

SIMULATION OF RECONFIGURABLE SYSTEMS:
FROM CONTROL CODE SIMULATION TO REFLECTIVE SIMULATION

Pascal Berruet

LESTER CNRS FRE 2734
Université de Bretagne Sud BP 92116

56321 Lorient cedex, France
E-mail: Pascal.Berruet@univ-ubs.fr

KEYWORDS
Component, reconfiguration, nested simulation, control
simulation, reconfigurable manufacturing systems.

ABSTRACT

Reconfigurable systems, that offer flexibility and
robustness to efficiently manage quality of service in
spite of uncertainties and disturbances, are a necessary
evolution of classical controlled systems. As they can
change their organization during their use, so their
control laws, they become more complex. Two
simulations types are presented to analyze such systems.
The first one enables to check the behavior of the system
controlled with the code that will be implemented. It is
performed using a simulator based on virtual reality and
physical engine. The second one takes parts in the
reconfiguration procedure evaluation. It consists in the
simulation of elements that simulate their own
environment using their own models. A reconfigurable
system using look-ahead simulation for its
reconfiguration can then be simulated. The
developments have been performed in collaboration
with firms and Professor E. Kindler.

INTRODUCTION

Reconfigurable systems have gained more and more
interest last decade. Before, systems were traditionally
designed to keep the same structure and behavior all
along their lifespan. In case of failures occurrence or
changes in objectives, they may need external
intervention to continue their mission.
Reconfigurable systems offer the opportunity to choose
the organization of their elements very late in the
conception and to modify it dynamically or not during
exploitation.
Such systems have been studied in several domains as:
electronics (Auguin, et al. 2003), communications
(Mitchell, et al. 1998), control (Wills, et al., 2001;
Cotting and Burken, 2001), manufacturing (Combacau,
et al. 2000) or robotics (Kotay and Rus 1999; Kamimura
et al. 2001). Even if they target different applications,
these systems share common concepts. This paper
focuses more on reconfigurable manufacturing systems
(RMS).

Figure 1 depicts a part of an RMS consisting of a great
cycle called main ring and providing five working areas
(W1 to W5). Different machining functions can be
affected to Wi. This example gives an idea of the
numerous possibilities to configure the system and to
react in case of a failure occurrence.

Jacks

Stops

Sensors

W1

W2

W3

W4

W5

L1

L2

V1

V2

Figure 1: a reconfigurable conveyor

As the field is extended, this leads to different
simulation problematic: As one control can be assigned
to each configuration, RMS includes several control
versions. How can we ensure that each control is
adequately designed? The need for control code
simulation before implementation is increased. On the
other hand, simulation can be used during exploitation
to help in the choice of the future organization. As
simulation is classically used to evaluate a system during
its design, how is it possible to simulate a reconfigurable
system that chooses its configuration using on-line
simulation techniques?

Before answering these two questions, general concepts
regarding RMS and simulation typologies are presented.

RECONFIGURABLE MANUFACTURING
SYSTEM DESCRIPTION

An RMS is composed of several resources which can
either execute machining, transport or stocking
operations. The transport resources link together
stationary (machining or stocking) resources. The model
has to describe the relations between its components and
the products processed at one level of granularity.

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

The key point for the RMS description is to separate the
architecture of the system from its configuration (cf.
Figure 2). Architecture consists in the description of
resources and products that can be processed on it. The
configuration describes how elements of the architecture
are used to achieve a goal.
Architecture is separated into logical and physical parts.
Logical part describes machining functions performed
on the product and their association to form function
sequences (named logical operating sequences) to obtain
a finished product. Physical architecture describes the
elements in the system and the links between them.
Connections represent the potential transfer links
between stationary resources; these connections are
associated with the transport resources that can perform
them. Potential operations complete the description of
the architecture and links physical and logical parts by
bridging functions or products and resources.
Configuration is split into logical and physical
configuration. The logical aspect is constituted of
function instances and uses logical operating sequences
from the logical architecture. A function instance is the
realization of a function on a product. Physical
configuration is constituted of the components taken
from the logical architecture and transfer sequences.
Transfer sequences are used to describe the transfer
from one resource to another. As with architecture, the
correspondence between physical and logical
configuration is done through operations. Operations
also links the architecture with the configuration by
using some reserved operations defined in the
architecture.

Figure 2: Organization of the model

Operations play a special role in the RMS approach. As
a consequence the determination of a configuration can
be performed from the knowledge of active operations.
In the following, the choice of a new configuration
remains to obtaining a new set of operations.

SIMULATION TYPOLOGIES

Simulation is largely used in industry. The major interest
is that it is quite easy to practice compared with proof
techniques. This is particularly true for analyzing
complex systems that can not be easily modeled using

mathematical or analytical models. The drawback is that
the system is only validated according with a set of
scenarios.
Simulation is classically classified into in three
categories: static simulation, continuous simulation and
discrete event simulation. Static or Monte Carlo
simulation enables to solve stochastic problems without
needing explicit time representation (Page 1994). The
two last kinds of simulations concern more dynamic
systems. In continuous simulation, state variables evolve
during the time without any interruption as in discrete
event simulation they change according to event
occurrences (Ray and Claramunt 2003).

In manufacturing systems, simulation software tools can
be classified into two kinds: discrete event simulation
and geometric simulation (Klingstam and Gullander
1999).
Discrete event simulation (also called flow simulation)
is suitable for analyzing system and its performances.
This kind of simulation often expresses flows and has
the advantage of rapidly providing results based on large
simulated periods. But as the control behavior is
embedded in the model, it is not relevant for control
code testing. Examples of flow oriented simulators are
Arena, Extend, Cadence and Quest. Others are based on
simulation languages such as Simula (SIMULA 1986).
At the opposite geometric simulation simulates the
geometry of a part, or the whole manufacturing system.
Geometric simulation often refers to continuous
simulation. Generally this kind of simulation allows
testing control code of the system. Two dimensions and
three dimensions are the two techniques to display the
system evolution. Two dimensions display simulation is
not precise enough. An example of two dimensions
display simulator is ControlBuild. Three dimensions
display simulation applications are as follows: virtual
factory (Wenbin et al. 2002) and robotic (Ju and al.
1997). In robotic applications, simulation often concerns
a small part of system.

Recently another simulation has been introduced to be
used on line as a decision helping tool. The use of on-
line simulation was introduced by G. R. Drake and J. S.
Smith (Drake and Smith 1996). This concept was
extended to look-ahead simulation in (Peters 1998) in
order to test decisions. The works only consider a high
level view of the system. Different works used
simulation in decision procedures (Tomizuka 2002).
Gupta focus on on-line scheduling (Gupta et al. 2002)
and more recently, Cardin and Castagna (Cardin and
Castagna 2006) extend this kind of simulation to solve
the problem of the number of workstation setups. By the
way they propose a method called proactive simulation
to synchronize the simulation during on-line
exploitation.

CONTROL SIMULATION USING SIMSED

For reconfigurable systems, one objective is to test and
validate the control codes before on-site
implementation. As RMS include more control codes
than classical manufacturing systems, this part is
essential and has not to be time consuming in front of
the final user. This goal is achieved using joint
simulation of the system’s material part and control part.
The framework and applications developed are
presented below.

Approach

The global process is part of a traditional flow allowing
from a simulation to validate or modify the parameters
of the design. It also integrates a component-based
approach to facilitate design process. Simulation
concerns both operating and control parts; the control
program being associated with the operating part.
The procedure described in figure 3 involves three steps:
material part design, control part design and simulation.
Operating part design and control part design is realized
by using libraries. After validation, control program can
be loaded in a PLC. If simulation does not fit the
specifications, the control part and if needed the
operating part are modified.
The following of the paper presents the three main steps
emphasized in figure 3.

Material part design

Simulation

Control part design

Components
library

validation

ok

no

Loading control code
on Sydel PLC

Controls
library

Figure 3: Simulation procedure

The system simulator used is a three dimensions display
simulator. Operating part simulation is performed

simultaneously with control program simulation.
Products and parcels are simulated as individual entities,
which allows a precise simulation taking into account
collision problems. This simulator is called SimSED
(Lallican et al. 2005).

Operating part design

The material part design is performed using SimSED
DESIGNER tool.
A component-based model approach has been adopted
to provide easy way to reuse previously modeled
elements. The complete model of a system is seen as an
assembling of components (Berruet et al. 2005). The
component description uses black-box formalism. All
components include parameters: static parameters such
as position, orientation in 3D environment and dynamic
parameters, for example the speed for a motor.
Components are stored in a library. This software is seen
as an ergonomic interface for 3D simulator. To design a
system it is sufficient to select components from the
library and to parameterize them according to system
features.

Control part design

The control part is written using a software compatible
with the IEC 61131-3 standard. STRATON software is
used to write the different controls and to download
them to virtual machine for the simulation (Copalp,
2004).
The control part implementation is realized with
STRATON Workbench and its simulation uses
STRATON virtual machine. The interest is to simulate
and test controls that will be really implemented,
without any transcription. This tool has been chosen
because the our partner the Sydel society has developed
a PLC based on Vx Works operating system and a
STRATON Virtual Machine.

Analysis using joint simulation

The validation of the control part is performed using
simulation of control code coupled with operating part
one. The dedicated simulator is called SimSED
SIMULATION.
This method uses continuous simulation respecting the
PLC cycle. Synchronization management between the
two softwares is dedicated to SimSED SIMULATION.
It is also charged to control STRATON simulation
execution.
Figure 4 described the simulation cycle. The cycle is
divided into 2 parts. The goal of the first part, carried
out by SimSED, is first to memorize outputs Straton
values. Then components execute one simulation cycle.
After Straton inputs are updated. The second part makes
it possible to evolve the control program according to
the new values of these inputs. When control program
simulation cycle is performed, outputs Straton are
updated.

SimSED STRATON

Inputs acquisition : Outputs update :

Reading the STRATON
outputs

Data processing :

Updating the operating
part

Outputs update :

Writing the STRATON
inputs

Inputs acquisition :

Reading the STRATON
inputs

Writing the STRATON
ouputs

Data processing :

Updating the control part

1

2

3 4

5

6

Figure 4: Simulation cycle description

SimSED Features

To be relevant, a simulation has to be as close as
possible to the real system. As the control is checked, it
can be seen as a parameter of the other part of the
system that is the operating part. To provide a realistic
behavior of the material part, SimSED SIMULATION
integrates a dynamic engine called OpenDynamic
Engine (ODE 2004). This open source library enables to
simulate rigid body dynamics. It has advanced joint
types and integrated collision detection with friction.
Problems like critical speed or acceleration, low sensor
tolerance, parcels collision can be pointed out.

Figure 5 SimSED simulation interface

Animation is also an important feature. 3D animation
helps to visualize clearly the behavior of the simulated
workshop and emphasizes the understanding of the
system. The proposed 3D animation enables the
designer to zoom in on a specific part of the workshop
to watch it in detail, or to zoom out for overall review. It
is also possible to follow an object moving around the
virtual system. Designer can also change viewpoints as

desired. All these features enable to detect critical points
more easily.

Interest for reconfigurable systems

As previously mentioned, reconfigurable systems have
more than one control. As these controls may contain
errors, each control program has to be checked before
on-site implantation. The advantage of the proposed
method is to notably reduce the test time spent in front
of the client. It also enables to test more control versions
during a fixed time period and to debug more quickly
the controls.
Evolutions concern integration of failures occurrence in
order to test a relevant reaction and to focus on control
versions switches.

REFLECTIVE SIMULATION OF RMS

Another simulation use tackles with the evaluation of the
reconfiguration process itself.

Reconfiguration process

Reconfiguration process requires first to localize the
faulty part of the system, to analyze the impact on the
rest of the system, to decide a new organization of the
system and then to apply corrective actions to reach the
proposed organization. The decisional step requires the
knowledge of the potentialities of the system and the
operating sequences. Previous works using graph
models and graph theory enable to determine (Berruet et
al., 2000):

• if there is a possibility for the manufacturing
system to go on with the current production;

• if some resources have to be set in production
mode;

• the path, a part can follow, to complete its
logical operating sequence: the sets of possible
controls.

But the presented procedures took very few dynamics
parameters into account. To complete the procedure that
gives several configurations, an evaluation step should
be performed. The result should be to find the most
appropriateness configuration according with the current
situation.

Reconfiguration using look-ahead simulation

For an RMS, simulation enables to anticipate the
behavior of the system configuration based on different
sequences of operations.
Let ∑ be the RMS composed of a tolerant architecture
(this means that its architecture is not only composed of
critical elements the failure of one totally paralyses the
system). Let Cinit be the initial configuration. During the
exploitation, a failure occurs at tf. A new configuration
Cnew has to be determined in order to enable the system
to go on. A first module determines the possibility to
continue and whether the system has to change its

configuration. A second module determines a set of
configurations SC= {C1, …, Cn}. These configurations
are evaluated in order to choose the appropriate one.
Then the chosen configuration Cc can be applied.
The evaluation of Ci is not trivial because the system is
quite complex, composed of several process that may
evolve in parallel with different types of synchronisms.
In the proposed approach, look-ahead simulation is used
for performing the step that enables to choose Cc from
SC. Each Ci ∈ SC is simulated and the best one is
selected according with some criteria such as the
completion time for the current job.

Therefore the real RMS constructed according to the
variant Cc is to be an anticipatory system using
simulation model. It has to be noticed that this kind of
simulation is performed during the system existence. Let
such a simulation be called internal simulation, the
models used by it be called internal models and the
anticipation be called internal anticipation (Kindler et al.
2004).

Reflective simulation

The most common simulation is the simulation of a
system during the design phase. Let such a simulation be
called external simulation, the models used by it be
called external models.
As any system, an RMS has to be evaluated during its
design phase in order to evaluate the reconfiguration
process. If simulation models are used for anticipating
the system’s behavior during the design, the point is then
to have models that enable to reflect that the modeled
systems are anticipatory ones, i.e. to have models that
enable different levels of simulation. Indeed, one must
simulate systems holding elements that simulate their
own environment using their own models. In such cases,
we can speak about nested simulation, expressing that
the simulated systems themselves contain elements that
handle simulation models. Moreover, we speak about
reflective simulation, expressing that the simulating
elements held by the simulated systems simulate parts of
systems that holds them. Reflective simulation is thus a
special case of nested simulation.

Principle of reflective simulation

At the design phase of ∑, external simulation models are
classically used. If the designers know that the system
will use a control computer that will run simulation (i.e.
that will handle with one or more internal simulation
models), that computer (including the internal models)
has to be reflected by the internal model. The computer
itself does not need to be reflected in its many details,
but the run of the internal models on it has to be
reflected in details (Kindler 2000a, b). Then this internal
model has to be reflected in the external one. Otherwise
the external model would anticipate the behavior of ∑ in
a way different from the real one. Let the next analysis

be limited to the case that all computing processes used
for the internal anticipation (including internal
simulation models) run on only one computer π existing
in ∑.
The external simulation model of ∑ should reflect the
components of ∑ and also π. The components have to be
reflected according to their mutual interactions. It holds
for π in the same manner as for the other components
(e.g. machines, transport tools, storage, material units,
etc…). Therefore π has to be reflected in the model so
that both its interactions with the other elements of ∑
and its isolated actions are taken in account: the
interactions cover the controlling instructions which π
sends to its environment and the phase when π is
“watching” for its environment in ∑ in order to prepare
the internal model. The isolated actions cover the
building and run of internal models. The internal models
are used many times during the existence of ∑. Each of
them should be generated and start to reflect the
instantaneous situation in ∑. As the situation can vary,
the initial structures of the internal models can differ.
Therefore, considering reconfiguration process based on
forward looking simulation the principle of, reflective
simulation, that enables the evolution of such a
reconfigurable system to be evaluated, is very
appropriate.

Implementing reflective simulation requires avoiding
problems like more simulation time axes, the same
languages used for the external and internal models,
which concern different “worlds” that must
communicate but that must be secure against erroneous
mutual mixing, etc… These problems were successfully
solved, using the properties of SIMULA language and
the principles (block orientation, transplantation
avoidance, model copying) presented in (Kindler 1994).

Simulation of reconfiguration process

In the case of the design phase of an RMS, it is of great
importance to evaluate the reconfiguration process.

In this section, the choice of the appropriate
configuration is based on the completion time that is
considered as the unique criterion to be satisfied. The
general process is the following: External simulation
gives the behavior of ∑ under Cinit. At time tc, a failure
occurs. External simulation is handled. Internal models
are updated according with the products and actuators
positions given by the external model. They also get
parameters from the knowledge of one configuration Ci.
Internal simulations are performed to anticipate the
behavior of ∑ under each Ci. Then a configuration is
chosen and external model gets parameters from the
knowledge of the configuration Cc. External simulation
runs again to give the behavior of ∑ under Cc at time t >
tc.

Even if the two models external and internal are similar,
the number of internal simulations may vary depending
on two parameters:

• The number of configurations to be evaluated
(|SC|);

• The determinism of the models.

The different cases are detailed in the following. For the
sake of simplicity, the number of configuration to be
evaluated is equal to 2.

Type 1: deterministic internal & external models
This expresses the case where no difference exists
between real system and the representation of system
given to the decisional module. The number of internal
anticipations is equal to |SC|. At time tc, external
simulation is handled. Internal simulation 1 is performed
to anticipate the behavior of ∑ under C1. This
anticipation is carried out until the batch is completed
(noticed t1) or until a predetermined time tf (t1 <tf). Then
internal simulation 2 is performed to anticipate the
behavior of ∑ under C2. It runs until tf or t1 or until time
t2 when the batch is completed under this configuration
(t2 < t1 <tf). If both internal simulations stop at tf then,
the chosen configuration is the one that enables to
manufacture the greater number of parts. If both internal
simulations stop at t1, then C1 is the chosen
configuration. If internal simulation 2 stops at t2 and
internal simulation 1 stop at tf or t1, then C2 is the chosen
configuration (Figure 6).
Notice: When external simulation runs again under Cc,
there is no difference between the internal simulation of
Cc and the external one because the models are exactly
the same.

Cinit

C2

C1

Internal simulation

Cc = C2

Figure 6: reflective simulation - type 1 or 2

Type 2: deterministic internal model - nondeterministic
external model
This expresses the case where the real system may have
some variation (for example in it machining times) but
the representation of the system used by the
reconfiguration module is deterministic. If the
simulation gives good results, this shows that a
simulation based on a deterministic model is sufficient.
The sequence of external internal simulations is similar
as for the preceding case. On the other hand, the
behavior of ∑ under Cc given by the external simulation
differs (slightly or not) from the one given by internal
simulation. In Figure 6, the time completion of ∑ under
Cc might be not exactly the same as the time completion
of ∑ under C2.

Type 3: nondeterministic internal model - deterministic
external model
This expresses the case where the decisional module
computes a non-deterministic model. In that case, a
single look-ahead simulation experiment is not
sufficient. In that case, performing reflective simulation
also enables to find the suitable number of internal
simulation experiments.

The procedure slightly differs. As the internal model is
not deterministic, several internal simulations have to be
performed to get a quite good view of the anticipation of
∑ under Ci. The number of simulation experiments N
has to be determined as well as the procedure to get the
“global” completion time issued from N experiments.
This problem refers to data analysis or decisional
statistic.
Let us come back to the procedure. At time tc, external
simulation is handled. For each configuration, P
experiments are carried out. Internal simulations IS11 to
IS1P are performed to anticipate the behavior of ∑ under
C1. Practically, IS1j uses the same laws. Only the seeds
differ. Based on these possible anticipations, a
completion time the batch can be determined (noticed
t1). Then internal simulations IS21 to IS2P are carried out
to anticipate the behavior of ∑ under C2. This enables to
obtain a completion time under configuration C2
(noticed t2). The comparison of t1 and t2 enables to
determine Cc.

Cinit

C2

C1

Internal simulations

Cc = C2
IS11

IS12

IS13

IS23

IS22

IS21

Figure 7: reflective simulation - type 3

Experiments

A computer modeling tool has been developed based on
flow simulation using discrete time description. It
accepts in input the physical architecture of the system,
the logical architecture of the system, its current
configuration based on the active logical operating
sequences, active operations and the future
configurations to be evaluated based on sets of
operations. It provides the transit time for the products
and the best configuration according with the time
completion of the remaining production.

More precisely, the initial input of data allowed the
operator to introduce several configurations in case of
failure occurrence of an element of the physical
architecture. For each configuration, the number of
internal repetition is also an input parameter. After that,
the external model goes on with the best variant. The
tool provides a large spectrum of simulation

experiments enabling to evaluate reconfigurations based
on the anticipation of the behavior from type 1 to type 3.

CONCLUSION

Two uses of simulation have been presented. The first
one contributes to increase the verification of a large
panel of controls associated with different
configurations. The second one helps for reconfigurable
systems design. Comparing the system with and without
configuration change, it can be use to prove that
reconfiguration provides advantages. Reflective
simulation can also be helpful for defining parameters
used for decisional procedures that will choose the new
configuration.

This paper points out interest of both continuous and
flow simulation for analysis of reconfigurable systems.
These simulations are mainly used during the design
phase. But as reflective simulation refers to look-ahead
simulation, these last is clearly promising for the
determination of the new configuration when the
environment is changing.

RMS are treated as examples, but other fields such as
disabled people assistance, embedded systems could be
successfully investigated with these techniques.

REFERENCES

Auguin, M., K. Ben Chehida, J.P. Diguet, X. Fornani, A.M.
Fouilliart, C. Gamrat, P. Kajfasz and Y. Le Moullec. 2003.
Partitioning and Co Design tools & methodology for
Reconfigurable Computing: The EPICURE philosophy.
In: The Third International Workshop on Systems,
Architectures, Modeling Simulation SAMOS03.

Berruet P, A.K.A. Toguyeni, S. Elkhattabi, E. Craye. 2000.
Toward an implementation of recovery procedures for
flexible manufacturing systems supervision, Computers in
Industry, Vol 43, pp 227-236.

Berruet P, J.L Lallican, A. Rossi, J-L. Philippe. 2005. A
component based approach for the design of FMS control
and supervision", IEEE SMC 2005, Hawaii, pp. 3005-
3011.

Cardin O, P Castagna. 2006. Handling uncertainty in
production activity control using proactive simulation,
INCOM 2006.

Combacau, M., P. Berruet, E. Zamaï, P. Charbonnaud, A.
Khatab. 2000. Monitoring and Supervision of
Manufacturing Systems. In: IFAC MCPL2000, pp. 348-
353.

Copalp, STRATON handbook, 2002-2004.
Cotting, C. and J.J. Burken. 2001. Reconfigurable Control

Design for the Full X-33 Flight Envelope. In: AIAA
Guidance, Navigation and Control Conference.

Drake G R., Jeffrey S. Smith. 1996. Simulation system for
real-time planning, scheduling, and control, Winter
Simulation Conference.

Gupta A K., A I Sivakumar, S Sarawgi. 2002. "Shop floor
scheduling with simulation based proactive decision
support", Winter Simulation Conference.

Ju-Yeon J., Yoohwan K., Andy P., Wyatt S. 1997. Virtual
Testing of Agile Manufacturing Software Using 3D

Graphical Simulation, In proceedings of the 1997 IEEE
International Conference on Robotics and Automation,
New Mexico, pp. 1223-1228.

Kamimura, A., S. Murata, E. Yoshida, H. Kurokawa, K.
Tomita and S. Kokaji. 2001. Self- Reconfigurable
Modular Robot. In: IEEE/RSJ Int. Conference on
Intelligent Robots and Systems IROS2001, pp. 606-612.

Kindler E. 1994. Simulation of systems containing simulating
objects, Simulation und Integration'94, P. Lorenz (Ed.),
Magdeburg – Dortmund, ASIM, pp. 65 76.

Kindler, E. 2000a. Nesting Simulation of a Container
Terminal Operating With its own Simulation Model.
JORBEL (Belgian Journal of Operations Research,
Statistics and Computer Sciences) 40, 169-181.

Kindler, E. 2000b. Chance for Simula. ASU Newsletter 26, 2
26.

Kindler E., T. Coudert, P. Berruet. 2004. Component-Based
Simulation for a Reconfiguration Study of Transitic
Systems, SIMULATION: Transactions of The Society for
Modeling and Simulation International, Vol. 80, No. 3,
pp. 153-163.

Kotay, K. and D. Rus. 1999. Locomotion Versatility through
Self-reconfiguration. In: Robotics and Autonomous
Systems, Vol. 26-2,3, pp. 217-232. Elsevier.

Lallican JL, P. Berruet, J-L. Philippe. 2005. SimSED : a tool
for modeling and simulating transitic systems, I3M CMS
2005, invited session, Marseille, pp.199-204.

Mitchell, S., H. Naguib, G. Coulouris and T. Kindberg. 1998.
Dynamically Reconfiguring Multimedia Components: A
Model-based Approach. In: 8th ACM SIGOPS European
Workshop.

ODE user guide, 2001-2004 RUSSELL SMITH.
Page, E. 1994. Simulation Modeling Methodology : Principles

and Etiology of Decision Support. These de doctorat,
Department of Computer Science, Virginia Tech.,
Blacksburg, Virginie, USA.

Ray C., C. Claramunt. 2003. A distributed computing system
for the simulation of disaggregated data flows,
Knowledge-Based Systems, volume 16(4), pages 191-203,
Elsevier Science publications.

SIMULA Standard. 1986. SIMULA a.s., Oslo.
Tomizuka, M. 2002. Mechatronics: From the 20th to 21st

Century. Control Engineering Practice 10, 877-886.
Wenbin Z., Xiumin F., Juanqui Y., Pengsheng Z. 2002. An

Integrated Simulation Method to Support Virtual Factory
Engineering », International Journal of CAD/CAM vol. 2,
No. 1, pp. 39-44.

Wills L., S. Kannan, S. Sander, Mu. Guler, B. Heck, J.V.R.
Prassad, D. Schrage and G. Vachtsevanos. 2001. An Open
Platform For Reconfigurable Control. In: IEEE Control
Systems Magazine. Vol. 21, pp. 49-64.

AUTHOR BIOGRAPHY

PASCAL BERRUET was born in
Orléans, France and went to the Ecole
Centrale de Lille, where he studied
automation, production management and
obtained his degree in 1998. He moved in
1999 to the University of South Brittany

where he is now leading a research thematic in the field
of reconfigurable discrete event systems. His research
areas are supervision, analysis, simulation and automatic
control generation of reconfigurable systems. His e-mail
address is: Pascal.Berruet@univ-ubs.fr.

