Analysis of a production-inventory system with
unreliable production facility

Katrien Ramaekers and Gerrit K. Janssens
Transportation Research Institute
Hasselt University - Campus Diepenbeek
Wetenschapspark 5 bus 6
B-3590 Diepenbeek, Belgium
e-mail:{katrien.ramaekers,gerrit.janssens } Quhasselt.be

KEYWORDS

production-inventory system, simulation model, lim-
ited information on demand, robustness

ABSTRACT

This paper tests the robustness of analytical results
on performance measures for a production-inventory
system with an unreliable production facility. A ba-
sic model is considered which involves a single produc-
tion machine with constant production rate which op-
erates as long as the accumulated inventory is below a
pre-set threshold, and is idle otherwise. The demand
process follows a compound Poisson distribution and
the operating time of a machine until failure as well as
the repair time of a failed machine are assumed to be
exponentially distributed. A demand that cannot be
fully satisfied from existing inventory takes whatever
is available and the rest of the demand is lost. Ana-
lytical results exist only for the special case where the
order sizes are exponentially distributed. In this paper,
a simulation model is built to obtain performance mea-
sures for the same production-inventory system facing
other demand processes. These results are used to test
the robustness of the analytical results to changes in
the demand process.

I. INTRODUCTION

Production-inventory models link the production
process to the demand process to ensure that short-
ages are kept at a low level and no excessive inventory
is built up. The models vary in terms of the character-
istics of the production process, the demand pattern,
the customer response to shortages and the inventory
review procedures.

In this paper, the production system is considered
to be imperfect: machines can fail resulting in dis-
rupted production plans, reduced inventory and short-
ages. Posner and Berg (1989) derived an explicit closed
form solution for the steady state distribution of the
inventory level and used this result to compute system
performance indices of interest related to service level
to customers and machine utilization. They consider
a basic model which involves only one production ma-
chine with constant production rate which operates as
long as the accumulated inventory is below a pre-set
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threshold, and is idle otherwise. The demand process
is compound Poisson and the operating time of a ma-
chine until failure as well as the repair time of a failed
machine are assumed to be exponentially distributed.
A demand that cannot be fully satisfied from existing
inventory takes whatever is available and the rest of the
demand is lost.

When dealing with slow moving products or products
recently introduced to the market, there is not sufficient
data to decide on the functional form of the demand
distribution function and it is realistic to assume the
demand distribution is incompletely known. Limited
but not full information might exist, like the range of
the demand, the expected value and its variance. We
assume the same mean and standard deviation for de-
mand can be obtained by various patterns regarding
demand frequency and size.

Posner and Berg (1989) assume a compound Poisson
demand process with exponentially distributed order
sizes. We test the robustness of their results to changes
in the demand process. However, these changes will
be chosen in such a way that they do not result in a
different mean or standard deviation of the demand dis-
tribution. Unfortunately no closed-form formulas exist
when the order size does not follow an exponential dis-
tribution. Therefore, simulation models have to be used
to determine performance measures of these systems.

II. THE PRODUCTION-INVENTORY MODEL

In this section, the production-inventory system that
is used by Posner and Berg (1989) is discussed in more
detail.

A. Definitions and assumptions

Following assumptions are made:

o Production is continuous. No individual parts can be
identified.

o Production speed is, without loss of generality, as-
sumed to be equal to 1. This means that the machine
outputs 1 unit of product per time unit.

e Production is halted whenever the inventory level
reaches M, and is resumed when the next order arrives.
o The operating time until failure is exponentially dis-
tributed. The average failure rate of the machine is the



inverse of the mean time to failure (MTTF).
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o The repair time of each machine is exponentially dis-
tributed. The average repair rate of the machine is the
inverse of the mean time to repair (MTTR).
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e The demand process is compound Poisson. Orders
arrive according to a Poisson process with rate A and
order sizes are i.i.d. random variates exponentially dis-
tributed with mean p~'. Demand that cannot be sat-
isfied, is lost.
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B. Single machine model

Posner and Berg (1989) study a simple system of a
single machine which outputs into an inventory. Using
the generalized technique of the 'system point’ in level-
crossings analysis (Brill and Posner, 1977; Brill and
Posner, 1981), Posner and Berg derive an analytical
formula from which a number of performance measures
can be calculated.

The availability of the machine (fraction of time the
machine is engaged in active production), is equal to
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The fraction of time the machine is down due to fail-
ures is equal to 1 — A — . The machine shutdown rate
due to overstocking is equal to Ay = a(l —r). The
demand rate is equal to A\/u. The production rate is 1,
therefore the overall effective production rate is equal
to A. The fraction of loss due to shortages therefore is
equal to A/u — A. The fraction of demand satisfied is
equal to /\Aﬁ. The machine failure rate is equal to 9 A.
The average inventory is equal to

A=a (1 — e P2M)
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The unknowns in these equations can be calculated
from the following equations:
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III. SIMULATION APPROACH

Because no closed-form formulas exist when the or-
der size does not follow an exponential distribution,
simulation models have to be used to determine perfor-
mance measures of these systems. However, simulation
results can be difficult to interpret. Each simulation
run leads to an estimate of the model’s characteristics
and, as a result, these estimates can differ from the cor-
responding true characteristics of the model. Appropri-
ate statistical techniques must be used to analyze and
interpret the simulation experiments. Two main issues
will be discussed: output data analysis and common
random numbers.

A. Output data analysis

As mentioned before, a single run of a simulation
model can lead to serious errors and poor decisions. In
order to obtain a point estimate and confidence inter-
val for a simulation output, several runs of the simula-
tion model using different random numbers are needed.
Several methods exist to estimate the outputs confi-
dence intervals. The method we use in this paper is
the replication/deletion approach because it is a sim-
ple approach that gives good statistical performance
(Law, 2007). It can easily be used to estimate several
different parameters for the same simulation model and
to compare different system configurations.

To validate the simulation model we built, the ana-
lytical results of Posner and Berg (1989) are compared
to the results of the simulation model with exponen-
tially distributed order sizes. A 95% confidence interval
is constructed for the simulation output.

Suppose we make n replications of the simulation.
The independence of replications is accomplished by
using different random number series for each replica-
tion. Let Y; be the jth replication (for j=1,2,...,n) of
the measure of performance of interest. An unbiased
point estimator for the mean p = E(Y) is given by

mezza;n.

and an approximate 100(1 — «) percent confidence in-
terval for p is given by
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where ¢,_11_q/2 is the upper 1 — a/2 critical point
for the t distribution with n-1 degrees of freedom and
S2(n) is the sample variance given by



Fig. 1. Bimodal distribution
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Next, simulation results are obtained for other de-
mand patterns than the compound Poisson with expo-
nentially distributed order sizes. We distinguish three
different types of distributions for the order sizes: a
left triangular distribution with mode equal to a, a
right triangular distribution with mode equal to b and
a bimodal distribution (see Figure 1. The results are
compared to the results of the simulation model with
exponentially distributed order sizes using confidence
intervals.

When comparing two alternative systems, a confi-
dence interval can be constructed for the difference in
the two expectations. This does not only results in a
"reject” or "fail-to-reject” conclusion but also quanti-
fies how much the measures differ. When the num-
ber of replications for each alternative is the same
(ny = ne = n), a paired-t confidence interval can
be built. Let Y;; and Yj> be the corresponding out-
puts of two alternatives and define Z; = Yj; — Yjq, for
j=1,2,...,n. Then E(Z;) = v is the quantity for which
we want to construct a confidence interval. Assuming
that Z;’s are iid random variables, let
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the approximate 100(1 — o) percent confidence interval
is
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This is called the paired-t confidence interval. If this
interval does not contain zero, it can be concluded that

the two responses are different.

B. Common random numbers

In this simulation study, we use multiple runs for
each alternative using the same random numbers for
the generation of the operating time until failure and

the repair time of a failed machine for each correspond-
ing pair of alternatives. This ensures that differences in
the results are only due to a different demand process.

IV. SIMULATION MODEL AND VALIDATION OF THE
MODEL

To test the robustness of the results of Posner and
Berg (1989), we need to build a simulation model of
the model of Posner and Berg. The simulation model
is built in Arena (Rockwell Software). The parameters
and initial conditions of the simulation model are given
in Table I. The performance measures that are con-
sidered in this paper are: availability (fraction of time
machine engaged in active production), fraction of time
machine down due to failures, demand rate, fraction of
demand satisfied and machine shutdown rate due to
failures. The simulation is run for 3600 time-units with
a warm-up period of 720 time-units and 20 replications
are made.

Parameter Value
Operating time until failure | Expo(1/9)
Repair time Expo(1/3)
Demand arrivals Poisson(0.3)
Order sizes Expo(1/3)
Maximum inventory level 100
Initial Inventory 0

TABLE I: Parameters and initial conditions of the simulation

model

Validation is the process of determining whether a
simulation model is an accurate representation of the
system (Law, 2005). To validate the simulation model,
the results are compared to the analytical results of
Posner and Berg. However, since the model is only an
approximation to the actual system, a null hypothesis
that the system and model are the "same” is clearly
false (Law, 2007). Law (2007) believes that it is more
useful to ask whether or not the differences between the
model and the system are significant enough to affect
any conclusions derived from the model. In Table II
the analytical results and the means and standard de-
viations of the simulation results over 20 replications
are shown.

To validate the model, we first calculate a confidence
interval for each performance measure. These 95% con-
fidence intervals are shown in Table III and are used to
decide whether or not the differences between the sys-
tem and the model are small enough to have a valid
model. For each performance measure, the confidence
interval contains the analytical value calculated by Pos-
ner and Berg so we cannot demonstrate that there is a
significant difference between the simulation results and
the analytical result. Therefore, we cannot reject the
null hypothesis that the simulation results are ”equal”
to the analytical results.

To demonstrate that there is not only no significant
difference between the results but also that the results
are close to each other, we calculated the probability



Analytical | Simulation results
results Mean St.dev.
Availability 0.7495 0.7448 0.013
Fraction of time 0.2498 0.2549 0.0134
machine down
to failures
Demand rate 0.9 0.9029 0.0428
Fraction of de- 0.8328 0.8259 0.0416
mand satisfied
Machine shut-
down rate due
to overstocking

0.000191 | 0.000333 | 0.00149

TABLE II: Comparison of analytical results with simulation

results
LCL UCL
Availability 0.739 0.751

Fraction of time | 0.249 0.261
machine down
to failures
Demand rate 0.883 0.923
Fraction of de- | 0.806 0.845
mand satisfied
Machine shut- 0
down rate due
to overstocking

0.00103

TABLE III: Confidence intervals for the simulation results

that the simulation model generates a value that is
maximum 1, 3 or 5 % error from the analytical result.
These probabilities are given in Table IV. For each
performance measure, there is at least a 75% proba-
bility that the simulation model generates a value that
is in a range of 5% from the analytical result of Pos-
ner and Berg. For the availability, the fraction of time
the machine is down due to failures or down due to
overstocking, the probability is even above 99% which
means the results of the simulation model are close to
the analytical results.

1% 3% 5%
Availability 52.73 | 96.97 | 99.97
Fraction of time | 51.26 | 96.39 | 99.96
machine down
to failures

Demand rate 18.42 | 51.53 | 75.59
Fraction of de- | 18.73 | 52.29 | 76.4
mand satisfied
Machine shut- | 100 100 100
down rate due
to overstocking

TABLE IV: Probabilities that the simulated result is in a range
of 1. 3 or 5% from the analytical result

Based on these results, we can conclude that the sim-
ulation model is a good representation of the system
and is therefore a valid simulation model.

V. DEMAND PROCESS

The objective of this paper is to test the robustness
of the results of Posner and Berg to changes in the
demand process. The demand process is compound
Poisson and, with the parameters used in the previous
section, has a mean of 0.9 units and a variance of 5.4.

In practice, information about the form of the prob-
ability distribution is often limited. For example, it
might be that only the first two moments of the prob-
ability distribution are known. We assume the same
mean and standard deviation for demand can be ob-
tained by various patterns regarding demand frequency
and size.

In this section, we relax the assumption that the
probability distribution of the demand is completely
known and merely assume that the first two moments
are known and finite. Different order sizes are used in
the simulation model but the parameters are chosen in
such a way that they do not result in a different mean
or standard deviation of the demand distribution.

When the mean M and variance V of the demand
distribution are known, the compound Poisson distri-
bution with exponentially-distributed order sizes has
parameters:
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Three other distributions for the order sizes, all in
a range [a,b], are used. When the order sizes follow
a triangular distribution with mode a, the compound
Poisson distribution has parameters:
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When the order sizes are triangular with mode b, the
compound Poisson distribution has parameters:
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When the order sizes follow a bimodal distribution
with modes a and b, the compound Poisson distribution
has parameters:
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When M = 0.9 and V = 5.4, the results for the
parameters are given in Table V.

Exponential Left Right Bimodal
triangular | triangular
A 0.3 0.16 0.16 0.16
1 0.33
a 3.57 1.52 3.57
b 9.73 7.68 7.67

TABLE V: Parameters of the demand process

VI. RESULTS

The simulation model uses common random numbers
for the generation of the operating time until failure
and the repair time of a failed machine. This ensures
that differences in the results are due only to a different
demand process. For each different demand process, 20
replications of 3600 time-units (with a warm-up period
of 720 time-units) are made. The means of the simu-
lation results for each of the performance measures are
given in Table VI.

To test the robustness of the analytical results of Pos-
ner and Berg to changes in the demand process, 95%
confidence intervals are constructed for every perfor-
mance measure. The confidence intervals for compar-
ing the triangular distribution with mode a to the ex-
ponential distribution can be found in Table VII. The
confidence intervals for the difference between the re-
sults of the simulation model with a triangular distri-
bution with mode b and the results of the model with
an exponential distribution are given in Table VIII. Ta-
ble IX shows the confidence intervals for comparing the
bimodal distribution to the exponential distribution.

All the confidence intervals in Table VII, Table VIII
and Table IX contain 0. This means that the difference
between the results of the simulation model with an
exponentially-distributed order size and the results of
the simulation model with a different distribution for
the order sizes is not significantly different from zero
for each of the performance measures. Changes in the
demand process have no significant impact on perfor-
mance measures for the production-inventory system
described in this paper. The model of Posner and Berg
is a robust model. The analytical results obtained by
the model give a good indication for the performance

LCL UCL

Availability -0.000941 | 0.000976
Fraction of time -7.07 2.73E-5
machine down

to failures

Demand rate -0.0362 0.0127

Fraction of de- -0.0112 0.0316

mand satisfied
Machine shut- | -0.000992 0.001
down rate due
to overstocking

TABLE VII: Confidence intervals for comparing exponential

with left triangular results

LCL UCL
Availability -0.000946 | 0.00113
Fraction of time -7.07 2.73E-5
machine down
to failures
Demand rate -0.0385 0.0114
Fraction of de- | -0.00973 0.0339

mand satisfied

Machine shut-
down rate due
to overstocking

-0.00114 0.001

TABLE VIII: Confidence intervals for comparing exponential

with right triangular results

measures of a similar production-inventory system fac-
ing another demand process.

VII. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we test the robustness of analyti-
cal results on performance measures for a production-
inventory system with an unreliable production facil-
ity. These results are calculated for the special case
that the demand process is compound Poisson with
exponentially-distributed order sizes. A simulation
model is used to obtain the same performance measures
for this production-inventory system facing another de-
mand pattern. Three different demand patterns are
compared: compound Poisson with order sizes that fol-
low a triangular distribution with mode a, a triangu-
lar distribution with mode b or a bimodal distribution.
The parameters of these demand patterns are chosen
so that they do not cause a change of the mean and
variance of the aggregate demand distribution.

The performance measures for these three different
demand patterns do not differ significantly from the
closed-form performance measures obtained by Pos-
ner and Berg for the special case of an exponentially-
distributed order size. Their results are therefore ro-
bust to changes in the demand pattern.

In further research, other distributions for the or-
der sizes can be used. The simulation model can also
be used to determine the optimal value of the pre-set



Exponential Left Right Bimodal
triangular | triangular
Availability 0.7448 0.7448 0.7447 0.7449
Fraction of time machine down to failures 0.2549 0.2549 0.259523 0.2547
Demand rate 0.9029 0.9147 0.9164 0.9228
Fraction of demand satisfied 0.8259 0.8157 0.8138 0.8101
Machine shutdown rate due to overstocking 0.000333 0.000328 0.000401 | 0.000346

TABLE VI: Results for the different demand processes

LCL UCL
Availability -0.000896 | 0.000643
Fraction of time | -0.000207 | 0.000486
machine down
to failures
Demand rate -0.0503 0.0105
Fraction of de- -0.0113 0.0428
mand satisfied
Machine shut- | -000104 0.00102
down rate due
to overstocking

TABLE IX: Confidence intervals for comparing exponential

with bimodal results

threshold or the maximum inventory level. Further-
more, the simulation model can be extended to more
machines in series, separated by finite buffers. Srensen
and Janssens (2003) calculate customer service levels
and other performance measures as a function of the
availabilities of the machines and the sizes of interme-
diate buffers for a model with n machines in series,
separated by finite buffers.
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