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ABSTRACT 

Reconfigurable systems, that offer flexibility and 
robustness to efficiently manage quality of service in 
spite of uncertainties and disturbances, are a necessary 
evolution of classical controlled systems. As they can 
change their organization during their use, so their 
control laws, they become more complex. Two 
simulations types are presented to analyze such systems. 
The first one enables to check the behavior of the system 
controlled with the code that will be implemented. It is 
performed using a simulator based on virtual reality and 
physical engine. The second one takes parts in the 
reconfiguration procedure evaluation. It consists in the 
simulation of elements that simulate their own 
environment using their own models. A reconfigurable 
system using look-ahead simulation for its 
reconfiguration can then be simulated. The 
developments have been performed in collaboration 
with firms and Professor E. Kindler. 
 
INTRODUCTION 

Reconfigurable systems have gained more and more 
interest last decade. Before, systems were traditionally 
designed to keep the same structure and behavior all 
along their lifespan. In case of failures occurrence or 
changes in objectives, they may need external 
intervention to continue their mission.  
Reconfigurable systems offer the opportunity to choose 
the organization of their elements very late in the 
conception and to modify it dynamically or not during 
exploitation.  
Such systems have been studied in several domains as: 
electronics (Auguin, et al. 2003), communications 
(Mitchell, et al. 1998), control (Wills, et al., 2001; 
Cotting and Burken, 2001), manufacturing (Combacau, 
et al. 2000) or robotics (Kotay and Rus 1999; Kamimura 
et al. 2001). Even if they target different applications, 
these systems share common concepts. This paper 
focuses more on reconfigurable manufacturing systems 
(RMS). 
 

Figure 1 depicts a part of an RMS consisting of a great 
cycle called main ring and providing five working areas 
(W1 to W5). Different machining functions can be 
affected to Wi. This example gives an idea of the 
numerous possibilities to configure the system and to 
react in case of a failure occurrence. 
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Figure 1: a reconfigurable conveyor 

 
As the field is extended, this leads to different 
simulation problematic: As one control can be assigned 
to each configuration, RMS includes several control 
versions. How can we ensure that each control is 
adequately designed? The need for control code 
simulation before implementation is increased. On the 
other hand, simulation can be used during exploitation 
to help in the choice of the future organization. As 
simulation is classically used to evaluate a system during 
its design, how is it possible to simulate a reconfigurable 
system that chooses its configuration using on-line 
simulation techniques? 
 
Before answering these two questions, general concepts 
regarding RMS and simulation typologies are presented. 
 
RECONFIGURABLE MANUFACTURING 
SYSTEM DESCRIPTION 

An RMS is composed of several resources which can 
either execute machining, transport or stocking 
operations. The transport resources link together 
stationary (machining or stocking) resources. The model 
has to describe the relations between its components and 
the products processed at one level of granularity. 
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The key point for the RMS description is to separate the 
architecture of the system from its configuration (cf. 
Figure 2). Architecture consists in the description of 
resources and products that can be processed on it. The 
configuration describes how elements of the architecture 
are used to achieve a goal. 
Architecture is separated into logical and physical parts. 
Logical part describes machining functions performed 
on the product and their association to form function 
sequences (named logical operating sequences) to obtain 
a finished product. Physical architecture describes the 
elements in the system and the links between them. 
Connections represent the potential transfer links 
between stationary resources; these connections are 
associated with the transport resources that can perform 
them. Potential operations complete the description of 
the architecture and links physical and logical parts by 
bridging functions or products and resources.  
Configuration is split into logical and physical 
configuration. The logical aspect is constituted of 
function instances and uses logical operating sequences 
from the logical architecture. A function instance is the 
realization of a function on a product. Physical 
configuration is constituted of the components taken 
from the logical architecture and transfer sequences. 
Transfer sequences are used to describe the transfer 
from one resource to another. As with architecture, the 
correspondence between physical and logical 
configuration is done through operations. Operations 
also links the architecture with the configuration by 
using some reserved operations defined in the 
architecture. 

 
Figure 2: Organization of the model 

 
Operations play a special role in the RMS approach. As 
a consequence the determination of a configuration can 
be performed from the knowledge of active operations. 
In the following, the choice of a new configuration 
remains to obtaining a new set of operations. 
 
SIMULATION TYPOLOGIES 

Simulation is largely used in industry. The major interest 
is that it is quite easy to practice compared with proof 
techniques. This is particularly true for analyzing 
complex systems that can not be easily modeled using 

mathematical or analytical models. The drawback is that 
the system is only validated according with a set of 
scenarios. 
Simulation is classically classified into in three 
categories: static simulation, continuous simulation and 
discrete event simulation. Static or Monte Carlo 
simulation enables to solve stochastic problems without 
needing explicit time representation (Page 1994). The 
two last kinds of simulations concern more dynamic 
systems. In continuous simulation, state variables evolve 
during the time without any interruption as in discrete 
event simulation they change according to event 
occurrences (Ray and Claramunt 2003). 
 
In manufacturing systems, simulation software tools can 
be classified into two kinds: discrete event simulation 
and geometric simulation (Klingstam and Gullander 
1999). 
Discrete event simulation (also called flow simulation) 
is suitable for analyzing system and its performances. 
This kind of simulation often expresses flows and has 
the advantage of rapidly providing results based on large 
simulated periods. But as the control behavior is 
embedded in the model, it is not relevant for control 
code testing. Examples of flow oriented simulators are 
Arena, Extend, Cadence and Quest. Others are based on 
simulation languages such as Simula (SIMULA 1986). 
At the opposite geometric simulation simulates the 
geometry of a part, or the whole manufacturing system. 
Geometric simulation often refers to continuous 
simulation. Generally this kind of simulation allows 
testing control code of the system. Two dimensions and 
three dimensions are the two techniques to display the 
system evolution. Two dimensions display simulation is 
not precise enough. An example of two dimensions 
display simulator is ControlBuild. Three dimensions 
display simulation applications are as follows: virtual 
factory (Wenbin et al. 2002) and robotic (Ju and al. 
1997). In robotic applications, simulation often concerns 
a small part of system. 
 
Recently another simulation has been introduced to be 
used on line as a decision helping tool. The use of on-
line simulation was introduced by G. R. Drake and J. S. 
Smith (Drake and Smith 1996). This concept was 
extended to look-ahead simulation in (Peters 1998) in 
order to test decisions. The works only consider a high 
level view of the system. Different works used 
simulation in decision procedures (Tomizuka 2002). 
Gupta focus on on-line scheduling (Gupta et al. 2002) 
and more recently, Cardin and Castagna (Cardin and 
Castagna 2006) extend this kind of simulation to solve 
the problem of the number of workstation setups. By the 
way they propose a method called proactive simulation 
to synchronize the simulation during on-line 
exploitation. 
 



 

 

CONTROL SIMULATION USING SIMSED 

For reconfigurable systems, one objective is to test and 
validate the control codes before on-site 
implementation. As RMS include more control codes 
than classical manufacturing systems, this part is 
essential and has not to be time consuming in front of 
the final user. This goal is achieved using joint 
simulation of the system’s material part and control part. 
The framework and applications developed are 
presented below. 
 
Approach 

The global process is part of a traditional flow allowing 
from a simulation to validate or modify the parameters 
of the design. It also integrates a component-based 
approach to facilitate design process. Simulation 
concerns both operating and control parts; the control 
program being associated with the operating part. 
The procedure described in figure 3 involves three steps: 
material part design, control part design and simulation. 
Operating part design and control part design is realized 
by using libraries. After validation, control program can 
be loaded in a PLC. If simulation does not fit the 
specifications, the control part and if needed the 
operating part are modified.  
The following of the paper presents the three main steps 
emphasized in figure 3. 
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Figure 3: Simulation procedure 

 
The system simulator used is a three dimensions display 
simulator. Operating part simulation is performed 

simultaneously with control program simulation. 
Products and parcels are simulated as individual entities, 
which allows a precise simulation taking into account 
collision problems. This simulator is called SimSED 
(Lallican et al. 2005). 
 
Operating part design 

The material part design is performed using SimSED 
DESIGNER tool.  
A component-based model approach has been adopted 
to provide easy way to reuse previously modeled 
elements. The complete model of a system is seen as an 
assembling of components (Berruet et al. 2005). The 
component description uses black-box formalism. All 
components include parameters: static parameters such 
as position, orientation in 3D environment and dynamic 
parameters, for example the speed for a motor. 
Components are stored in a library. This software is seen 
as an ergonomic interface for 3D simulator. To design a 
system it is sufficient to select components from the 
library and to parameterize them according to system 
features. 
 
Control part design 

The control part is written using a software compatible 
with the IEC 61131-3 standard. STRATON software is 
used to write the different controls and to download 
them to virtual machine for the simulation (Copalp, 
2004). 
The control part implementation is realized with 
STRATON Workbench and its simulation uses 
STRATON virtual machine. The interest is to simulate 
and test controls that will be really implemented, 
without any transcription. This tool has been chosen 
because the our partner the Sydel society has developed 
a PLC based on Vx Works operating system and a 
STRATON Virtual Machine. 
 
Analysis using joint simulation 

The validation of the control part is performed using 
simulation of control code coupled with operating part 
one. The dedicated simulator is called SimSED 
SIMULATION. 
This method uses continuous simulation respecting the 
PLC cycle. Synchronization management between the 
two softwares is dedicated to SimSED SIMULATION. 
It is also charged to control STRATON simulation 
execution. 
Figure 4 described the simulation cycle. The cycle is 
divided into 2 parts. The goal of the first part, carried 
out by SimSED, is first to memorize outputs Straton 
values. Then components execute one simulation cycle. 
After Straton inputs are updated. The second part makes 
it possible to evolve the control program according to 
the new values of these inputs. When control program 
simulation cycle is performed, outputs Straton are 
updated. 
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Figure 4: Simulation cycle description 

 
SimSED Features 

To be relevant, a simulation has to be as close as 
possible to the real system. As the control is checked, it 
can be seen as a parameter of the other part of the 
system that is the operating part. To provide a realistic 
behavior of the material part, SimSED SIMULATION 
integrates a dynamic engine called OpenDynamic 
Engine (ODE 2004). This open source library enables to 
simulate rigid body dynamics. It has advanced joint 
types and integrated collision detection with friction. 
Problems like critical speed or acceleration, low sensor 
tolerance, parcels collision can be pointed out. 
 

 
Figure 5 SimSED simulation interface 

 
Animation is also an important feature. 3D animation 
helps to visualize clearly the behavior of the simulated 
workshop and emphasizes the understanding of the 
system. The proposed 3D animation enables the 
designer to zoom in on a specific part of the workshop 
to watch it in detail, or to zoom out for overall review. It 
is also possible to follow an object moving around the 
virtual system. Designer can also change viewpoints as 

desired. All these features enable to detect critical points 
more easily. 
 
Interest for reconfigurable systems 

As previously mentioned, reconfigurable systems have 
more than one control. As these controls may contain 
errors, each control program has to be checked before 
on-site implantation. The advantage of the proposed 
method is to notably reduce the test time spent in front 
of the client. It also enables to test more control versions 
during a fixed time period and to debug more quickly 
the controls.  
Evolutions concern integration of failures occurrence in 
order to test a relevant reaction and to focus on control 
versions switches. 
 
REFLECTIVE SIMULATION OF RMS 

Another simulation use tackles with the evaluation of the 
reconfiguration process itself. 
 
Reconfiguration process 

Reconfiguration process requires first to localize the 
faulty part of the system, to analyze the impact on the 
rest of the system, to decide a new organization of the 
system and then to apply corrective actions to reach the 
proposed organization. The decisional step requires the 
knowledge of the potentialities of the system and the 
operating sequences. Previous works using graph 
models and graph theory enable to determine (Berruet et 
al., 2000): 

• if there is a possibility for the manufacturing 
system to go on with the current production; 

• if some resources have to be set in production 
mode; 

• the path, a part can follow, to complete its 
logical operating sequence: the sets of possible 
controls. 

But the presented procedures took very few dynamics 
parameters into account. To complete the procedure that 
gives several configurations, an evaluation step should 
be performed. The result should be to find the most 
appropriateness configuration according with the current 
situation. 
 
Reconfiguration using look-ahead simulation 

For an RMS, simulation enables to anticipate the 
behavior of the system configuration based on different 
sequences of operations. 
Let ∑ be the RMS composed of a tolerant architecture 
(this means that its architecture is not only composed of 
critical elements the failure of one totally paralyses the 
system). Let Cinit be the initial configuration. During the 
exploitation, a failure occurs at tf. A new configuration 
Cnew has to be determined in order to enable the system 
to go on. A first module determines the possibility to 
continue and whether the system has to change its 



 

 

configuration. A second module determines a set of 
configurations SC= {C1, …, Cn}. These configurations 
are evaluated in order to choose the appropriate one. 
Then the chosen configuration Cc can be applied. 
The evaluation of Ci is not trivial because the system is 
quite complex, composed of several process that may 
evolve in parallel with different types of synchronisms. 
In the proposed approach, look-ahead simulation is used 
for performing the step that enables to choose Cc from 
SC. Each Ci ∈ SC is simulated and the best one is 
selected according with some criteria such as the 
completion time for the current job.  
 
Therefore the real RMS constructed according to the 
variant Cc is to be an anticipatory system using 
simulation model. It has to be noticed that this kind of 
simulation is performed during the system existence. Let 
such a simulation be called internal simulation, the 
models used by it be called internal models and the 
anticipation be called internal anticipation (Kindler et al. 
2004). 
 
Reflective simulation 

The most common simulation is the simulation of a 
system during the design phase. Let such a simulation be 
called external simulation, the models used by it be 
called external models. 
As any system, an RMS has to be evaluated during its 
design phase in order to evaluate the reconfiguration 
process. If simulation models are used for anticipating 
the system’s behavior during the design, the point is then 
to have models that enable to reflect that the modeled 
systems are anticipatory ones, i.e. to have models that 
enable different levels of simulation. Indeed, one must 
simulate systems holding elements that simulate their 
own environment using their own models. In such cases, 
we can speak about nested simulation, expressing that 
the simulated systems themselves contain elements that 
handle simulation models. Moreover, we speak about 
reflective simulation, expressing that the simulating 
elements held by the simulated systems simulate parts of 
systems that holds them. Reflective simulation is thus a 
special case of nested simulation. 
 
Principle of reflective simulation 

At the design phase of ∑, external simulation models are 
classically used. If the designers know that the system 
will use a control computer that will run simulation (i.e. 
that will handle with one or more internal simulation 
models), that computer (including the internal models) 
has to be reflected by the internal model. The computer 
itself does not need to be reflected in its many details, 
but the run of the internal models on it has to be 
reflected in details (Kindler 2000a, b). Then this internal 
model has to be reflected in the external one. Otherwise 
the external model would anticipate the behavior of ∑ in 
a way different from the real one. Let the next analysis 

be limited to the case that all computing processes used 
for the internal anticipation (including internal 
simulation models) run on only one computer π existing 
in ∑. 
The external simulation model of ∑ should reflect the 
components of ∑ and also π. The components have to be 
reflected according to their mutual interactions. It holds 
for π in the same manner as for the other components 
(e.g. machines, transport tools, storage, material units, 
etc…). Therefore π has to be reflected in the model so 
that both its interactions with the other elements of ∑ 
and its isolated actions are taken in account: the 
interactions cover the controlling instructions which π 
sends to its environment and the phase when π is 
“watching” for its environment in ∑ in order to prepare 
the internal model. The isolated actions cover the 
building and run of internal models. The internal models 
are used many times during the existence of ∑. Each of 
them should be generated and start to reflect the 
instantaneous situation in ∑. As the situation can vary, 
the initial structures of the internal models can differ.  
Therefore, considering reconfiguration process based on 
forward looking simulation the principle of, reflective 
simulation, that enables the evolution of such a 
reconfigurable system to be evaluated, is very 
appropriate. 
 
Implementing reflective simulation requires avoiding 
problems like more simulation time axes, the same 
languages used for the external and internal models, 
which concern different “worlds” that must 
communicate but that must be secure against erroneous 
mutual mixing, etc… These problems were successfully 
solved, using the properties of SIMULA language and 
the principles (block orientation, transplantation 
avoidance, model copying) presented in (Kindler 1994). 
 
Simulation of reconfiguration process 

In the case of the design phase of an RMS, it is of great 
importance to evaluate the reconfiguration process.  
 
In this section, the choice of the appropriate 
configuration is based on the completion time that is 
considered as the unique criterion to be satisfied. The 
general process is the following: External simulation 
gives the behavior of ∑ under Cinit. At time tc, a failure 
occurs. External simulation is handled. Internal models 
are updated according with the products and actuators 
positions given by the external model. They also get 
parameters from the knowledge of one configuration Ci. 
Internal simulations are performed to anticipate the 
behavior of ∑ under each Ci. Then a configuration is 
chosen and external model gets parameters from the 
knowledge of the configuration Cc. External simulation 
runs again to give the behavior of ∑ under Cc at time t > 
tc.  
 



 

 

Even if the two models external and internal are similar, 
the number of internal simulations may vary depending 
on two parameters: 

• The number of configurations to be evaluated 
(|SC|); 

• The determinism of the models. 
 
The different cases are detailed in the following. For the 
sake of simplicity, the number of configuration to be 
evaluated is equal to 2.  
 
Type 1: deterministic internal & external models 
This expresses the case where no difference exists 
between real system and the representation of system 
given to the decisional module. The number of internal 
anticipations is equal to |SC|. At time tc, external 
simulation is handled. Internal simulation 1 is performed 
to anticipate the behavior of ∑ under C1. This 
anticipation is carried out until the batch is completed 
(noticed t1) or until a predetermined time tf (t1 <tf). Then 
internal simulation 2 is performed to anticipate the 
behavior of ∑ under C2. It runs until tf or t1 or until time 
t2 when the batch is completed under this configuration 
(t2 < t1 <tf). If both internal simulations stop at tf then, 
the chosen configuration is the one that enables to 
manufacture the greater number of parts. If both internal 
simulations stop at t1, then C1 is the chosen 
configuration. If internal simulation 2 stops at t2 and 
internal simulation 1 stop at tf or t1, then C2 is the chosen 
configuration (Figure 6). 
Notice: When external simulation runs again under Cc, 
there is no difference between the internal simulation of 
Cc and the external one because the models are exactly 
the same. 

Cinit

C2

C1

Internal simulation

Cc = C2

 
Figure 6: reflective simulation - type 1 or 2 

 
Type 2: deterministic internal model - nondeterministic 
external model 
This expresses the case where the real system may have 
some variation (for example in it machining times) but 
the representation of the system used by the 
reconfiguration module is deterministic. If the 
simulation gives good results, this shows that a 
simulation based on a deterministic model is sufficient. 
The sequence of external internal simulations is similar 
as for the preceding case. On the other hand, the 
behavior of ∑ under Cc given by the external simulation 
differs (slightly or not) from the one given by internal 
simulation. In Figure 6, the time completion of ∑ under 
Cc might be not exactly the same as the time completion 
of ∑ under C2. 
 
 

Type 3: nondeterministic internal model - deterministic 
external model 
This expresses the case where the decisional module 
computes a non-deterministic model. In that case, a 
single look-ahead simulation experiment is not 
sufficient. In that case, performing reflective simulation 
also enables to find the suitable number of internal 
simulation experiments. 
 
The procedure slightly differs. As the internal model is 
not deterministic, several internal simulations have to be 
performed to get a quite good view of the anticipation of 
∑ under Ci. The number of simulation experiments N 
has to be determined as well as the procedure to get the 
“global” completion time issued from N experiments. 
This problem refers to data analysis or decisional 
statistic. 
Let us come back to the procedure. At time tc, external 
simulation is handled. For each configuration, P 
experiments are carried out. Internal simulations IS11 to 
IS1P are performed to anticipate the behavior of ∑ under 
C1. Practically, IS1j uses the same laws. Only the seeds 
differ. Based on these possible anticipations, a 
completion time the batch can be determined (noticed 
t1). Then internal simulations IS21 to IS2P are carried out 
to anticipate the behavior of ∑ under C2. This enables to 
obtain a completion time under configuration C2 
(noticed t2). The comparison of t1 and t2 enables to 
determine Cc. 
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Figure 7: reflective simulation - type 3 

 
Experiments 

A computer modeling tool has been developed based on 
flow simulation using discrete time description. It 
accepts in input the physical architecture of the system, 
the logical architecture of the system, its current 
configuration based on the active logical operating 
sequences, active operations and the future 
configurations to be evaluated based on sets of 
operations. It provides the transit time for the products 
and the best configuration according with the time 
completion of the remaining production. 
 
More precisely, the initial input of data allowed the 
operator to introduce several configurations in case of 
failure occurrence of an element of the physical 
architecture. For each configuration, the number of 
internal repetition is also an input parameter. After that, 
the external model goes on with the best variant. The 
tool provides a large spectrum of simulation 



 

 

experiments enabling to evaluate reconfigurations based 
on the anticipation of the behavior from type 1 to type 3. 
 
CONCLUSION 

Two uses of simulation have been presented. The first 
one contributes to increase the verification of a large 
panel of controls associated with different 
configurations. The second one helps for reconfigurable 
systems design. Comparing the system with and without 
configuration change, it can be use to prove that 
reconfiguration provides advantages. Reflective 
simulation can also be helpful for defining parameters 
used for decisional procedures that will choose the new 
configuration. 
 
This paper points out interest of both continuous and 
flow simulation for analysis of reconfigurable systems. 
These simulations are mainly used during the design 
phase. But as reflective simulation refers to look-ahead 
simulation, these last is clearly promising for the 
determination of the new configuration when the 
environment is changing. 
 
RMS are treated as examples, but other fields such as 
disabled people assistance, embedded systems could be 
successfully investigated with these techniques.  
 
REFERENCES 

Auguin, M., K. Ben Chehida, J.P. Diguet, X. Fornani, A.M. 
Fouilliart, C. Gamrat, P. Kajfasz and Y. Le Moullec. 2003. 
Partitioning and Co Design tools & methodology for 
Reconfigurable Computing: The EPICURE philosophy. 
In: The Third International Workshop on Systems, 
Architectures, Modeling Simulation SAMOS03. 

Berruet P, A.K.A. Toguyeni, S. Elkhattabi, E. Craye. 2000. 
Toward an implementation of recovery procedures for 
flexible manufacturing systems supervision, Computers in 
Industry, Vol 43, pp 227-236. 

Berruet P, J.L Lallican, A. Rossi, J-L. Philippe. 2005. A 
component based approach for the design of FMS control 
and supervision", IEEE SMC 2005, Hawaii, pp. 3005-
3011. 

Cardin O, P Castagna. 2006. Handling uncertainty in 
production activity control using proactive simulation, 
INCOM 2006. 

Combacau, M., P. Berruet, E. Zamaï, P. Charbonnaud, A. 
Khatab. 2000. Monitoring and Supervision of 
Manufacturing Systems. In: IFAC MCPL2000, pp. 348-
353. 

Copalp, STRATON handbook, 2002-2004. 
Cotting, C. and J.J. Burken. 2001. Reconfigurable Control 

Design for the Full X-33 Flight Envelope. In: AIAA 
Guidance, Navigation and Control Conference. 

Drake G R., Jeffrey S. Smith. 1996. Simulation system for 
real-time planning, scheduling, and control, Winter 
Simulation Conference. 

Gupta A K., A I Sivakumar, S Sarawgi. 2002. "Shop floor 
scheduling with simulation based proactive decision 
support", Winter Simulation Conference. 

Ju-Yeon J., Yoohwan K., Andy P., Wyatt S. 1997. Virtual 
Testing of Agile Manufacturing Software Using 3D 

Graphical Simulation, In proceedings of the 1997 IEEE 
International Conference on Robotics and Automation, 
New Mexico, pp. 1223-1228. 

Kamimura, A., S. Murata, E. Yoshida, H. Kurokawa, K. 
Tomita and S. Kokaji. 2001. Self- Reconfigurable 
Modular Robot. In: IEEE/RSJ Int. Conference on 
Intelligent Robots and Systems IROS2001, pp. 606-612. 

Kindler E. 1994. Simulation of systems containing simulating 
objects, Simulation und Integration'94, P. Lorenz (Ed.), 
Magdeburg – Dortmund, ASIM, pp. 65 76. 

Kindler, E. 2000a. Nesting Simulation of a Container 
Terminal Operating With its own Simulation Model. 
JORBEL (Belgian Journal of Operations Research, 
Statistics and Computer Sciences) 40, 169-181. 

Kindler, E. 2000b. Chance for Simula. ASU Newsletter 26, 2 
26. 

Kindler E., T. Coudert, P. Berruet. 2004. Component-Based 
Simulation for a Reconfiguration Study of Transitic 
Systems, SIMULATION: Transactions of The Society for 
Modeling and Simulation International, Vol. 80, No. 3, 
pp. 153-163.  

Kotay, K. and D. Rus. 1999. Locomotion Versatility through 
Self-reconfiguration. In: Robotics and Autonomous 
Systems, Vol. 26-2,3, pp. 217-232. Elsevier. 

Lallican JL,  P. Berruet, J-L. Philippe. 2005. SimSED : a tool 
for modeling and simulating transitic systems, I3M CMS 
2005, invited session, Marseille, pp.199-204. 

Mitchell, S., H. Naguib, G. Coulouris and T. Kindberg. 1998. 
Dynamically Reconfiguring Multimedia Components: A 
Model-based Approach. In: 8th ACM SIGOPS European 
Workshop. 

ODE user guide, 2001-2004 RUSSELL SMITH. 
Page, E. 1994. Simulation Modeling Methodology : Principles 

and Etiology of Decision Support. These de doctorat, 
Department of Computer Science, Virginia Tech., 
Blacksburg, Virginie, USA. 

Ray C., C. Claramunt. 2003. A distributed computing system 
for the simulation of disaggregated data flows, 
Knowledge-Based Systems, volume 16(4), pages 191-203, 
Elsevier Science publications. 

SIMULA Standard. 1986. SIMULA a.s., Oslo. 
Tomizuka, M. 2002. Mechatronics: From the 20th to 21st 

Century. Control Engineering Practice 10, 877-886. 
Wenbin Z., Xiumin F., Juanqui Y., Pengsheng Z. 2002. An 

Integrated Simulation Method to Support Virtual Factory 
Engineering », International Journal of CAD/CAM vol. 2, 
No. 1, pp. 39-44. 

Wills L., S. Kannan, S. Sander, Mu. Guler, B. Heck, J.V.R. 
Prassad, D. Schrage and G. Vachtsevanos. 2001. An Open 
Platform For Reconfigurable Control. In: IEEE Control 
Systems Magazine. Vol. 21, pp. 49-64. 

 
AUTHOR BIOGRAPHY 

PASCAL BERRUET was born in 
Orléans, France and went to the Ecole 
Centrale de Lille, where he studied 
automation, production management and 
obtained his degree in 1998. He moved in 
1999 to the University of South Brittany 

where he is now leading a research thematic in the field 
of reconfigurable discrete event systems. His research 
areas are supervision, analysis, simulation and automatic 
control generation of reconfigurable systems. His e-mail 
address is: Pascal.Berruet@univ-ubs.fr. 

 


