

Flow shop scheduling using enhanced differential evolution algorithm

Donald Davendra Godfrey Onwubolu
Faculty of Applied Informatics School of Engineering and Physics

Tomas Bata University University of the South Pacific
Zlin, Czech Republic Suva, Fiji Islands
davendra@fai.utb.cz onwubolu_g@usp.ac.fj

KEYWORDS
Flow shop scheduling, differential evolution, heuristics.

ABSTRACT

This paper presents a new approach of differential
evolution to scheduling optimization problem. The
developed approach is viewed as an enhanced varient of
differential evolution, incorporation new child
correction schemas and coversion schemas from
differential to discrete domain. The heuristic is
extensively evaluated with the scheduling problem of
flow shop and compared with published results.

INTRODUCTION

Metaheuristics are the common tool utilized to solve
complex manufacturing problems. The advantage of this
process is the production of viable results within the
given constraints and resources. Flow shop scheduling
(FSS) can be considered as one of the common
manufacturing problems that is regurarly realized using
optimization techniques. The evolution of optimization
techniques has been mainly attributed to the increase in
complexity of problems encountered. Two branches of
heuristics exist: constructive and improvement
(Onwubolu and Mutingi 1999). Constructive methods
are usually problem dependent (Cambell et al. 1970,
Nawaz et al. 1983). Improvement methods are those
involving population-based heuristics which usually
follow a naturally occurring paradigm. Some of these
are genetic algorithms (GA), tabu search (TS), neural
networks (NN), simulated annealing (SA) and particle
swamp optimization (PSO) among others.

Differential evolution (DE) algorithm was introduced by
Price and Storn (1999). Since then, due to its
effectiveness, a lot of advanced work (see Onwubolu
and Babu 2004; Lampinen and Storn 2004 and
Lempinen and Zelinka 1999) have been conducted in
order to realize the full potential of this viable approach.

In its canonical form, DE is designed to solve
differential problems, which involve continuous values;
that is, there is no discriminating feature in DE between
values within a solution. This approach is effective;
however a lot of problems involve solutions which are
permutative, such as FSS. To achieve the desired
heuristic, certain modifications have to be undertaken to
change the operational domain of DE from continuous

to discrete. Initial work has been done by Onwubolu and
Davendra (2006), to transform the operational domain,
however to improve the solutions further, enhancements
were required. This varient was termed Discrete
Differential Evolution (DDE).

This paper covers the work done to DDE to enhance it
to enhanced differential evolution (EDE) algorithm, and
its application to multiple FSS problems, in order to
show its effectiveness over a wider range of FSS
problems.

FLOW SHOP SCHEDULING

In many manufacturing and assembly facilities a
number of operations have to be done on every job.
Often, these operations have to be done on all jobs in
the same order, which implies that the jobs have to
follow the same route. The machines are assumed to be
set up and the environment is referred to as flow shop
(Pinedo 1995). The flow shop can be formatted
generally by the sequencing on n jobs on m machines
under the precedence condition. The general constraints
that are assessed for a flow shop system is the time
required to finish all jobs or makespan, minimizing of
average flow time, and the maximizing the number of
tardy jobs.

The minimization of completion time for a flow shop
schedule is equivalent to minimizing the objective
function

!

" = Cm, j

j=1

n

(1)

where

!

Cm, j
 is the completion time of job j. To calculate

!

Cm, j

the recursive procedure is followed for any

!

i
th machine

!

j
th job as follows:

!

Cm, j =max Ci"1, j ,Ci, j"1() + Pi, j (2)

where

!

Ci, j = k (any given value) and

!

Ci, j = C
1,k;Ci, j = Ck,1

k=1

i

"
k=1

j

" which represents i as the

machine number, j as the job in the sequence and

!

pi, j
as the processing time of job j on machine i.

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

ENHANCED DIFFERENTIAL EVOLUTION
ALGORITHM

EDE is an extension of DE and DDE, and possesses the
same novel approach that has made DE such a robust
heuristic. EDE in addition to being an extension of DE,
in regards to the inclusion of discrete optimization, is
also an enhancement of DE. Enhancement is only
archeived through the implementation of routines which
improve the solution quality. The outline of EDE is
given in Figure 1.

• Initial Phase
1. Population Generation: An initial

number of discrete trial solutions are
generated for the initial population.

• Conversion
2. Discrete to Floating Conversion: This

conversion scheme transforms the
parent solution into the required
continuous solution.

3. DE Strategy: The DE strategy
transforms the parent solution into the
child solution using its inbuilt
crossover and mutation schemas.

4. Floating to Discrete Conversion: This
conversion schema transforms the
continuous child solution into a
discrete solution.

• Mutation
5. Relative Mutation Schema:

Formulates the child solution into the
discrete solution of unique values.

• Improvement Strategy
6. Mutation: Standard mutation is

applied to obtain a better solution.
7. Insertion: Uses a two-point cascade to

obtain a better solution.
8. Repeat: Execute steps 2-7 until

reaching a specified cutoff limit on
the total number of iterations.

• Local Search
9. Local Search: Is initiated if stagnation

occurs
Figure 1: EDE conceptual outline.

Population generation

The population for EDE is constructed using a random
number generator. The solution is discrete and reflects
the problem structure. This is unique to the incumbent
process of having a differential population.

Discrete to floating and floating to discrete
conversion

The approach for the conversion of discrete values into
floating numbers and then back into discrete numbers
after manipulation is accomplished through the
utilization of Onwubolu’s Approach (Price et al. 2006).

For the forward transformation from discrete to
continuous numbers, the following formulation is used:

!

" x
i
= #1+ x

i
$ 1#%() (3)

where

!

" is a small number. The values are transformed
back into discrete numbers using:

!

x
i
= round 1+ " x

i() # 2 $%()[] (4)

where the round function rounds the argument to the
nearest integer.

DE Strategies

The most crucial and important factor in any heuristic is
its internal manipulation routines. DE is highly effective
due to its novel and robust internal mutation schemas
(Price 1999). Price and Storn (2001) have described ten
different working strategies of DE, which are usually
dependent on the problem to be solved. Each strategy is
dependent on three factors; the solution to be perturbed,
number of different solutions considered for
perturbation and the type of crossover used. The
different strategies are given as:

(1) DE/best/1/(exp/bin):

!

u
i
= x

best
+ F " x

r1
x

r2()
(2) DE/rand/1/(exp/bin):

!

u
i
= x

r1
+ F " x

r2
x

r3()
(3) DE/rand-to-best/1/(exp/bin):

!

u
i
= x

i
+ F " x

best
x

i() + F " x
r1
x

r2()
(4) DE/best/2/(exp/bin):

!

u
i
= x

best
+ F " x

r1
x

r2
x

r3
x

r4()
(5) DE/rand/2/(exp/bin):

!

u
i
= x

r5
+ F " x

r1
x

r2
x

r3
x

r4()

The convention shown is of form DE/x/y/z, where DE
stands for Differential Evolution, x represents the string
denoting the solution to be perturbed, y is the number of
different solutions to be perturbed and z is the type of
crossover utilized. Two different types of crossover
schemas are described; binomial (bin) and exponential
(exp) crossover. Binomial crossover stipulates that
crossover will occur on each of the D values in a
solution whenever a randomly generated number
between 0 and 1 is within the CR range. Exponential
crossover is performed on the solution until the random
value generated between 0 and 1 goes beyond the CR
range.

Relative Mutation Schema

Since conversion is occuring between two operational
domains, the number of infeasible solutions created will
be significant. In order to have a larger number of valid
solutions, it is imperative to have child repairing
methods embedded. Three such methods are developed;
front (FM), back (BM) and random mutation (RM).

Front mutation

FM utilizes the forward bias in its operation of changing
the infeasible values in a solution. Starting from the first
value and location one, the whole solution is scanned
and the first occurrence of any value is regarded as
feasible, while its second occurrence is regarded as
infeasible.

!

u j,i =
u j,i if u j ,i " u

1,i,...,u j#1,i{ }
˜ u j,i if u j ,i " u

1,i,...,u j#1,i{ }

$

%
&

' &

 (5)

Whenever a infeasible soulton is detected, a random
value is generated which is not in the solution and
replaces the infeasible solution.

Back Mutation

BM is the direct opposite of FM, where the solution is
scanned from the end, starting at the last value.

!

u j,i =
u j,i if u j ,i " u j +1,i,...,uD,i{ }
˜ u j,i if u j ,i " u j +1,i,...,uD,i{ }

$
%

& %

 (6)

Random Mutation

RM contains no bias for evaluation of the solution. A
random array containing the indexes for the solution is
created and this array is used to check the solution for
repetition. Where ever a repetitive value is detected it is
marked as infeasible.

Once the solution is checked for repetition, another
array is created which contains the index of the
infeasible solution. Using this array, the infeasible
solution are replaced by feasible solutions using the
random number generator.

!

A = y
1
,y

2
,y

3
,....yD{ }

where y
1

=
rnd 1,D[]

if y
1
" y

1
,...,y j#1{ }

$
%
&

' &

 (7)

!

u j,i =
uy j ,i if uy j ,i " uy j ,i,...,uy j#1 ,i{ }
˜ u y j ,i if uy j ,i

" uy j ,i,...,uy j#1 ,i{ }

$

%
&

' &

 (8)

Improvement strategies

Improvement strategies are embedded into the heuristic
in order to improve the solution. The two improvement
strategies are mutation and insertion.

Mutation

Mutation is the movement of two individuals from a
solution. This is done in order to find diversity in the
solution. Two random numbers are generated and using
them as index, the corresponding values in the solution
are swapped. This solution is then evaluated for its
fitness and if improvement is shown, then this new
solution is accepted into the population.

Insertion

Insertion refers to the shift of the solution. A random
number is generated and using this number as index, the
two opposing sides of the solutions are swapped. This
maintains the integrity of the solution and also allows
the solution to possibly venture into diversified region
of solution space.

Local search

Local search technique is used to find better solutions
from the current solution utilizing some common
mathematical techniques. In EDE, local search is only
initiated when the population stagnates. Stagnation is
idealized as non-improvement of the population over a
period of five (5) generations. The local search
technique accepted for this research is the 2-opt local
search.

EXPERIMENT AND ANALYSIS

The experiment phase is divided into four segments.
The first section discusses the different strategies and
their effectiveness in solving permutative problems. The
second section involves the testing of this approach over
the DDE and GA. The third section compares the
heuristics with constructive methods and the final
sections does extensive evaluations with the Taillard
benchmark problem sets.

Parameter Settings

The initial experimentation deals with the validation and
selection of the control variables. There are three
different variables in DE which are usd for fine tuning
the heuristic; F, CR and DE Strategy. The following
section were evaluated permutatively to find the optimal
input values: CR = {0.1, 0.3, 0.5, 0.7, 0.9}, F = {0.1,
0.3, 0.5, 0.7, 0.9} and Strategy number = {1, 2, 3, 4, 5,
6, 7, 8, 9, 10}. The different values were iteratively
evaluated on the F15x25 data set. The lowest average
value was produced by CR: 0.3 and F: 0.1. This was
realized as the most stable parameter combination.

Using the above selected values, the second phase
composed of selecting the best strategy. The results are
presented in Table 1.

Table 1: Strategy selection
Strategy Average
1 246.74
2 249.32
3 247.64
4 247.44
5 248
6 247.52
7 248.28
8 245.8
9 246.6
10 246.52

As observed, Strategy 8, on average performs better
than the other strategies and was selected.

blu
Improvement over Discrete DE

The first section outlines the improvements on the
generic discrete DE. The results are presented in Table
2.

Table 2: EDE comparison with generic DE
F XX DE GA ED

E
*%

DE -
GA

%
EDE -

DE

%
EDE -

GA
5 x 10 79.4 - 78 - 101.79 -
8 x 15 138.6 143 134 103.1 103.43 106.71
10 x
25

207.6 205 194 98.74 107.01 105.67

15 x
25

257.6 248 240 96.27 107.33 103.33

20 x
50

474.8 468 433 98.56 109.65 108.08

25 x
75

715.4 673 647 94.07 110.57 104.01

30 x
100

900.4 861 809 95.62 111.29 106.42

Ho-
Chang

213 213 213 100 100.00 100.00

*% formulation: a-b

!

% =
a

b
"100

EDE has obtained better results than both GA and DE
on the same problem instances. When comparing EDE
to DE, column six shows that EDE outperforms DE,
producing better results on each and every problem
instance. For small sized problems the increase in small,

for medium sized problems it is around 107%, while for
large sized problems the improvement is in excess of
110%. These results validates that there has been a
marked improvement from the previous DDE to the new
EDE. The EDE has met the first objective in improving
the DE.

In addition EDE to GA, which is widely considered as a
benchmark optimization technique. Column seven of
Table 9 shows that EDE outperforms GA on all the
problem instances listed, from small sized problems to
large problems. On average EDE is around 105% to GA
results.

Comparison with Constructive Heuristics

The second section outlines the comparison of this
approach with some established constructive heuristics.
It is the general concensious that constructive heuristics
are generally more robust sine they are targeted
algorithms, where as metaheurists are generic
algorithms.

Module two of the results are from the OR Library
source, and are referenced in Ponnambalam et al (2001).
These FSS problem instances are used by other
researches and their finding have been published. These
instances were evaluated in order to find the
effectiveness of EDE compared to other algorithms
inclusive of constructive algorithms.

The results are presented in Table 3.

Table 3: EDE comparison with Constructive Algorithms.

Instance Size Constructive
Algorithm

GA EDE % to
Optimal

Car 1 11 x 5 7038 (NEH) 7036 7038 99.97
Car 2 13 x 4 7410 (CDS) 7160 7166 99.91
Car 3 12 x 5 7399 (GUPT) 7489 7312 101.18
Car 4 14 x 4 8003 (NEH) 8003 8003 100.00
Car 5 10 x 6 8190 (NEH) 7748 7720 100.36
Car 6 8 x 9 9159 (NEH) 8501 8397 101.23
Car 7 7 x 7 6819 (CDS) 6590 6590 100.00
Car 8 8 x 8 8903 (CDS) 8366 8366 100.00
Hel 2 20 x 10 146 (NEH) 145 139 104.31

reC 01 20 x 5 1334 (NEH) 1350 1249 106.81
reC 03 20 x 5 1136 (NEH) 1189 1111 102.25
reC 05 20 x 5 1290 (PALM) 1307 1249 103.28
reC 07 20 x 10 1637 (NEH) 1700 1584 103.34
reC 09 20 x 10 1639 (CDS) 1616 1574 102.66
reC 11 20 x 10 1597 (CDS) 1550 1464 105.87
reC 13 20 x 15 2030 (NEH) 2120 1957 103.73
reC 15 20 x 15 2037 (NEH) 2115 1984 102.67
reC 17 20 x 15 2080 (RA) 2116 1957 106.28
reC 19 30 x 10 2189 (NEH) 2349 2132 102.38
reC 21 30 x 10 2157(NEH) 2262 2065 104.45
reC 23 30 x 10 2233(NEH) 2218 2073 106.99

 NEH - Nawaz et al 1983; GUPT – Gupta 1971; PALM – Palmer 1965; CDS - Campbell et al 1970

A total of twenty-one problem instances were evaluated,
with two different types of comparisons made. Out of
the twenty-one problem instances, EDE obtained the
optimal values for nineteen problem instances. For the
other two problem instances it found results close to
99.9% to the optimal. On average EDE performed 101%
to the optimal.

Comparison with Taillard Benchmark Problem Sets

The third experimentation module is referenced from
Thaillard (1993). These sets pf problems have been
extensively evaluated (see Nowicki et al. 1996 and
Reeves et al. 1998). This benchmark set contains 100
particularly hard instances of 10 different sizes, selected
from a large number of randomly generated problems.

A maximum of ten iterations was done for each problem
instance. The population was kept at 100, and 100
generations were specified. The results represented in
Table 4 are as quality solutions with the percentage
relative increase in makespan with respect to the upper
bound provided by Thaillard (1993). To be specific the
formulation is given as:

!

" avg =
H #U() $100

U
 (8)

where H denotes the value of the makespan that is
produced by the EDE algorithm and U is the upper
bound or the lower bound as computed.

The results obtained are compared with those produced
by GA, Particle Swarm Optimization (PSOspv) DE
(DEspv) and DE with local search (DEspv+exchange) as in
Tasgetiren et al. (2004). The results are tabulated in
Table 4.

Table 4: EDE comparison with DE spv and PSO over the Taillard benchmark problem sets.

 GA PSOspv DEspv DEspv+exchange EDE

 Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 3.13 1.86 1.71 1.25 2.25 1.37 0.69 0.64 0.98 0.66

20x10 5.42 1.72 3.28 1.19 3.71 1.24 2.01 0.93 1.81 0.77

20x20 4.22 1.31 2.84 1.15 3.03 0.98 1.85 0.87 1.75 0.57

50x5 1.69 0.79 1.15 0.70 0.88 0.52 0.41 0.37 0.40 0.36

50x10 5.61 1.41 4.83 1.16 4.12 1.10 2.41 0.90 3.18 0.94

50x20 6.95 1.09 6.68 1.35 5.56 1.22 3.59 0.78 4.05 0.65

100x5 0.81 0.39 0.59 0.34 0.44 0.29 0.21 0.21 0.41 0.29

100x10 3.12 0.95 3.26 1.04 2.28 0.75 1.41 0.57 1.46 0.36

100x20 6.32 0.89 7.19 0.99 6.78 1.12 3.11 0.55 3.61 0.36

200x10 2.08 0.45 2.47 0.71 1.88 0.69 1.06 0.35 0.95 0.18

Through the analysis of Table 4, it can be observed that
EDE compares outstandingly with other algorithms.
EDE basically outperforms GA, PSO and DEspv. The
only serious competition comes from the new variant of
DEspv+exchange. EDE and DEspv+exchange are highly
compatible. EDE outperforms DEspv+exchange on the data
sets of 20x10, 20x20, 50x5 and 200x5. In the remainder
of the sets EDE performs remarkbly to the values
reported by DEspv+exchange. On average EDE displays
better standard deviation than that of DEspv+exchange. This
validates the consistancy of EDE compared to
DEspv+exchange.

CONCLUSION

The new enhanced variant of differential evolution
(EDE) algorithm has been proposed and found effective
in solving a range of difficult flow shop scheduling

problems. The different experimentations have validated
the effectiveness of EDE.

EDE has shown marked impovement over the DDE
approach, and has performed outstandingly against the
constructive algorithms. The final validation has been
done by extensive evaluation with Taillard problem sets
and has been found to perform comparatively with other
new emerging algorithms such as GA, PSOspv, DEspv
and DEspv+exchange.

EDE is shown as a versatile and robust new algorithm
which has improved and enhanced the basic principles
of DE. The new enhancement routines that have been
embedded into DE have proven effective in enhancing
the performance of DE in the scheduling problem of
Flow Shop.

REFERENCES

Campbell, H. G., Durek, R.A., and Smith, M.L. 1970. “A
heuristic algorithm for the n job m machine sequencing
problem”, Management Science, 16, (B) 630-637.

Goldberg, D., E. 1989. “Genetic Algorithms in Search,

Optimization, and Machine Learning”, Addison-
Wesley Publishing Company, Inc.

Lampinen, J. and Storn, R. 2004. “Differential Evolution”, In:
New Optimization Techniques in Engineering, Onwubolu,
G., Babu, B., (Eds.), Springer Verlag, Germany, 123-163.

Lampinen, J. and Zelinka, I. 1999. “Mechanical engineering

design optimization by Differential evolution”, In New
Ideas in Optimization, : Corne, D., Dorigo, M. and Glover
(Eds.), McGraw Hill International, UK, 127-146.

Nawaz, M., Enscore, E. E. Jr, and Ham, I., 1983. “A heuristic

algorithm for the m-machine, n-job flow-shop sequencing
problem”, OMEGA International Journal of Management
Science 11, 91-95.

Nowicki, E., Smutnicki, C. 1996. “A fast tabu search

algorithm for the permutative flow shop problem”.
European Journal of Operations Research, 91, 160-175

Onwubolu, G. C. and Mutingi, M. 1999. “Genetic algorithm

for minimizing tardiness in flow-shop scheduling”,
Production Planning and Control 10 (5) 462-471.

Onwubolu, G. C. 2001. “Optimization using Differential

Evolution Algorithm”, Technical Report TR-2001-05,
IAS, October 2001.

Onwubolu G. C. 2002. Emerging Optimization Techniques in

Production Planning and Control. Imperial Collage Press,
London.

Onwubolu, G. C. 2004. “Optimizing CNC Drilling Machine

Operations: Traveling Salesman Problem-Differential
Evolution Approach”. In: New Optimization Techniques in
Engineering, Onwubolu, G., Babu, B., (Eds.), Springer
Verlag, Germany, 537-564.

Onwubolu, G. C. and Davendra, D. 2006. “Scheduling flow

shops using differential evolution algorithm”. European
Journal of Operations Research. 171, 674-679.

OR Library: http://mscmga.ms.ic.ac.uk/info.html

Pinedo, M. 1995. Scheduling: theory, algorithms and systems,

Prentice Hall, Inc., New Jersey.

Ponnambalam, S. G., Aravindan, P. and Chandrasekhar, S.

2001. “Constructive and improvement flow shop

scheduling heuristic: an extensive evaluation”, Production
Planning and Control 12, 335-344.

Price, K. 1999. “An introduction to differential evolution”. In:

New Ideas in Optimization, Corne, D., Dorigo, M., and
Glover (Eds.), McGraw Hill International, UK, 79-108.

Price, K,. Storn, R. and Lampinen, R. 2006. Differential

Evolution: A practical approach to global optimization.
Springer Verlag, Germany.

Reeves, C. and Yamada, T. 1998. “Genetic Algorithms, path

relinking and flowshop sequencing problem”.
Evolutionary Computation 6, 45-60.

Taillard, E. 1993. “Benchmarks for basic scheduling

problems”. European Journal of Operations Research, 64,
278-285.

Tasgetiren, M. F., Sevkli, M. Liang, Y-C., and Gencyilmaz, G.

2004. “Particle swamp optimization algorithm for
permutative flowshops sequencing problems”, 4th
International Workshops on Ant Algorithms and Swamp
Intelligence, ANTS2004, LNCS 3127, Brussel, Belgium.
(Sept) 5-8, 389-390.

Tasgetiren, M. F., Liang, Y-C., Sevkli, M. and Gencyilmaz, G.

2004. “Differential Evolution Algorithm for Permutative
Flowshops Sequencing Problem with Makespan
Criterion:, 4th International Symposium on Intelligent
Manufacturing Systems, IMS2004, Sakaraya, Turkey.
(Sept) 5-8, 442-452.

DONALD D. DAVENDRA is a Master of Science

graduate in Optimization Techniques
from the University of the South Pacific,
Fiji Islands. Currently he is a doctoral
candidate in Technical Cyberrnatics at
the Tomas Bata University in Zlin,
Czech Republic. His email address is
davendra@fai.utb.cz

GODFREY C. ONWUBOLU is the Professor, Chair

and Head of Engineering at the
University of South Pacific. He is the
author of three books in optimization
techniques and mechatronics. His
research interests are in optimization,
intelligent manufacturing and
mechatronics. His email address

onwubolu_g@usp.ac.fj

