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ABSTRACT 

This paper presents a new approach of differential 
evolution to scheduling optimization problem. The 
developed approach is viewed as an enhanced varient of 
differential evolution, incorporation new child 
correction schemas and coversion schemas from 
differential to discrete domain. The heuristic is 
extensively evaluated with the scheduling problem of 
flow shop and compared with published results.  
 
INTRODUCTION 

Metaheuristics are the common tool utilized to solve 
complex manufacturing problems. The advantage of this 
process is the production of viable results within the 
given constraints and resources. Flow shop scheduling 
(FSS) can be considered as one of the common 
manufacturing problems that is regurarly realized using 
optimization techniques. The evolution of optimization 
techniques has been mainly attributed to the increase in 
complexity of problems encountered. Two branches of 
heuristics exist: constructive and improvement 
(Onwubolu and Mutingi 1999).  Constructive methods 
are usually problem dependent (Cambell et al. 1970, 
Nawaz et al. 1983). Improvement methods are those 
involving population-based heuristics which usually 
follow a naturally occurring paradigm. Some of these 
are genetic algorithms (GA), tabu search (TS), neural 
networks (NN), simulated annealing (SA) and particle 
swamp optimization (PSO) among others. 
 
Differential evolution (DE) algorithm was introduced by 
Price and Storn (1999). Since then, due to its 
effectiveness, a lot of advanced work (see Onwubolu 
and Babu 2004; Lampinen and Storn 2004 and 
Lempinen and Zelinka 1999) have been conducted in 
order to realize the full potential of this viable approach.  
 
In its canonical form, DE is designed to solve 
differential problems, which involve continuous values; 
that is, there is no discriminating feature in DE between 
values within a solution. This approach is effective; 
however a lot of problems involve solutions which are 
permutative, such as FSS. To achieve the desired 
heuristic, certain modifications have to be undertaken to 
change the operational domain of DE from continuous 

to discrete. Initial work has been done by Onwubolu and 
Davendra (2006), to transform the operational domain, 
however to improve the solutions further, enhancements 
were required. This varient was termed Discrete 
Differential Evolution (DDE). 
 
This paper covers the work done to DDE to enhance it 
to enhanced differential evolution (EDE) algorithm, and 
its application to multiple FSS problems, in order to 
show its effectiveness over a wider range of FSS 
problems. 
 
FLOW SHOP SCHEDULING 

In many manufacturing and assembly facilities a 
number of operations have to be done on every job. 
Often, these operations have to be done on all jobs in 
the same order, which implies that the jobs have to 
follow the same route. The machines are assumed to be 
set up and the environment is referred to as flow shop 
(Pinedo 1995).  The flow shop can be formatted 
generally by the sequencing on n jobs on m machines 
under the precedence condition. The general constraints 
that are assessed for a flow shop system is the time 
required to finish all jobs or makespan, minimizing of 
average flow time, and the maximizing the number of 
tardy jobs. 
 
The minimization of completion time for a flow shop 
schedule is equivalent to minimizing  the objective 
function 

       

! 

" = Cm, j

j=1

n

#                              (1) 

where  

! 

Cm, j
 is the completion time of job j. To calculate 

! 

Cm, j
 

the recursive procedure is followed for any 

! 

i
th  machine 

! 

j
th  job as follows: 
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"  which represents i as the 

machine number, j as the job in the sequence and 

! 

pi, j  
as the processing time of job j on machine i.  
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ENHANCED DIFFERENTIAL EVOLUTION 
ALGORITHM 

EDE is an extension of DE and DDE, and possesses the 
same novel approach that has made DE such a robust 
heuristic. EDE in addition to being an extension of DE, 
in regards to the inclusion of discrete optimization, is 
also an enhancement of DE. Enhancement is only 
archeived through the implementation of routines which 
improve the solution quality. The outline of EDE is 
given in Figure 1. 
 

• Initial Phase 
1. Population Generation: An initial 

number of discrete trial solutions are 
generated for the initial population. 

• Conversion 
2. Discrete to Floating Conversion: This 

conversion scheme transforms the 
parent solution into the required 
continuous solution. 

3. DE Strategy: The DE strategy 
transforms the parent solution into the 
child solution using its inbuilt 
crossover and mutation schemas. 

4. Floating to Discrete Conversion: This 
conversion schema transforms the 
continuous child solution into a 
discrete solution. 

• Mutation 
5. Relative Mutation Schema: 

Formulates the child solution into the 
discrete solution of unique values. 

• Improvement Strategy 
6. Mutation: Standard mutation is 

applied to obtain a better solution. 
7. Insertion: Uses a two-point cascade to 

obtain a better solution. 
8. Repeat: Execute steps 2-7 until 

reaching a specified cutoff limit on 
the total number of iterations. 

• Local Search 
9. Local Search: Is initiated if stagnation 

occurs 
Figure 1: EDE conceptual outline. 
  
Population generation 
 
The population for EDE is constructed using a random 
number generator. The solution is discrete and reflects 
the problem structure. This is unique to the incumbent 
process of having a differential population.  
 
Discrete to floating and floating to discrete 
conversion 
 
The approach for the conversion of discrete values into 
floating numbers and then back into discrete numbers 
after manipulation is accomplished through the 
utilization of  Onwubolu’s Approach (Price et al. 2006).  
 

For the forward transformation from discrete to 
continuous numbers, the following formulation is used: 
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where 

! 

" is a small number. The values are transformed 
back into discrete numbers using: 
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x
i
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where the round function rounds the argument to the 
nearest integer.  
 
DE Strategies 
 
The most crucial and important factor in any heuristic is 
its internal manipulation routines. DE is highly effective 
due to its novel and robust internal mutation schemas 
(Price 1999). Price and Storn (2001) have described ten 
different working strategies of DE, which are usually 
dependent on the problem to be solved. Each strategy is 
dependent on three factors; the solution to be perturbed, 
number of different solutions considered for 
perturbation and the type of crossover used. The 
different strategies are given as: 
 
(1) DE/best/1/(exp/bin):  
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(2) DE/rand/1/(exp/bin): 
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(3) DE/rand-to-best/1/(exp/bin): 
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(4) DE/best/2/(exp/bin):
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The convention shown is of form DE/x/y/z, where DE 
stands for Differential Evolution, x represents the string 
denoting the solution to be perturbed, y is the number of 
different solutions to be perturbed and z is the type of 
crossover utilized. Two different types of crossover 
schemas are described; binomial (bin) and exponential 
(exp) crossover. Binomial crossover stipulates that 
crossover will occur on each of the D values in a 
solution whenever a randomly generated number 
between 0 and 1 is within the CR range. Exponential 
crossover is performed on the solution until the random 
value generated between 0 and 1 goes beyond the CR 
range.  
 
Relative Mutation Schema 
 
Since conversion is occuring between two operational 
domains, the number of infeasible solutions created will 
be significant. In order to have a larger number of valid 
solutions, it is imperative to have child repairing 
methods embedded. Three such methods are developed; 
front (FM), back (BM) and random mutation (RM).  
 
Front mutation 



 

 

 
FM utilizes the forward bias in its operation of changing 
the infeasible values in a solution. Starting from the first 
value and location one, the whole solution is scanned 
and the first occurrence of any value is regarded as 
feasible, while its second occurrence is regarded as 
infeasible.  
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Whenever a infeasible soulton is detected, a random 
value is generated which is not in the solution and 
replaces the infeasible solution.   
 
Back Mutation 
 
BM is the direct opposite of FM, where the solution is 
scanned from the end, starting at the last value.  
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                  (6) 

 
Random Mutation 
 
RM contains no bias for evaluation of the solution. A 
random array containing the indexes for the solution is 
created and this array is used to check the solution for 
repetition. Where ever a repetitive value is detected it is 
marked as infeasible.  
 
Once the solution is checked for repetition, another 
array is created which contains the index of the 
infeasible solution. Using this array, the infeasible 
solution are replaced by feasible solutions using the 
random number generator. 
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Improvement strategies 

Improvement strategies are embedded into the heuristic 
in order to improve the solution. The two improvement 
strategies are mutation and insertion. 

Mutation 
 
Mutation is the movement of two individuals from a 
solution. This is done in order to find diversity in the 
solution. Two random numbers are generated and using 
them as index, the corresponding values in the solution 
are swapped. This solution is then evaluated for its 
fitness and if improvement is shown, then this new 
solution is accepted into the population.  
 
Insertion 
 

Insertion refers to the shift of the solution. A random 
number is generated and using this number as index, the 
two opposing sides of the solutions are swapped. This 
maintains the integrity of the solution and also allows 
the solution to possibly venture into diversified region 
of solution space.   
 
Local search 

Local search technique is used to find better solutions 
from the current solution utilizing some common 
mathematical techniques. In EDE, local search is only 
initiated when the population stagnates. Stagnation is 
idealized as non-improvement of the population over a 
period of five (5) generations. The local search 
technique accepted for this research is the 2-opt local 
search.  
 
EXPERIMENT AND ANALYSIS 

The experiment phase is divided into four segments. 
The first section discusses the different strategies and 
their effectiveness in solving permutative problems. The 
second section involves the testing of this approach over 
the DDE and GA. The third section compares the 
heuristics with constructive methods and the final 
sections does extensive evaluations with the Taillard 
benchmark problem sets.  
 
Parameter Settings 
 
The initial experimentation deals with the validation and 
selection of the control variables. There are three 
different variables in DE which are usd for fine tuning 
the heuristic; F, CR and DE Strategy. The following 
section were evaluated permutatively to find the optimal 
input values: CR = {0.1, 0.3, 0.5, 0.7, 0.9}, F = {0.1, 
0.3, 0.5, 0.7, 0.9} and Strategy number = {1, 2, 3, 4, 5, 
6, 7, 8, 9, 10}. The different values were iteratively 
evaluated on the F15x25 data set. The lowest average 
value was produced by CR: 0.3 and F: 0.1. This was 
realized as the most stable parameter combination.  
 
Using the above selected values, the second phase 
composed  of selecting the best strategy. The results are 
presented in Table 1.  

Table 1: Strategy selection 
Strategy Average 
1 246.74 
2 249.32 
3 247.64 
4 247.44 
5 248 
6 247.52 
7 248.28 
8 245.8 
9 246.6 
10 246.52 

 
As observed, Strategy 8, on average performs better 
than the other strategies and was selected.  



 

 

blu 
Improvement over Discrete DE 
 
The first section outlines the improvements on the 
generic discrete DE. The results are presented in Table 
2. 
 

Table 2: EDE comparison with generic DE 
F XX DE GA ED

E 
*% 

DE - 
GA 

% 
EDE -

DE 

% 
EDE - 

GA 
5 x 10 79.4 - 78 - 101.79 - 
8 x 15 138.6 143 134 103.1 103.43 106.71 
10 x 
25 

207.6 205 194 98.74 107.01 105.67 

15 x 
25 

257.6 248 240 96.27 107.33 103.33 

20 x 
50 

474.8 468 433 98.56 109.65 108.08 

25 x 
75 

715.4 673 647 94.07 110.57 104.01 

30 x 
100 

900.4 861 809 95.62 111.29 106.42 

Ho-
Chang 

213 213 213 100 100.00 100.00 

*% formulation: a-b   

! 

% =
a

b
"100

 
 
EDE has obtained better results than both GA and DE 
on the same problem instances. When comparing EDE 
to DE, column six shows that EDE outperforms DE, 
producing better results on each and every problem 
instance. For small sized problems the increase in small, 

for medium sized problems it is around 107%, while for 
large sized problems the improvement is in excess of 
110%. These results validates that there has been a 
marked improvement from the previous DDE to the new 
EDE. The EDE has met the first objective in improving 
the DE. 

 
In addition EDE to GA, which is widely considered as a 
benchmark optimization technique. Column seven of 
Table 9 shows that EDE outperforms GA on all the 
problem instances listed, from small sized problems to 
large problems. On average EDE is around 105% to GA 
results. 

 
Comparison with Constructive Heuristics 
 
The second section outlines the comparison of this 
approach with some established constructive heuristics. 
It is the general concensious that constructive heuristics 
are generally more robust sine they are targeted 
algorithms, where as metaheurists are generic 
algorithms.  
 
Module two of the results are from the OR Library 
source, and are referenced in Ponnambalam et al (2001). 
These FSS problem instances are used by other 
researches and their finding have been published. These 
instances were evaluated in order to find the 
effectiveness of EDE compared to other algorithms 
inclusive of constructive algorithms.  
 
The results are presented in Table 3.  

 
Table 3: EDE comparison with Constructive Algorithms. 

Instance Size Constructive  
Algorithm 

GA EDE % to 
Optimal 

Car 1 11 x 5 7038 (NEH) 7036 7038 99.97 
Car 2 13 x 4 7410 (CDS) 7160 7166 99.91 
Car 3 12 x 5 7399 (GUPT) 7489 7312 101.18 
Car 4 14 x 4 8003 (NEH) 8003 8003 100.00 
Car 5 10 x 6 8190 (NEH) 7748 7720 100.36 
Car 6 8 x 9 9159 (NEH) 8501 8397 101.23 
Car 7 7 x 7 6819 (CDS) 6590 6590 100.00 
Car 8 8 x 8 8903 (CDS) 8366 8366 100.00 
Hel 2 20 x 10 146 (NEH) 145 139 104.31 

reC 01 20 x 5 1334 (NEH) 1350 1249 106.81 
reC 03 20 x 5 1136 (NEH) 1189 1111 102.25 
reC 05 20 x 5 1290 (PALM) 1307 1249 103.28 
reC 07 20 x 10 1637 (NEH) 1700 1584 103.34 
reC 09 20 x 10 1639 (CDS) 1616 1574 102.66 
reC 11 20 x 10 1597 (CDS) 1550 1464 105.87 
reC 13 20 x 15 2030 (NEH) 2120 1957 103.73 
reC 15 20 x 15 2037 (NEH) 2115 1984 102.67 
reC 17 20 x 15 2080 (RA) 2116 1957 106.28 
reC 19 30 x 10 2189 (NEH) 2349 2132 102.38 
reC 21 30 x 10 2157(NEH) 2262 2065 104.45 
reC 23 30 x 10 2233(NEH) 2218 2073 106.99 

                      NEH - Nawaz et al 1983; GUPT – Gupta 1971; PALM – Palmer 1965; CDS - Campbell et al 1970 
 



 

 

A total of twenty-one problem instances were evaluated, 
with two different types of comparisons made. Out of 
the twenty-one problem instances, EDE obtained the 
optimal values for nineteen problem instances. For the 
other two problem instances it found results close to 
99.9% to the optimal. On average EDE performed 101% 
to the optimal. 
  
Comparison with Taillard Benchmark Problem Sets 
 
The third experimentation module is referenced from 
Thaillard (1993).  These sets pf problems have been 
extensively evaluated (see Nowicki et al. 1996 and 
Reeves et al. 1998). This benchmark set contains 100 
particularly hard instances of 10 different sizes, selected 
from a large number of randomly generated problems.  
 

A maximum of ten iterations was done for each problem 
instance. The population was kept at 100, and 100 
generations were specified. The results represented in 
Table 4 are as quality solutions with the percentage 
relative increase in makespan with respect to the upper 
bound provided by Thaillard (1993). To be specific the 
formulation is given as: 

                           

! 

" avg =
H #U( ) $100

U
                    (8) 

where H denotes the value of the makespan that is 
produced by the EDE algorithm and U is the upper 
bound or the lower bound as computed. 
 
The results obtained are compared with those produced 
by GA, Particle Swarm Optimization (PSOspv) DE 
(DEspv) and DE with local search (DEspv+exchange) as in 
Tasgetiren et al. (2004). The results are tabulated in 
Table 4.  

 
Table 4: EDE comparison with DE spv and PSO over the Taillard benchmark problem sets. 

 GA PSOspv DEspv DEspv+exchange EDE 

 Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd 

20x5 3.13 1.86 1.71 1.25 2.25 1.37 0.69 0.64 0.98 0.66 

20x10 5.42 1.72 3.28 1.19 3.71 1.24 2.01 0.93 1.81 0.77 

20x20 4.22 1.31 2.84 1.15 3.03 0.98 1.85 0.87 1.75 0.57 

50x5 1.69 0.79 1.15 0.70 0.88 0.52 0.41 0.37 0.40 0.36 

50x10 5.61 1.41 4.83 1.16 4.12 1.10 2.41 0.90 3.18 0.94 

50x20 6.95 1.09 6.68 1.35 5.56 1.22 3.59 0.78 4.05 0.65 

100x5 0.81 0.39 0.59 0.34 0.44 0.29 0.21 0.21 0.41 0.29 

100x10 3.12 0.95 3.26 1.04 2.28 0.75 1.41 0.57 1.46 0.36 

100x20 6.32 0.89 7.19 0.99 6.78 1.12 3.11 0.55 3.61 0.36 

200x10 2.08 0.45 2.47 0.71 1.88 0.69 1.06 0.35 0.95 0.18 

 
 
Through the analysis of Table 4, it can be observed that 
EDE compares outstandingly with other algorithms. 
EDE basically outperforms GA, PSO and DEspv. The 
only serious competition comes from the new variant of 
DEspv+exchange. EDE and DEspv+exchange are highly 
compatible. EDE outperforms DEspv+exchange on the data 
sets of 20x10, 20x20, 50x5 and 200x5. In the remainder 
of the sets EDE performs remarkbly to the values 
reported by DEspv+exchange. On average EDE displays 
better standard deviation than that of DEspv+exchange. This 
validates the consistancy of EDE compared to 
DEspv+exchange.   
                            
CONCLUSION 
 
The new enhanced variant of differential evolution 
(EDE) algorithm has been proposed and found effective 
in solving a range of difficult flow shop scheduling 

problems. The different experimentations have validated 
the effectiveness of EDE.  
 
EDE has shown marked impovement over the DDE 
approach, and has performed outstandingly against the 
constructive algorithms. The final validation has been 
done by extensive evaluation with Taillard problem sets 
and has been found to perform comparatively with other 
new emerging algorithms such as GA, PSOspv, DEspv 
and DEspv+exchange. 
 
EDE is shown as a versatile and robust new algorithm 
which has improved and enhanced the basic principles 
of DE. The new enhancement routines that have been 
embedded into DE have proven effective in enhancing 
the performance of DE in the scheduling problem of 
Flow Shop. 
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