
Recent Advances on DEVS Modeling and Simulation Methodologies

Gabriel Wainer
Dept. of Systems and Computer Engineering - V-Sim

Carleton University
1125 Colonel By Drive. Ottawa, ON. K1S 5B6. Canada.

gwainer@sce.carleton.ca

with Rodrigo Castro and Ernesto Kofman (Systems Dynamic Laboratory. UNR. Rosario, Argentina).

ABSTRACT: DEVS is an increasingly accepted frame-
work for understanding and supporting modeling and
simulation. DEVS is a sound formal framework based
on generic dynamic systems, including well defined
coupling of components, hierarchical, modular construc-
tion, support for discrete event approximation of con-
tinuous systems and support for repository reuse. DEVS
theory provides a rigorous method for representing
models, and presents an abstract way of thinking about
the world with independence of the simulation mecha-
nisms, underlying hardware and middleware. In this
presentation we will introduce and summarize a variety
of advances carried out by our team in this field. The ar-
ticle summarizes the contents of our discussion, and it is
based on previous articles (whose full version can be
found in the list of references).

1 Introduction
In recent years, we have witnessed tremendous advances
in model building and simulation execution thanks to
the improvements in software and hardware technology.
For many existing systems, analytical solutions are not
 feasible, while direct experimentation can be dan-
gerous or impractical. Discrete-Event simulation meth-
odologies were created to model systems that exist in fi-
nite set of discrete states over continuous periods of
time (i.e. queuing systems, computer networks, manu-
facturing facilities, etc.).

DEVS (Discrete Event systems Specifications) is a
technique defined in [1] that allows the modular descrip-
tion of discrete-event systems that can be integrated us-
ing a hierarchical approach. DEVS has been success-
fully used in a wide variety of applications and envi-
ronments, providing ease for reuse of simulation mod-
els. Another advantage of using DEVS is that different
existing techniques (Bond Graphs, Cellular Automata,
State Charts, Partial Differential Equations, Petri Nets,
Queuing networks, Timed Automata, etc.) have been
mapped to DEVS. This permits sharing information at
the level of the model, and different submodels can be
specified using different techniques, while keeping in-
dependence at the level of the simulation engine. Exist-
ing DEVS tools have showed their ability to execute
such wide variety of models with high performance in
standalone or distributed environments.

2 The DEVS Formalism
A real system modeled with DEVS is described as a
composite of submodels, each of them being behavioral

(atomic) or structural (coupled). A DEVS atomic model
can be informally described as in Figure 1.

x

s' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

ta(s)

Figure 1. Informal description of an atomic model.

Each atomic model can be seen as having an interface
consisting of input (x) and output (y) ports to communi-
cate with other models. Every state (s) in the model is
associated with a time advance (ta) function, which de-
termines the duration of the state. Once the time as-
signed to the state is consumed, an internal transition is
triggered. At that moment, the model execution results
are spread through the model’s output ports by activat-
ing an output function (λ). Then, an internal transition
function (δint) is fired, producing a state change. Input
external events are received in the input ports, and they
activate δext.

Figure 2. Informal description of a coupled model.
A DEVS coupled model is composed by several

atomic or coupled submodels. Coupled models are de-
fined as a set of components (atomic or coupled), which
are interconnected through the model's interfaces. The
model’s coupling defines how to convert the outputs of
a model into inputs for the others, and to inputs/outputs
to the exterior of the model, as seen in Figure 2.

Many applications need components containing with
variables and time. These can be modeled as Ordinary
Differential Equation with initial conditions, which have
traditionally been simulated by discretizing the time
domain, and solving the ODE over each discrete time
interval. Recently, Quantized DEVS [2] permitted to
solve this problem using a different approach, depicted

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

in Figure 3. Using Q-DEVS, a curve is represented by
the crossing of an equal spaced set of boundaries, sepa-
rated by a quantum size. Only when a crossing occurs,
an event is generated, reducing substantially the fre-
quency of message updates.

Figure 3. Quantized DEVS (Q-DEVS)

A different approach to model continues systems, is
the one used by Modelica [3], an object-oriented lan-
guage for modeling physical systems. Modelica was de-
signed to support library development and model ex-
change. Models in Modelica are mathematically de-
scribed by differential, algebraic and discrete equations.
Modelica has many libraries of standard components
(ODEs, block diagrams, electrical and mechanical).

Model circuit
Modelica.Electrical.Analog.Sources.SineVoltage
 V(V=15,freqHz=60);

Modelica.Electrical.Analog.Basic.Resistor
 R1(R=10);

Modelica.Electrical.Analog.Basic.Ground Gnd;
equation
 connect(V.p, R1.p);
 connect(R1.n, V.n);
 connect(R1.n, Gnd.p);
end circuit1;

Figure 4. Electrical model in Modelica.
The example presented in Figure 4 shows a model of

an electrical circuit (V generates a sine voltage). In [4]
we showed that Modelica models can be translated into
DEVS, which allows seamless integration of continuous
and discrete-event components.

Another method to define continuous system consid-
ers the discretization of the space where the model is de-
fined, using a grid describing the physical properties of
the space. Cell-DEVS [5] is one of these methods, based
on DEVS. A Cell-DEVS model is seen as a lattice of
cells holding state variables and a computing apparatus,
which is in charge of update the cell state according to a
local rule. This is done using the present cell state and
those of a finite set of nearby cells (called its neighbor-
hood). Cell-DEVS uses a discrete-event approach: each
cell is defined as a DEVS atomic model, and it can be
integrated into a coupled model representing the cell
space.

Each cell uses N inputs to compute its next state.
These inputs, which are received through the model's in-
terface, activate a local computing function (τ). A delay
(d) can be associated with each cell. The state (s)
changes can be transmitted to other models, but only af-

ter this delay. Once the cell behavior is defined, a cou-
pled Cell-DEVS can be created by putting together a
number of cells interconnected by a neighborhood rela-
tionship. A Cell-DEVS coupled model is informally
presented in Figure 5.

Figure 5. Description of a Cell-DEVS coupled model.
A coupled Cell-DEVS is composed of an array of

atomic cells of a given size and dimensions. Each cell is
connected to its neighborhood through DEVS I/O ports.

Several tools have implemented DEVS theory, includ-
ing ADEVS, CD++, DEVS/HLA, DEVSJAVA,
DEVSim++, GALATEA, PyDEVS and SimBeams (a
non-comprehensive list can be found at [6]).

The generality of DEVS made it widely used to
describe many classes of systems, given it permits
modeling systems with a set of infinite possible states,
and where the new state after an event arrival may
depend on the elapsed time in the previous state. Models
showing this behavior cannot be represented by any
other discrete formalism. The following is a non-
exhaustive list of such applications, which shows the
relevance of the approach:
• In [7], an environment for the analysis of multi-agent

robots was presented, using DEVS representation of a
mobile robot is combined with stochastic learning.

• Models of large ecosystems, including watersheds [8]
and fire spreading [9] that enabled the understanding
and prediction of environmental phenomena.

• Prototyping and testing environment for embedded
system design [10]. This allows verifying embedded
systems’ in the form of formal and simulatable appli-
cations prior to the deployment stage.

• Urban traffic analysis [11], providing support for
evaluating signal control strategies, alleviating con-
gestion in peak hours, and understanding conflicts.

• A decision support system for an intermodal container
terminal [12]. In this case there is a need for studying
spatial allocation of containers, routing goods, sched-
uling of operations and resource allocation.

• Analysis of the behavior of a distributed Intrusion De-
tection System to identify suspicious computer net-
work traffic in real-time [13].

• Complex systems in aerospace manufacturing and
military applications [14]. These applications showed
how to integrate DEVS and the HLA [15], allowing
distributed simulation, interoperability, and reuse.

• Supply chain applications [16], to help to determine
strategies to provide the most profitable operating en-
vironment considering site location, replenishment
policies, transportation policies, and inventory levels.

• Signal filters for SACHEM, a real-time diagnosis sys-
tem [17], developed to supervise the blast furnaces of
a large steel producer using knowledge acquired from
experts. DEVS models are used to filter input con-
tinuous signals and to convert them into discrete
events fed into an expert system.

• DHMIF (DEVS Hardware Model Interchange For-
mat), a formal means to integrate the representation of
hardware models developed with heterogeneous lan-
guages [18]. It can represent digital circuits modeled
in different hardware description languages.

3 STDEVS
Stochastic models play a fundamental role in discrete
event system theory. Any system involving
uncertainties, unpredictable human actions, machine
failures, system overloading, etc. requires a non–
deterministic treatment. Examples of stochastic discrete
event formalisms are Markov Chains, Queuing
Networks and Stochastic Petri Nets, which permit
simulating stochastic models in several applications.
However, although some early work have studied the
relationship between stochastic and pseudo-random
processes and DEVS [19] and there is an extension for
stochastic DEVS limited to finite state sets [20]; there is
not a general theory nor a general formalism related to
non determisitic DEVS models.

We are currently working on formally extending
DEVS for modeling of stochastic systems (STDEVS).
Taking into account that DEVS can work with sets of
infinite possible states, we make use of Probability
Space Theory and combine it with DEVS system
theoretic definition to define the new formalism. Atomic
STDEVS model are:

),,,,,,,(extintextint taPPSYXM ST λG,G=
X, Y, S, λ, and ta have the same definition that those of

classic DEVS. However, STDEVS has probability
spaces that model the stochastic processes that calculate
the next state. In order to construct the internal
transition stochastic dynamic description, we start
defining the internal set-collecting function

, a function assigning a collection of sets
to every model state . G

S2G →S:int
Ss 2)(int ⊆G Ss ∈ int(s) is the

collection of all the important subsets of S for which,
when we are in state s, we know the probability that the
system goes into them. This is, there is a probability
function so that P]1,0[:int →× S2SP int(s,G) gives the
probability of going from state s to any subset of future
states G in Gint(s). Then, considering the event space

 (i.e., the smallest sigma algebra to
which all the sets in G

))()(intint ss M(GF =
int belong), the triplet

 obtained is a well defined
probability space. Similarly, the probability space for
the external transition stochastic description, results in
the triplet . Here,

, ,

, and .

)),(),(,(intint ⋅sPsS F

)),,,(),,,(,(extext ⋅xesPxesS F
S2G →×ℜ× + XS 0ext :)),,(),,(extext xesxes M(GF =

Sxes 2),,(ext ⊆G]1,0[: 0ext →××ℜ× + S2XSP

We have proven that STDEVS is a generalization of
DEVS [21], i.e., DEVS is a particular case of STDEVS.
This fact allows combining DEVS and STDEVS models
in coupled models of combined stochastic and
deterministic systems. STDEVS provides an unified
framework with continuous systems, by interacting with
a novel family of numerical integration algorithms
which allows the simulation of continuous systems in
term of DEVS [22], exhibiting important advantages
over discrete time approximations in the simulation of
hybrid systems. The strategy pursued behind the
STDEVS definition is to converge towards Control-
Oriented Hybrid-Systems Modeling and Real-Time
Simulation. The objective of guaranteeing the Quality of
Service (QoS) of complex, resource-limited computing
systems, has been targeted many times motivating
diverse control strategies for admission control, load
balancing and resource sharing problems. These control
strategies are aimed at avoiding system congestion and
saturation in the presence of different, unpredictable
workload scenarios or abnormal system conditions.

The most sophisticated techniques are based on
Control Theory, trying to maximize Objective Functions
defined for the system’s performance, which in turn
define the design of their supporting control strategies.
These functions are typically targeted to boost the
quality metrics that will shape the QoS as seen from a
user’s standpoint (i.e., throughput, response time,
delays) while keeping cost-related metrics low
(hardware utilization, queue lengths, storage space,
power consumption). In the case of the Utility
Computing paradigm, Objective Functions are explicitly
expressed in terms of contractual obligations and
revenue objectives associated with the service offered.

The strategy pursued behind the STDEVS definition is
to converge towards Control-Oriented Hybrid-Systems
Modeling and Real-Time Simulation. QoS requirements
usually need to be mapped into class-partitioned or
service-differentiated loads that might respond to
stochastic variation patterns along time, and might
require different system resource sharing. System’s
hardware/software utilization depends on several low
level particularities of the architectures, serving both
user’s demands and local tasks. Additionally, when
operation limits are reached (i.e., task timeouts,
maximum connections reached, system running low on
batteries, etc.), a non-linear end to end system behavior
is obtained, due to abrupt state changes.

Within this scenario, the use of modeling and
simulation disciplines to design, test, validate and verify
the various algorithms implementing the varied control
strategies is crucial. Only with the support of powerful
simulators and strong descriptions, the design of QoS-
Controlled computing systems can be taken to the level
of precision, standardization and productivity industry
requires. Furthermore, Real-Time simulation enable to
implement the control systems designed in the modeling
and simulation stages right away into the target system
under study and evaluate performance enhancements.

The proposed methodology is based on the use of non-
linear discrete-time models to describe the evolution of
the computing systems under study. These models and

their simulation environments shall be described with
STDEVS which enables the representation of standard
control theory techniques. Finally, models must expose
open and robust interfaces, so inter-domain areas in
computing systems modeling can be faced under a
common and hierarchical framework. STDEVS is
envisioned as a common theoretical framework and
practical simulation environment to bring together the
control design discipline with the discrete stochastic
representation of networks and computing system’s
shared resources phenomena.

4 The CD++ toolkit
CD++ [23] is a modeling and simulation tool based on
implementing DEVS theory. The tool provides a speci-
fication language that allows describing model cou-
pling; additionally, atomic models can be developed us-
ing C++. CD++ was built as a hierarchy of classes in
C++, each corresponding to a simulation entity using the
basic concepts defined in [1]. The Atomic class imple-
ments the behavior of an atomic component, whereas
the Coupled class implements the mechanisms of a cou-
pled model.
 CD++ makes use of the independence between
modeling and simulation provided by DEVS, and dif-
ferent simulation engines have been defined for the plat-
form: a stand-alone version, a Real-Time simulator [24],

and a Parallel simulator [25]. At present, a CD++ wrap-
per has been built, enabling CD++ simulations to run as
HLA federates [26], and the simulation engine is being
extended to support distributed simulation of atomic
models using the HLA, and a similar approach was cre-
ated based on Web-Service implementation [27]. An-
other current effort is focused in providing support for
development of real-time simulation in embedded plat-
forms.

Model definition in C++ allows the user great flexibil-
ity to define behavior. Nevertheless, a non-experienced
user can have difficulties in defining models using this
approach. The provision of graphical notations is a
powerful tool to define models. Graph-based notations
have the advantage of allowing the user to think about
the problem in a more abstract way. Therefore, we have
used an extended graphical notation to define atomic
models behavior. Each graph defines the state changes
according to internal and external transition functions,
and each is translated into an analytical definition.
 The state machine specification presented following
shows two views: the left side of the GUI contains a
sorted tree diagram, and the right contains a visual rep-
resentation of the model. External transitions are dis-
played as dashed lines, with internal transitions as solid
lines. The input and output ports are visible in the tree
diagram.

Figure 6. Specification of a state-based atomic model.

Once an atomic model is defined, it can be combined

with others into a multicomponent model using a speci-
fication language specially defined with this purpose. It
describes the internal and external coupling scheme. If
the name of the model is not included, the default will
be the coupled model currently being defined.

CD++ also includes an interpreter for Cell-DEVS
models. The language is based on the formal specifica-
tions of Cell-DEVS. The model specification includes
the definition of the size and dimension of the cell

space, the shape of the neighborhood and borders, as
presented. The cell’s local computing function is de-
fined using a set of rules.

CD++ was built as a class hierarchy in C++, where
each class corresponds to a simulation entity. There are
two basic abstract classes: Model and Processor. The
former is used to represent the behavior of the atomic
and coupled models, while the latter implements the
simulation mechanisms. Simulators manage the atomic
models. Coordinators manage coupled models. The

Root Coordinator manages global aspects (start-
ing/stopping the simulation, communication with the
environment). This reflects the clear distinction between
the model and its simulator. CD++ was redesigned to
provide parallel execution of DEVS and Cell-DEVS
[28]. The parallel version of CD++ was built on top of
Warped [29], a simulation kernel that provides an im-
plementation of Time Warp. A flat simulation mecha-
nism reduces the message passing overhead by simplify-
ing the underlying simulator structure, while keeping
the model definition and preserving the separation be-
tween model and simulator [30]. The Flat Coordinator
eliminates the coordinators in the hierarchy by making
direct messaging communications between the Flat Co-
ordinator and the simulators [31], as shown following.

 Coupled Model # 1
Coupled Model # 2 Atomic Model # 1 Atomic Model # 2 Atomic Model # 3

A tomic Model # 4 Atomic Model # 5
 Root Coordinator

Flat Coordinator

simulator #1 simulator #2 simulator #3 simulator #4 simulator #5

Figure 7. Flat Coordinator (a) Example of a model hi-
erarchy, (b) Associated processor hierarchy

We took advantage of the separation of concerns by
focusing on the processors’ class hierarchy only (all
classes inheriting from model remain unchanged from
those defined in earlier versions of the tool, allowing di-
rect reuse of existing models). Two new classes are in-
troduced [25]: Flat Coordinator (FC) and Node Coordi-
nator (NC). Additionally, we modified the Simulator
and Root Coordinator classes. The algorithms we de-
fined are based on those in [32]. The Root Coordinator
only handles I/O operations, and starts/stops the simula-
tion. The NC is in charge of synchronization and time
management for the LP. The FC is responsible for re-
ceiving, translating, and sending messages between its
descendants, using a flat data structure with coupling in-
formation for every component.

The Embedded version of the simulator, called
eCD++ [33] provides a Flat Coordinator, an interpreter
for the state notation presented in Figure 6, and a real-
time engine. eCD++ allows the models to be simulated
in real-time by tying the simulation time to the real-time
clock, and permitting interaction between the simulator
and the surrounding environment. The inputs can be re-
ceived by ports connected to real input devices such as
sensors, timers, thermometers, or data collected from
human interaction. The outputs can be sent through out-
put ports connected to devices such as motors, transduc-
ers, gears, valves, or any other component. For the real-
time simulation, the coordinator waits until the physical
time reaches the next event time to initiate a new cycle.

Timeliness along a simulation is a substantial property
in the real time approach. Thus, it is important to check
timing constraints along the simulation. Particularly, the
time at which an event has been completely processed is

a meaningful measure of success. In a typical real-time
situation, the model has to react to an external event and
generate the output within a given time in order to solve
a problem. The eCD++ real-time extension allows the
modeler to indicate the deadlines for external events.
The simulator can check whether the physical time
meets the associated deadline analyzing successful and
unsuccessful deadlines for further study of the process.

5 M/CD++
MCD++ is an extension to CD++ that allows simulation
of a particular class of dynamic systems, those related to
the electrical domain. The electrical circuits can be
modeled in Modelica, and then simulated using a dis-
crete event simulator. This presents a completely differ-
ent approach on dynamic systems simulation tech-
niques, compared to the existing implementations.
MCD++, is based on Q-DEVS theory, and provides the
extensions needed to accomplish simulation based on
discrete events [4].

The user must provide a source code file as input to
the Modelica compiler. The electrical library we defined
for Modelica/CD++ starts by converting Modelica mod-
els into Bond Graphs, which represent continuous sys-
tems as a set of elements that can interact with each
other by exchanging energy and information, and this
exchange determines the dynamics of the system. The
compiler constructs the corresponding model of the cir-
cuit in a Bond Graph representation. In this Bond
Graph, we check for algebraic loops and singularities.
Then, we generate an optimized Bond Graph corre-
sponding to the electrical circuit, which is used to gen-
erate a coupled DEVS model specification in CD++.

Figure 8 presents the simulation results of different
Modelica/CD++ test cases for the circuit introduced in
Figure 4 using sinusoidal and pulse voltage source. The
results obtained are consistent with the real behavior of
the electrical circuits. The figure shows the voltage and
the current on resistor R. The resistor is a passive ele-
ment in the oscillating electrical circuit so the current
and the voltage on the resistor are in phase; the ampli-
tude of electrical current is I=V/R1.

Current and Voltage on R1

-20
-15
-10
-5
0
5

10
15
20

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

time

V,
C

Current Voltage

Figure 8. Electrical model with sine signal.

6 WEB SERVICE-ENABLED CD++
As mentioned in Section 4, we have defined an exten-
sion to CD++ using Web-services [27]. In order to do
so, the toolkit was wrapped by a web service (exposing
its functionality to remote users/services), and the simu-

lation web service was extended to execute distributed
models. We used the main web service standards such
as XML, SOAP, Web Service Description Language
(WSDL) for storing and parsing the configuration files
used by the service, describing and exposing the service
functionality, and messaging among the simulation ser-
vices themselves as well as with the users, respectively.
The model is decomposed into different partitions, each
of which is assigned to a machine for execution with
SOAP being used for messaging among the machines.

The web service was designed to provide a robust en-
vironment for running different simulation sessions
concurrently and independently. The service was split
into two independent parts: the web service components
are used to handle the web service activities, and the
simulation components are used to interact with CD++.

Figure 9. Simulation service

The web service components are deployed in an Axis
server, which in turn runs within an Apache Tomcat
server. Axis loads all the deployed services, which in-
clude the JavaWrapper, the server-side stubs, and the
client-side stubs. At this point the simulation service is
ready to receive client requests.

Figure 10. Master and Slave coordinators

Model partitioning information is provided through a
grid configuration file (an XML file containing the ad-
dresses of the machines executing the model and the
parts of the model running on each machine). We use
one coordinator in each machine for message routing
among the local processors [28]. The idea depends on
using two kinds of coordinators:

- Master: responsible for synchronizing the model
execution, interacting with upper level coordinators and
message routing among local and remote components.

- Slave: responsible for message routing among the lo-
cal model components dispensing and remotely if the
master coordinator is residing on a different machine.

7 DEVSVIEW
Originally, CD++ only provided results on text files,
making it difficult to study execution results of the
model. Visualization tools are crucial in helping to un-
derstand better the behavior of the system of interest,
thus, different visualization facilities were incorporated
[34]. DEVSView is able to run on OpenGL-based envi-
ronments.

Figure 11. DEVSView outputs.

DEVSView provides basic services that enable simple

visualizations. The visual models are stored in an octary
space partitioning tree. This data structure recursively
divides the scene extents into eight regions, which en-
ables efficient algorithms for rendering scenes, object
selection, and other frequently used scene operations
(Figure 11).

A different version of the software was constructed us-
ing Maya [35], a powerful application for 3D modeling
and animation. Maya interface is fully customizable and
it allows users to extend their functionality within Maya
by providing access to the Maya Embedded Language
(MEL). Using MEL, programmers can tailor the user in-
terface to their needs and to add in-house tools. Maya’s
modeling and animation tools were used to create three-
dimensional environments for Cell-DEVS and DEVS
models [36]. To do that, the user must use Maya facili-
ties to create visual scene files, while an application
written in MEL permits to create a user interface that al-
lows CD++ log files to interact with Maya, and to visu-
alize the corresponding model in a 3D visual environ-
ment. This instantiates a MEL script specific to a par-
ticular model, and animates the 3D world in accordance
with the CD++ log file, as seen in Figure 12.

Figure 12. Visualization in CD++/Maya.

8 Application examples
We developed a large number of applications in a vari-
ety of fields, available for public use. Different areas of
application include generic artificial systems, biology,
defense, emergency planning, construction, environ-
mental sciences, physics, chemistry, urban traffic, and
others. Detailed analysis on each of these fields will be
found in [37]. In this section we introduce a few exam-
ples in different fields to show some recent results.

8.1 Models in Physics and Chemistry
We have developed a number of models with applica-
tion in Physics and Chemistry, including particle colli-
sions, finite element approximation of heat, flow injec-
tion analysis, binary solidification, crystal growth, plas-
tic deformation, spring behavior, and others. In this sec-
tion we show two different examples [38]. The first one,

a model of Diffusion Limited Aggregation (DLA) oc-
curs when diffusing particles stick to and progressively
enlarge an initial seed represented. The seed typically
grows in an irregular shape resembling frost on a win-
dow. Diffusion is a random motion with respect to the
direction. There are two kinds of particles in a grid:
fixed (seeds) and mobile.

We built a model of DLA, as a 2D Cell-DEVS. Ini-
tially, a certain percentage of the cells are occupied by
mobile particles, and there are at least one or more
seeds. The system evolves with the following rules.
• A particle can move in four directions (N/S/E/W)
• A particle becomes fixed an adjacent cell is fixed.
• An empty cell will be occupied if there is at least

one mobile particle trying to move in, and there is
no seed adjacent to the mobile particle.

• A mobile particle that cannot move will select a
new direction at random.

• A mobile particle disappears if it strays too far from
the center.

Figure 13. Two seeds and 30% concentration.

Several scenarios were executed with different seeds
and concentrations. Figure 13 presents a case with con-
centration of 30% (grid: 71x71). The model presents
fractal growth properties based on the initial configura-
tion.

We also defined a model of driven diffusion, which
describes the random motion of two types of particles in
a system under the influence of an external field. The
field may drive one species of particles along the field
direction while the other species against that direction
[37]. This kind of model can simulate the behavior for
certain materials such as superionic conductors and
solid electrolytes.

Initially, the space is occupied by the two randomly
distributed particles A and B, and each particle has a
randomly chosen direction to face (N/E/S/W). In the
case of an external electrical field appearance (assuming
the field points to the NE), the preferable moving direc-
tion of particle A is N or E while the preferable moving
direction of particle B is S or W. The probability of A
and B hops along that preferable direction is a, and the
probability against the direction is (1-a).

Different tests were carried out, using different densi-
ties, space size, and initial states. Particles are initially
distributed at random according to the given density va-
lue. The following figure, for instance, shows a case in
which the density of the whole space is 40%. We can
see that the distribution of the two particles exhibits
striped, banded structure. Within each strip, there are
two sub-strips each having approximately the same
amount of particles. This indicates the non-

homogeneities of the distribution of two particles and
thus results in reduced current in the system.

Figure 14. Density of 40%

8.2 Models in Biology
We have created different models in a whole organelle
scale. In [39], we created a precise model of the reac-
tions in the mitochondrion, which creates energy for cel-
lular activity by the process of aerobic respiration. We
used CD++ to model and simulate biological pathways,
thus providing a systematic method for creating models
consisting of sets of lower-level interactions. The fol-
lowing figure shows a snapshot of some of the reactions
in the Krebs Cycle (formation of Acetyl CoA).

Figure 15. Krebs cycle 3D visualization.

We also created models of liver cells [40]. Our model

is based on the one presented in [41], which defines the
various reactions of the liver maintains. Our design
demonstrates the process of substance transformations
occurring with in the liver’s lobule. The lobule is mod-
eled like a hexagonal cylinder with 3 stages (zones), and
several nodes are placed inside the lobule, where each
node is connected to at least one other node. Each node
is responsible for receiving a substance, and transform-
ing it, and each node works interdependently of each
other. We built a DEVS model based on these assump-
tions, which represents the chemical composition of
blood entering the liver lobule. A substance would enter
the portal vein (PV), and it is then fed to all the nodes
that are in zone I. After the nodes of zone I are finished
transforming the substance, their output is fed to the
nodes of zone II and then zone III. After this, the output
is supplied to the central vein (CV). We studied differ-
ent reactions in the lobule, including gluconeogenesis,
glycogen synthesis and degradation, phosphorylation

and glycolosis. Each of these reactions was analyzed,
based on the lobule model presented in Figure 16.

Figure 16. Zones and Nodes [41]

8.3 Environmental Systems
We defined a variety of models in environmental sci-
ences, including pollution, watershed formation, ant for-
aging, vegetation growth, pesticide percolation, etc.
[42]. In this section we show a Cell-DEVS fire model
based on a well known model for fire propagation in
forests due to Rothermel [43]. Three parameter groups
determine the fire spread ratio: vegetation type, fuel
properties, and environmental parameters. When
Rothermel's rules are applied to a given fuel model and
environmental parameters, it can determine the spread
ratio (i.e. the distance and direction the fire moves in a
minute). The first step is to use the fuel model, the speed
and direction of wind, topography and dimensions of the
cellular space to obtain the spread ratio in every direc-
tion. Instead of using a time-based approach, the model
uses the delay function to compute fire spread. Figure
17 shows the implementation of this model using a hex-
agonal mesh.

dim : (20,20) delay : inertial
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0)
(0,1) (1,-1) (1,0) (1,1)

[FireBehavior]
rule: {[5]+(15.24/13.680)} {(15.24/13.680)
 * 60000} {[0]=0 and [5]!=? and [5]>0}
rule: {[6]+(15.24/5.10)} {(15.24 /5.106)
 * 60000} {[0]=0 and [6]!=? and [6]>0}
rule: {[4]+(15.24/2.950)} {(15.24/2.950)
 * 60000} {[0]=0 and [4]!=? and [4]>0}
...

Figure 17. Rothermel’s fire forest model.

The rules defining the local computing function are
devoted to detect the presence of fire in the eight
neighboring cells. For instance, the first rule checks if
the current cell is not burning ([0]= 0) and if the SW
neighbor has started to burn ([5]>0). If this condition
holds, the new value of the cell will be
[5]+(15.24/13.680), which is the time the fire will
start in the cell. We use a delay of (15.24/13.680) *
60000 ms after which the present cell state will spread

to the neighbors. The remaining rules represent a similar
behavior for the neighbors.

Figure 18. Fire propagation results (2 h. period)

As we can see, the burning time of a cell depends on
the spread ratio in the direction of the burning cell.
Changes in the propagation are related to the changes
produced by the adjacency properties. This is a clear de-
parture from the classical approach to cellular models
where all active cells are updated at the same time.

8.4 Traffic Simulation
In this section we present an introduction to the ATLAS
M&S platform. In ATLAS, a modeler can easily de-
scribe a city section, including traffic signs, traffic
lights, etc. [44]. ATLAS is formally defined as a set of
constructions, mapped into DEVS and Cell-DEVS mod-
els [45].

Figure 19. Structure of the ATLAS software platform.

 The behavior for each of the constructions presented
in this language was validated in terms of correctness.
Then, a compiler was built following the specifications
[46]. The compiler, called ATLAS TSC (Traffic Simu-
lator Compiler), generates code by using a set of tem-
plates that can be redefined by the user.
 A front-end program (MAPS) allows the user to draw
a small city section complete with roads, intersections,
and decorations, and then parse the drawing to create a
valid ATLAS file. Likewise, the output can generate re-
alistic 3D graphics.

Figure 20. ATLAS GUI.

9 Conclusion
The use of DEVS can improve the security and cost in
the development of the simulations. The main gains are
in the testing and maintenance phases, the more expen-
sive for these systems. The use of a formal approach
made easy the development of the applications. DEVS
was successfully applied in such a variety of applica-
tions due to the ease for model definition, improved
composition and reuse, and as a result of hierarchical
coupling. DEVS includes explicit specification of the
model timing, and uses a discrete event approach for
simulation. This provides precision and speedups in the
execution time, as models advance triggered by instan-
taneous asynchronous events in contraposition with time
stepped approaches. This allows enhanced model defini-
tion and high performance.

We are currently working on the completion of the
theoretical framework of STDEVS, studying properties
such as closure under coupling and legitimacy. We are
also working on a formal proof of the fact that classic
DEVS models whose transition functions depend on
randomly generated parameters constitute particular
cases of STDEVS. This property allows to develope
STDEVS models replacing the use of probability spaces
by simple random functions.

We are also working on a standardized version of
DEVS models within a DEVS Study Group [6], whose
goal is to enable DEVS environments to interact, and to
include non-DEVS models in larger simulations. In this
way, we will be able to shorten the gap existing between
academic versions of DEVS, and industrial/government
needs. Having standardized means of defining models
will enable defining standard libraries that can be inte-
grated in user-friendly modeling and simulation envi-
ronments.

References
[1] Zeigler B., Praehofer H. and Kim T.G., "Theory of Model-
ing and Simulation, second edition” Academic Press, 2000.
[2] B. P. Zeigler, "DEVS Theory of Quantization” DARPA
Contract N6133997K-0007: ECE Dept., the University of Ari-
zona, Tucson, AZ. 1998.
[3] Modelica, "Language Specification, version 2.1"
Http://www.modelica.org, 2004.
[4] M. D’Abreu and G. Wainer, "M/CD++: modeling continu-
ous systems using Modelica and DEVS” Proceedings of
MASCOTS 2005.Atlanta, GA. 2005.

[5] G. Wainer and N. Giambiasi, "N-Dimensional Cell-DEVS”
In Discrete Events Systems: Theory and Applications, Klu-
wer.Vol, 12, no, 1.pp, 135-157. 2002.
[6] G. Wainer, "DEVS Standardization Study Group” .
http:///www.sce.carleton.ca/faculty/wainer/standard. 2007.
[7] A. El-Osery, J. Burge, M. Jamshidi, M. Fathi and M. R.
Akbarzadeh, "V-LAB: A Virtual Laboratory for Autonomous
Agents - SLA based Controllers," IEEE Transactions on Sys-
tems, Man and Cybernetics, vol. 32, pp. 791-803, 2002.
[8] B. Zeigler, Y. Moon, D. Kim and G. Ball, "The DEVS En-
vironment for High-Performance Modeling and Simulation”
IEEE Computational Science and Eng.4 (3), pp. 61 -71. 1997.
[9] M. Vasconcelos, A. Goncalves and F. Barros, "Dynamic
Maps” In Proceedings of AI, Simulation and Planning in High
Autonomy Systems.Tucson, Arizona. 2000.
[10] S. Schulz, J. W. Rozenblit, M. Mrva and K. Buchenriede,
"Model-based codesign” Computer, vol. 31, pp. 60-67, 1998.
[11] S. Chi, J. Lee and Y. Kim, "Using the SES/MB frame-
work to analyze traffic flow”. Transactions of the SCS.Vol, 14,
no.4, pp, 211-221. 1997.
[12] L. M. Gambardella, A. E. Rizzoli and M. Zaffalon,
"Simulation and Planning of an Intermodal Container Termi-
nal” Simulation, vol. 71, pp. 107-116, 1998.
[13] T. H. Cho and H. J. Kim, "DEVS Simulation of distrib-
uted intrusion detection systems”. Trans. Soc. Comput. Simul.
Int., vol. 18, pp. 133-146, 2001.
[14] H. S. Sarjoughian Zeigler, "DEVS and HLA: Compli-
mentary Paradigms for M&S?" Transactions of the SCS, (17),
4, pp, 187-197. 2000.
[15] IEEE standard for modeling and simulation (M&S,) high
level architecture (HLA) - Framework and Rules. pp. i -22.
[16] D. Kim, H. Cao and S. Buckley, "Modeling and simula-
tion of supply chain management based on DEVS and
CORBA framework”. Winter Simulation Conference, Phoenix,
AZ. 1999.
[17] C. Frydman, M. Le Goc, N. Giambiasi and L. Torres,
"Knowledge-Based diagnosis in SACHEM using DEVS mod-
els” Trans. of SCS, vol. 18, pp. 148-159. 2001.
[18] J. K. Kim, Y. G. Kim and T. G. Kim, "DHMIF: DEVS-
based hardware model interchange format” in European Simu-
lation Symposium, Marseille, France. 2001.
[19] S. Aggarwal, "Ergodic machines--probabilistic and ap-
proximate homomorphic simplifications." 1975.
[20] C. Joslyn, "The process theoretical approach to qualita-
tive DEVS” in 7th Conference on AI, Simulation, and Planning
in High Autonomy Systems (AIS ’96), 1996, pp. 235-242.
[21] E. Kofman and R. Castro, "STDEVS. A novel formalism
for modeling and simulation of stochastic discrete event sys-
tem” in AADECA 2006, Buenos Aires, Argentina. 2006.
[22] E. Kofman, "Discrete Event Simulation of Hybrid Sys-
tems” SIAM J. Sci. Comput., vol. 25, pp. 1771-1797, 2004.
[23] Wainer, "CD++: a toolkit to develop DEVS models” Soft-
ware Practice and Experience, vol. 32, pp. 1261, 2002.
[24] E. Glinsky and G. Wainer, "Modeling and simulation of
systems with hardware-in-the-loop” in Proceedings of the
Winter Simulation Conference.Washington, DC. 2004.
[25] E. Glinsky and G. A. Wainer, "New parallel simulation
techniques of DEVS and cell-DEVS in CD++." in Annual
Simulation Symposium, Huntsville, AL. 2006, pp. 244-251.
[26] C. Zhang, "Integrating existing DEVS simulations with
the HLA". M. A. Sc. Thesis. Carleton University. 2004.
[27] R. Madhoun, B. Feng and G. Wainer, "Web-service-
based distributed CD++” in Proc. of Artificial Intelligence,
Simulation and Planning, Buenos Aires, Argentina. 2007.
[28] A. Troccoli and G. Wainer, "Implementing Parallel Cell-
DEVS” Proceedings of 36th IEEE/SCS Annual Simulation
Symposium.Orlando, USA. 2003.

[29] D. Martin, T. McBrayer and P. Wilsey, "WARPED: Time
Warp Simulation Kernel for Analysis and Application Devel-
opment” Proceedings of the 29th Hawaii International Con-
ference on System Sciences, 1996.
[30] K. H. Kim, Y. R. Seong, T. G. Kim and K. H. Park, "Dis-
tributed Simulation of Hierarchical DEVS Models: Hierarchi-
cal Scheduling Locally and Time Warp Globally” Trans.of the
SCS.Vol, 13 (3), pp, 135-154. 1996.
[31] Kim, K., Kang W., Sagong,B.and Seo, H., "Efficient Dis-
tributed Simulation of Hierarchical DEVS Models: Transform-
ing Model Structure into a Non-Hierarchical One” In Proc. of
33rd Annual Simulation Symposium.Washington DC, 2000.
[32] A. Chow and B. Zeigler, "Parallel DEVS: A parallel, hi-
erarchical, modular modeling formalism” Proc.of the Winter
Simulation Conference.Orlando, FL. 1994.
[33] H. Yu and G. Wainer, "E-CD++: developing embedded
DEVS applications”. Internal Report. Carleton University.
Dept. of Systems and Computer Eng., 2007.
[34] W. Venhola and G. Wainer. “DEVSView: A tool for
visualizing CD++ simulation models”. In Proceedings of
SpringSim 2006 (DEVS Symposium). Huntsville, AL. 2006.
[35] ALIAS Corp. "Maya 6 Features in Detail"
http://www.alias.com/eng/products-services/maya/file/
maya6_features_in_detail.Pdf. 2004.
[36] A. Khan, G. Wainer, W. Venhola and M. Jemtrud, "On
the use of CD++/Maya for visualization of discrete-event
models” Proc.of IMACS World Congress. Paris, France. 2005.
[37] G. Wainer, Discrete-Event Modeling and Simulation: A
Practitioner's Approach. Taylor and Francis.To Appear. 2008.
[38] W. Ding, X. Wu, L. Checiu, C. Lin and G. Wainer,
"Definition of cell-DEVS models for complex diffusion sys-
tems” Proc. SCSC 2005.. Philadelphia, PA. 2005.
[39] R. Djafarzadeh, T. Mussivand and G. Wainer, "Modeling
energy pathways in cells” In Proceedings of the 2005 DEVS
Integrative M&S Symposium,.San Diego, CA.U.S.A.2005.
[40] G. Wainer, B. Al-aubidy, A. Dias, R. Bain, S. Jafer, M.
Dumontier and J. Cheetham, "Advanced DEVS models with
applications to biomedicine” Proc. of Artificial Intelligence,
Simulation and Planning. Buenos Aires, Argentina, 2007.
[41] C. A. Hunt, G. Ropella, M. Roberts and L. Yan, "Biomi-
metic in silico devices” Computational Methods in Systems
Biology; Lecture Notes in Bioinformatics 3082,2005,pp.35-43.
[42] Wainer, "Applying Cell-DEVS Methodology for Model-
ing the Environment” Simulation, vol. 82, pp. 635, 2006.
[43] R. Rothermel, "A mathematical model for predicting fire
spread in wildland fuels” Research Paper INT-115.Ogden,
UT: U.S.Department of Agriculture, Forest Service, Inter-
mountain Forest and Range Experiment Station. 40 pp. 1972.
[44] G. Wainer. "ATLAS: A language to specify traffic mod-
els using Cell-DEVS”. Simul. Model. Pract. Theory, vol. 14,
pp. 313-337, APR. 2006.
[45] A. Davidson and G. Wainer, "Specifying control signals
in traffic models". In Proceedings of AI, Simulation and Plan-
ning in High Autonomous Systems, Tucson, AZ. USA. 2000.
[46] M. Lo Tartaro, C. Torres and G. Wainer, "Defining Mod-
els of Urban Traffic using the TSC Tool” Proc.of the Winter
Simulation Conference.Washington, DC. 2001.

http:///www.sce.carleton.ca/faculty/wainer/standard

	ABSTRACT: DEVS is an increasingly accepted framework for understanding and supporting modeling and simulation. DEVS is a sound formal framework based on generic dynamic systems, including well defined coupling of components, hierarchical, modular construction, support for discrete event approximation of continuous systems and support for repository reuse. DEVS theory provides a rigorous method for representing models, and presents an abstract way of thinking about the world with independence of the simulation mechanisms, underlying hardware and middleware. In this presentation we will introduce and summarize a variety of advances carried out by our team in this field. The article summarizes the contents of our discussion, and it is based on previous articles (whose full version can be found in the list of references).
	1 Introduction
	2 The DEVS Formalism
	3 STDEVS
	4 The CD++ toolkit
	5 M/CD++
	6 WEB SERVICE-ENABLED CD++
	7 DEVSVIEW
	8 Application examples
	8.1 Models in Physics and Chemistry
	8.2 Models in Biology
	8.3 Environmental Systems
	8.4 Traffic Simulation

	9 Conclusion

