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ABSTRACT 

In the oceanic context, the aim of Target Motion 

Analysis (TMA) is to estimate the state, i.e. location, 

bearing and velocity, of a sound-emitting object. These 

estimates are based on a series of passive measures of 

both the angle and the distance between an observer 

and the source of sound, which is called the target. 

These measurements are corrupted by noise and false 

readings, which are perceived as outliers. 

 

Usually, sequences of measurements are taken and 

statistical methods, like the Least Squares method or 

the Annealing M-Estimator, are applied to estimate the 

target's state by minimising the residual in range and 

bearing for a series of measurements.  

 

In this project, an ACO-Estimator, a novel hybrid 

optimisation algorithm based on Computational 

Intelligence, has been developed and applied to the 

TMA problem and its effectiveness was compared with 

standard estimators. It was shown that the new 

algorithm outperforms conventional estimators by 

successfully removing outliers from the measurements.  

 

INTRODUCTION 

The aim of Target Motion Analysis (TMA) in the 

maritime context is to predict the state, i.e. location, 

bearing and velocity, of a signal-emitting object, also 

known as the target, based on previous observations 

(Hassab et al., 1981).  

 

The observer receives signals that are emitted from the 

target where the time of emission is not known. The 

range R and the bearing   of the target are usually 

determined by measuring differences in arrival time of 

short-duration acoustic emissions along the paths R1, R 

and R2 of a target T using hydrophones that are 

mounted at some distance D on a cable towed by an 

observer platform (Figure 1). 
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Figure 1 - Typical scenario for the Target Motion 

Analysis problem. 

In a real application, the time delay measurements are 

disturbed by noise, caused, for example, by the cross-

correlation function used for finding a common signal 

in a pair of sensors or by the environment  

(Carevic, 2003). The time delay error distribution 

function is a non-Gaussian one. Another source of 

errors is false readings or clutter. This clutter is usually 

assumed to be uniformly distributed over an area A and 

to follow a Poisson probability density function.  

Figure 2 shows a typical scenario for the TMA 

problem. An observer and a target are moving with 

constant speed and the target is detected at unequally 

spaced time instances by the observer. 
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Figure 2 - Typical scenario for the Target Motion 

Analysis problem. 
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Figure 3 shows the noisy measurements and clutter for 

the same scenario. Both types of errors introduce 

additional complexity to the target state estimation 

problem.  
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Figure 3 – Noisy measurements and clutter for scenario 

given in Figure 2. 

Usually, the measurements are taken and statistical 

methods are applied to estimate the targets' state. In 

recent research, it was shown that for the TMA 

problem with range and bearing measurements an 

Annealing M-Estimator (Li, 1996) outperforms 

traditional methods in highly cluttered environments 

(Carevic, 2003). This type of estimator reduces the 

influence of outliers by applying a weighting function 

to the measurements. Obviously, better results could be 

achieved if the clutter, i.e. the outliers, were not used at 

all in the estimation process.  

 

The aim of this research was to develop an intelligent 

estimator that has the ability to decide whether or not a 

particular measurement is clutter. The new estimator 

developed is referred to as ACO-Estimator. 

 

ACO-ESTIMATOR 

The ACO-Estimator is based on Ant Colony 

Optimisation (ACO) (Dorigo and De Caro, 1999). 

ACO refers to a class of discrete optimisation 

algorithms, i.e. a Computational Intelligence (CI) 

meta-heuristic, which is modelled on the collective 

behaviour of ant colonies.  

 

The main principle of ACO is that a colony of artificial 

ants builds probability distributions for each input 

parameter of a system to be optimised. Initially, every 

possible choice for each of the input variables is set to 

a very low probability, which is the equivalent  

of the pheromone level in the real world  

(Dorigo and De Caro, 1999). Each individual ant then 

chooses one value for each input parameter, i.e. builds 

up a candidate solution, called a trail vector, based on 

the probability distributions of the input values. 

Depending on the quality of the resulting candidate 

solution, the probability values of the chosen input 

values are updated. The whole process is repeated in 

iterations called time steps until a suitable solution is 

found or the algorithm has converged, i.e. has reached 

a stable set of probability distributions. 

 

For the ACO-Estimator, each measurement in a set is 

an input, which can either have the state ‘included’ or 

‘excluded’, i.e. ‘on’ or ‘off’. Artificial ants ‘travel’ 

through the state space, choosing their paths based on 

the associated pheromone levels. Based on the 

achieved fitness, which is related to the mean residuals 

achieved using local search and the Least Squares (LS) 

method, the pheromone levels, i.e. probabilities, are 

adjusted. Figure 4 shows the flowchart of the ACO-

Estimator. 
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Figure 4  – Flowchart of the ACO-Estimator. 



EXPERIMENTS 

Two of the four tracking scenarios proposed by 

Carevic (2003) have been used in this work: scenario 1 

and scenario 4.  

 

For both scenarios, datasets with seven different mean 

percentages of clutter (MPC) have been generated. The 

MPC was varied from 0% to 60% in order to cover the 

whole range up to 50%, which is the theoretical 

breakdown point for robust estimators  

(Rousseeuw and Leroy, 1987). For each MPC, 100 sets 

were generated resulting in a total of 1,400 data sets, 

i.e. experiments. The Mean Trajectory Distances 

(MTDs) were used as the fitness function. Because the 

TMA problem is a semi real-time application, the 

maximum number of fitness evaluations was limited to 

200,000 for each of the experiments 

 

The new estimator was compared with three standard 

estimators, the LS estimator, the Iteratively Re-

weighted Least Squares estimator (IRLS)  

(Hong and Chen, 2005), and the Annealing M-

Estimator (AM) (Li, 1996). 

  

For each of the 100 simulations in an MPC sets, the 

average mean trajectory distance (MMTD) for that 

group and their standard deviations (STD) were 

calculated. 

 

Figure 5 shows a graphical representation of the results 

for the MMTDs obtained from the experiments for 

tracking scenario 1, Figure 6 shows the MMTDs for 

tracking scenario 4. Figure 7 and Figure 8 present 

graphical representations of the achieved STDs of the 

MMTDs. 
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Figure 5 - Average Mean Trajectory Distance 

(MMTD) for scenario 1. 
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Figure 6 - Average Mean Trajectory Distance 

(MMTD) for scenario 4. 
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Figure 7 - Standard deviation of average Mean 

Trajectory Distance (MMTD) for scenario 1. 
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Figure 8 - Standard deviation of average Mean 

Trajectory Distance (MMTD) for scenario 4. 

 

 

 

 



DISCUSSION 

As it can be seen from Figure 5 and Figure 6, for both 

tracking scenarios the three conventional estimators 

showed very similar performances, although the  

AM-Estimator performed slightly better. This is in 

agreement with the findings reported by Carevic 

(2003).   

 

Table 1 shows the average improvements in terms of 

MMTD achieved using the ACO-Estimator. It can be 

seen that the overall improvement is 46.3% for 

scenario 1 and 43.1% for scenario 4. Therefore, the 

new ACO-Estimator outperformed all of the other 

estimators used in terms of MMTD.  

 

Average Improvement of MMTD 

for ACO-Estimator 
 

Scenario 1 [%] Scenario 4 [%] 

LS 47.7 44.4 

IRLS 46.4 42.6 

AM 44.9 42.3 

Table 1 - Average improvement of MMTD. 

However, in terms of STD, the performance of the 

ACO-Estimator was worse for both tracking scenarios 

(Table 2).  

 

Average Improvement of STD for 

ACO-Estimator  

Scenario 1 [%] Scenario 4 [%] 

LS -48.9 -43.3 

IRLS -57.6 -51.5 

AM -57.6 -48.0 

Table 2 - Average improvement of STD. 

The ACO-Estimator had problems with full converge 

within the time available for the estimations, especially 

when the amount of MPC was high (Figure 7 and 

Figure 8).  Figure 9 shows a typical run of the 

algorithm without time limitations.  
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Figure 9 - Typical search run without time limitations. 

As it can be seen, the algorithm converges after 

approximately 24 time steps, whereas the algorithm 

usually carried out 11 time steps in the experiments 

before the time available elapsed.  

 

CONCLUSION 

The main aim of this research project was to develop a 

new robust estimation method that has the ability to 

solve the linear array-based TMA problem. This has 

been achieved by developing a new ACO-based 

estimation algorithm, which was implemented and 

successfully applied to the TMA problem. Based on 

the statistical analysis of the results obtained from the 

experiments, it was concluded that the new algorithm 

outperforms conventional estimators by successfully 

removing outliers from the measurements. 
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