke, 1994; Vachkov, 2006a, 2006b) can be defined, 
where n  is a winning neuron for a certain number of 
data from the whole data set.  

The growing-type of the Neural Gas learning 
algorithm presented here, performs a sequence of 
learning epochs, during which  the “model quality” is 
gradually improved, by adding constant number of 
neurons (usually only one) at each epoch, until the 
predefined quality AVmin is reached.  

According to the general concept of the algorithm, 
the local quality of the neural model in each Voronoi 
polygon , ,...,n n 1,2 N= of the current model is 
evaluated by computing the so called Mean Distance 

nMD between the n-th “winning neuron” and all 

nm data points in this polygon, as follows:  

( )2

1 1

1 nm K

n n j i j
i jn

MD C x
m = =

= −∑ ∑            (6) 

This distance gives useful information about “how 
good” is the neural model in this particular area of the 
space. Then the Deviation between the desired Average 
Minimal Distance AVmin0 and the computed Mean 
Distance (6) for each polygon in the following way: 

0, if 0;
, otherwise; ,...,

n n
n

MD AVmin MD AVmin
DEV

0 n 1,2 N
− >⎧

=⎨ =⎩
     (7) 

The Voronoi polygon with the biggest deviation 

maxDEV will be the first (most urgent) candidate for 

correction, by receiving (at keast) one additional neuron.  
The main computation steps of the Growing-type 

Learning Algorithm are given below.  
The algorithm starts with a small initial number 

oN of 
neurons: 2oN N= ≥ . 
Step 1. Perform the standard fixed-type neural-gas 
learning algorithm as in (Vachkov, 1996a) by using the 
complete set of all M data. As a result, the centers of all 

N neurons in the K-dimensional space 
1 2[ , ,..., ], ...,i i iKC C C i 1,2, N=   are determined; 

Step 2. Analyse the performance of the current neural 
model with N neurons for the complete set of M data by 
computing AVmin from (5).   
Step 3. Check for the stopping condition: If 

0AVmin AVmin≤ , then the algorithm stops (a 
satisfactory neural model with N neurons is created); 
otherwise continue to Step 4. 
Step 4. Analyse the current model-quality of each 
Voronoi polygon, as follow:  

- Compute the Mean Distances 
, ,...,nMD n 1,2 N= for each neuron by using (6);  

- Compute the Deviations , ,...,nDEV n 1,2 N=  by (7); 
- Sort the deviations nDEV for all N neurons in a 

descending order, from maxDEV  to minDEV .  

- Then the following decision is made: “The model 
quality of the Voronoi polygon where the neuron *n  
with the highest deviation: max *nDEV DEV=  is located, 

should be improved by inserting one or more additional 
neurons in its area.” Therefore, define the number 

*nm M< , as well as the list of all data points in this 

polygon *n . 
Step 5. Growing Step: insert a small number of 
neurons 1adN ≥  in the area of polygon *n for further 
learning. The initial positions (centers) of these 
additional neurons are set to coincide with randomly 
selected data from the same polygon. In the most often 
cases, only one additional neuron is inserted in the 
polygon *n , i.e 1adN = . 
Step 6. Perform again the fixed-type unsupervised 
learning algorithm as in Step 1, but for the highly 
reduced case of only 1adN + neurons and for the subset 

of only *nm  data points, which are located in this 
Voronoi polygon *n .  
Note that the old neuron from this polygon is also 
included in this reduced number of adN 1+ neurons that 
have to be trained.  
Step 7. Update the total number of the neurons for the 
current neural model: adN N N← +  and Go to Step 2.  

An illustration of how the proposed growing-type 
learning algorithm works is given in the following Fig. 
3. Here the first two consecutive epochs are only shown, 
starting with an initial number of 2oN = neurons and 

adding one new neuron ( adN 1= ) at each consecutive 
Epoch. With a pre-deermined accuracy of AVmin0 = 
0.02, the growing neural gas algorithm runs 31 epochs 
in total and finally produces a growing neural model 
with N = 32 neurons. This model was already displayed 
in Fig. 2 from the previous Section.  
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Figure 3:Illustration of the first two Epochs from the 
Growing  Neural Gas Algorithm  

The next Fig. 4. shows te convergence of the growing-
type neural gas learning algorithm for the same example. 
As seen, the AVmin steadily decreases with the number 
of neurons (number of Epochs).  
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Figure 4: The Convergence Curve of the Growing 
Neural Gas Algorithm with the Epochs (Neurons) 

THE FUZZY DECISION BLOCK FOR 
CLASSIFICATION OF OPERATIONS 

By use of the above learning algorithm, many available 
data sets from different operations could be compressed 
as respective CIMs for a consequent comparison, 
evaluation and classification. Here the fuzzy systems for 
pattern recognition and classification are quite flexible 
and therefore widely used for such purpose (Bezdek, 
2005).  

In this paper we propose a specialized Knowledge 
based Fuzzy Inference system (called Fuzzy Decision 
Block) for classification of compressed operations 
(CIMs).  The block diagram of the system is shown in 
Fig. 5.   
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Figure 5: Block Diagram of the Proposed Knowledge 

based Fuzzy Inference System  

Here the Knowledge Base KB consists of a collection of 
CIMs for typical (known) operations of the machine, 
while the new operation (to be classified) is presented 
as an additional CIM, as shown in the Figure.  
The Fuzzy Rule Base (FR Base) and the Parameter Base 
in Fig. 5. are necessary elements of the Fuzzy Inference 
system, which makes a fuzzy evaluation by computing 
the Difference Degree (DD) between the CIM from the 
new operation (denoted as Model A) and each of the 
CIMs from the KB (denoted as Model B). We assumed 
here a two-dimensional fuzzy inference procedure: 

( 1, 2)D X X= F which uses the following two 
parameters, namely the Center-of-Gravity Distance (X1) 
and the Model-Size Difference (X2), as shown below:   

 2

1
1 [ ( ) ( )]

K

AB A B
j

COGD X COG j COG j
=

≡ = −∑    (9) 

2

1
2 [ ( ) ( )]

K

AB A B
j

MSD X Z j Z j
=

≡ = −∑           (10) 

The assumed in this paper FR Base is shown in Fig. 6:  
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Figure 6: The Fuzzy Rule Base for Fuzzy Decision 

An example of one concrete Fuzzy Rule is given below:  

IF( X1 is SM AND X2 is BG ) THEN D is DIF   (11) 
Here the following 5 linguistic variables were assumed 
for the input parameters  X1 and X2:  
VS = Very Small; SM = Small; MD = Medium; BG = 
Big  and  VB = Very Big. 



 

 

The consequent D in the fuzzy rule (11) denotes the 
fuzzy set for the Degree of Difference DD which 
includes the following 5 linguistic variables: 
EQ = Equal;  VSIM = Very Similar;  SIM = Similar; 
DIF = Different;  VDIF = Very Different.  
Triangular membership functions for the input 
parameters X1 and X2 were assumed, as shown in Fig. 7.  
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Figure 7: Triangular Membership Functions for the 
Input Parameters X1 and X2 of the Fuzzy Decision 

The standard product-operation for fuzzy inference, as 
well as the weighted average method for defuzzification 
were used here for the final computation of the 
difference degree DD.(details omitted). 

CLASSIFICATION OF OPERATIONS FROM A 
TURBO DIESEL ENGINE  

In this Section we show how the whole technology, 
consisting of information compression and fuzzy 
decision works for classification of various operations 
of a turbo diesel engine of a hydraulic excavator. For 
this purpose we use the available data from 4 main 
operations of the diesel engine under different loads, 
namely:  Light Load (LL), Normal Load (NL), Heavy 
Load (HL) and Idling. In addition, data from another 
(possibly faulty) operation was also used, named as 
Fault. Therefore all these 5 core operations were 
included in the Knowledge Base of the classification 
system., according to Fig. 5.  

Various operations for classification were produced 
by slightly moving the original data sets for LL, NL and 
HL to different locations in the parameter space. We 
also changed their spread (size) by a special simulation 
program. Finally, 45 operations in total were obtained, 
(including the LL, NL and HL), as shown in Fig. 8. 
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Figure 8: Locations and Numbers of all Operations used 

for the Classification 

Large ball-type curve symbols in Fig. 8. denote the five 
core operations (from the Knowledge Base), while all 
other 12 curve symbols with smaller size denote the 
deviated operations by simulation. The deviation of the 
COG for the LL, NL and HL was by amount of α+  
and α− for P1 and by β+ and β−  for P2, with 

0.1α = and 0.1β = . In addition, the general size GS of 
each operation (including the main operations LL, NL 
and HL) has been changed twice, as follows: a smaller 
size GS1 = 0.8GS  by 20% and a larger size GS2 = 
1.2GS by 20%. The main 3 operations LL, NL and HL, 
with normal size GS are numbered in Fig. 8. as 1, 16 
and 31, respectively. . 

The results from the classification are shown in the 
next Fig. 9., separately for the cases of LL, NL and HL.  
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Figure 9: Classification Results for All Operations:  

a) Light Load; b) Normal Load; c) Heavy Load 

A threshold of 0.35 was set in this case for classifying 
the operations in two groups, as follows: belonging to 
the respective main operation (when the difference 
degree DD < 0.35) or not belonging to this operation (if 
DD > 0.35). We leave the sensitive choice of the 
threshold to the experience of the human operator.  

In Fig. 10. two additional (artificially generated) 
operations are shown, named as Op_X and Op_Y. They 
have unknown status and (as seen) are largely different 
from the main operations: LL, NL, HL, Idling and Fault, 
but may have some similarities with some of them , 
namely: Op_X is somewhere between HL and Idling; 
OP_Y is somewhere between LL and Fault.  
Our classification system produced the following result: 
Op_X is the closest to HL with DD = 0.52, but the 
assumed threshold of 0.35 “rejects” this decision; Op_Y 
is the most closest to LL  with DD = 0.66, but it is also 
rejected by the given threshold. Therefore, these two 
operations are finally classified as “new” and quite 
different operations. They could be included as “new 
members” of the enlarged Knowledge Base for 
classification of future operations. Thus the Knowledge 
Base will gradually grow (as cumulative experience). 
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Figure 10:Two Additional (Unknown) Operations 

CONCLUSIONS 

In this paper we presented a new two-stage approach to 
classification of large data sets from different machine 
operations. First of all the data sets are converted into 
compact neural models (CIMs) by the growing neural 
gas learning algorithm. Then the CIMs from new 

operations are compared with those from a preliminary 
created Knowledge Base of typical operations. The 
difference degree DD between them is computed by a 
specialized fuzzy decision block.  

The future research in this direction is aimed at 
improving the “plausibility” of the classification by 
appropriately tuning all the internal parameters.   
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