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Abstract— In this paper a new cooperative collision-
avoidance method for multiple nonholonomic robots with
constraints and known start and goal velocities based on
Bernstein- Bézier curves is presented. In the simulation
example the velocities of the mobile robots are constrained
and the start and the goal velocity are defined for each
robot. This means that the proposed method can be used as
subroutine in a huge path-planning problem in the real time,
in a way to split the whole path in smaller partial paths.
The reference path of each robot from the start pose to the
goal pose, is obtained by minimizing the penalty function,
which takes into account the sum of all the paths subjected
to the distances between the robots, which should be bigger
than the minimal distance defined as the safety distance,
and subjected to the velocities which should be lower than
the maximal allowed velocities of each robot. When the
reference paths are defined one of the trajectory tracking
control algorithms should be used to define the control. The
simulation results of the path planning algorithm and some
future work ideas are discussed.

I. I NTRODUCTION

Collision avoidance is one of the main issues in ap-
plications for a wide variety of tasks in industry, human-
supported activities, and elsewhere. Often, the required
tasks cannot be carried out by a single robot, and in such
a case multiple robots are used cooperatively. The use
of multiple robots may lead to a collision if they are
not properly navigated. Collision-avoidance techniques
tend to be based on speed adaptation, route deviation by
one vehicle only, route deviation by both vehicles, or a
combined speed and route adjustment. When searching
for the best solution that will prevent a collision many
different criteria are considered: time delay, total travel
time, planned arrival time, etc. Our optimality criterion
will be the minimal total travel time of all mobile robots
involved in the task, subject to a minimal safety distance
between all the robots and subject to velocity constraints
of each mobile robot.

In the literature many different techniques for colli-
sion avoidance have been proposed. The first approaches
proposed avoidance, when a collision between robots is
predicted, by stopping the robots for a fixed period or
by changing their directions. The combination of these
techniques is proposed in [1] and [2]. The behavior-based
motion planning of multiple mobile robots in a narrow
passage is presented in [3]. Intelligent learning tech-
niques were incorporated into neural and fuzzy control for
mobile-robot navigation to avoid a collision as proposed

in [4], [5]. Also, some adaptive navigation techniques for
mobile robots navigation appeared, as proposed in [6].

In our case we are dealing with cooperative collision
avoidance where all the robots are changing their paths
cooperatively to achieve the goal. The control of multiple
mobile robots to avoid collisions in a two-dimensional
free-space environment is mainly separated into two tasks,
the path planning for each individual robot to reach its
goal pose as fast as possible and the trajectory tracking
control to follow the optimal path. In our paper only the
first part will be presented.The second part is well known
in the literature and will not be presented here.

The paper is organized as follows. In Section II the
problem is stated. The concept of path planning is shown
in Section III. The idea of optimal collision avoidance
for multiple mobile robots based on Bézier curves is
discussed in Section IV. The simulation results of the ob-
tained collision-avoidance control are presented in Section
V and the conclusion is given in Section VI.

II. STATEMENT OF THE PROBLEM

The collision-avoidance control problem of multiple
nonholonomic mobile robots is proposed in a two-
dimensional free-space environment. The simulations are
performed for a small two-wheel differentially driven
mobile robot of dimension7.5 × 7.5 × 7.5 cm. The
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Fig. 1. The generalized coordinates of the mobile robot.

architecture of our robots has a nonintegrable constraint
in the form ẋ sin θ − ẏ cos θ = 0 resulting from the
assumption that the robot cannot slip in a lateral direction
where q(t) = [x(t) y(t) θ(t)]T are the generalized
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coordinates, as defined in Fig. 1. The kinematics model
of the mobile robot is

q̇(t) =




cos θ(t) 0
sin θ(t) 0

0 1




[
v(t)
ω(t)

]
(1)

where v(t) and ω(t) are the tangential and angular
velocities of the platform. During low-level control the
robot’s velocities are bounded within the maximal allowed
velocities, which prevents the robot from slipping.

The danger of a collision between multiple robots
is avoided by determining the strategy of the robots’
navigation, where we define the reference path to fulfil
certain criteria. The reference path of each robot from
the start pose to the goal pose is obtained by minimizing
the penalty function, which takes into account the sum of
all the absolute maximal times subjected to the distances
between the robots, which should be larger than the
defined safety distance and maximal allowed velocities
of each mobile robot.

III. PATH PLANNING BASED ON BERNSTEIN-BÉZIER

CURVES

Given a set of control pointsP0, P1, . . . , Pb, the cor-
responding Bernstein-B́ezier curve (or B́ezier curve) is
given by

r(λ) =
b∑

i=0

Bi,b(λ)pi

where Bi,b(λ) is a Bernstein polynomial,λ is a nor-
malized time variable (λ = t/Tmax, 0 ≤ λ ≤ 1) and
pi, 0 = 1, . . . , b stands for the local vectors of the control
point Pi (pi = Pixex + Piyey, wherePi =

(
Pix , Piy

)
is

the control point with coordinatesPix and Piy , and ex

and ey are the corresponding base unity vectors). The
absolute maximal timeTmax is the time needed to pass
the path between the start control point and the goal
control point. The Bernstein-B́ezier polynomials, which
are the base functions in the Bézier-curve expansion, are
given as follows:

Bi,b(λ) =
(

b

i

)
λi (1− λ)b−i

, i = 0, 1, . . . , b

which have the following properties:0 ≤ Bi,b(λ) ≤
1, 0 ≤ (λ) ≤ 1 and

∑b
i=0 Bi,b = 1.

The B́ezier curve always passes through the first and
last control point and lies within the convex hull of the
control points. The curve is tangent to the vector of the
differencep1 − p0 at the start point and to the vector of
the differencepb − pb−1 at the goal point. A desirable
property of these curves is that the curve can be translated
and rotated by performing these operations on the control
points. The undesirable properties of Bézier curves are
their numerical instability for large numbers of control
points, and the fact that moving a single control point
changes the global shape of the curve. The former is
sometimes avoided by smoothly patching together low-
order B́ezier curves.

The properties of B́ezier curves are used in path
planning for nonholonomic mobile robots. In particular,
the fact of the tangentiality at the start and at the goal
points and the fact that moving a single control point
changes the global shape of the curve. Let us assume
the starting pose of the mobile robot is defined in the
generalized coordinates asqs = [xs, ys, θs]

T and the
velocity in the start pose asvs. The goal pose is defined as
qg = [xg, yg, θg]

T with the velocity in the goal pose asvg,
which means that the robot starts in positionPs(xs, ys)
with orientation θs and velocity vs and has the goal
defined with positionPg(xg, yg), the orientationθg and
the velocityvg.

Let us define five control pointsPs, P1, Po, P2 and
Pg which uniformly define the fourth order Bézier curve.
The control pointsP1(x1, y1) and P2(x2, y2) are added
to fulfill the velocity and orientation requirements in the
path. The need for flexibility of the global shape and the
fact that moving a single control point changes the global
shape of the curve imply the introduction of control point
denoted asPo(xo, yo). By changing the position of point
Po the global shape of the curve changes. This means
that having in mind the flexibility of the global shape of
the curve and the start and the goal pose of the mobile
robot, the path can be planned by four fixed points and
one variable point. The B́ezier curve is now defined as
a sequence of pointsPs, P1, Po, P2 and Pg in Fig 2,
where D stands for the distance between the start and
the goal control point. The Bernstein polynomials of the
fourth order (Bi,b, i = 0, . . . , b, b = 4), and the control
points define the curve as follows:

r(λ) = B0,4ps+B1,4p1+B2,4po+B3,4p2+B4,4pg (2)

or

r(λ) = (1− λ)4 [xs ys]
T +

+4λ (1− λ)3 [x1 y1]
T + 6λ2 (1− λ)2 [xo yo]

T +
+4λ3 (1− λ) [x2 y2]

T + λ4 [xg yg]
T (3)

The control pointPo will be defined using optimization,
and the control pointsP1 and P2 are defined from the
boundary velocity conditions.
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Fig. 2. The B́ezier curve.



Let us therefore defined the velocity in the normalized
time λ

v(λ) = ṙ(λ) = −4 (1− λ)3 ps+
+4 (1− λ)2 (1− 4λ)p1 + 12λ (1− λ) (1− 2λ)po+

+4λ2 (3− 4λ)p2 + 4λ3pg (4)

The velocity vectors in the start position (λ = 0) and in
the goal position (λ = 1) than become:

v(0) = 4p1 − 4ps

v(1) = 4pg − 4p2 (5)

This means that the vectors to the control pointsp1 and
p2 are defined as follows:

p1 = ps +
1
4
v(0)

p2 = pg − 1
4
v(1) (6)

According to the orientation of the robot in the start and
goal positionsθs and θg and given start and required
tangential velocities of the robotvs and vg, the velocity
vector can be written in x and y components as follows:

v(0) = [vx(0) vy(0)]T = [vs cos θs vs sin θs]
T

v(1) = [vx(1) vy(1)]T = [vg cos θg vg sin θg]
T (7)

Using Eqs. 6 and 7, the control pointsP1 andP2 are uni-
formly defined. The only unknown control point remains
Po which will be defined by optimization to obtain the
optimal path which will be collision safe.

IV. OPTIMAL COLLISION AVOIDANCE BASED ON

BERNSTEIN-BÉZIER CURVES

In this subsection a detailed presentation of coopera-
tive multiple robots collision avoidance based on Bézier
curves will be given by taking into account the velocity
constraints of the mobile robots. Let as assume the
number of robots equalsn. The i-th robot is denoted as
Ri and has the start position defined asPsi (xsi, ysi) and
the goal position defined asPgi (xgi, ygi). The normalized
time variable ofi-th robot is denoted asλi = t/Tmaxi ,
where Tmaxi stands for the absolute maximal time of
the i-th robot. The reference path will be denoted with
the B́ezier curveri(λi) = [xi(λi), yi(λi)]

T . In Fig. 3 a
collision avoidance forn = 2 is presented for reasons of
simplicity.

The safety margin to avoid a collision between two
robots is, in this case, defined as the minimal necessary
distance between these two robots. The distance between
the robotRi and Rj is rij(t) =| ri(t) − rj(t) |, i =
1, . . . , n, j = 1, . . . , n, i 6= j. Defining the minimal
necessary safety distance asds, the following condition
for collision avoidance is obtainedrij ≥ ds, 0 ≤ λi ≤
1, i, j. Fulfilling this criteria means that the robots will
never meet in the same region defined by a circle with
radius ds, which is called a non-overlapping criterion.
At the same time we would like to minimize the sum
of absolute maximal times for all robots. The length
of the path at the normalized timesi(λi) is defined

y

x

P x   yg g g1 1 1( , )

P x ys s s1 1 1( , )

P x ys s s2 2 2( , )

P x   yg g g2 2 2( , )

1
( )tr

2
( )tr

1 2-r r

Fig. 3. Collision avoidance based on Bernstein-Bézier curves.

as si(λi) =
∫ λi

0
vi(λi)dλi, wherevi(λi) stands for the

tangential velocity in the normalized variableλi

vi(λi) =| ṙ(λi) |=
(
ẋ2

i (λi) + ẏ2
i (λi)

) 1
2

whereẋi(λi) stands fordxi(λi)
dλi

and ẏi(λi) for dyi(λi)
dλi

.
To define the feasible reference path that will be

collision safe and will satisfy the maximal velocityvmaxi

of the mobile robot, the real time should be introduced.
The relation between the tangential velocity in normalized
time framework and the real tangential velocity is the
following

vi(t) =
1

Tmaxi

vi(λi)

The length of the path of the robotRi from the start
control point to the goal point is now calculated as:

si =
∫ 1

0

(
(ẋ2

i (λi)) + ẏ2
i (λi))

) 1
2 dλi

Assuming that the startPsi, the goalPgi andP1i andP2i

control points are known, the global shape and length
of each path can be optimized by changing the flexible
control pointPoi. The collision-avoidance problem is now
defined as an optimization problem as follows:

minimize

n∑

i=1

max (Tmaxi)

subject to

ds − rij(t) ≤ 0, ∀i, j, i 6= j, 0 ≤ t ≤ max
i

(Tmaxi)
vi(t)− vmaxi ≤ 0, ∀i, 0 ≤ t ≤ max

i
(Tmaxi) (8)

The minimization problem is called aninequality opti-
mizationproblem. Methods using penalty functions trans-
form a constrained problem into an unconstrained prob-
lem. The constraints are added to the objective function
by penalizing any violation of the constraints. In our case
the following penalty function should be used to have the
unconstrained optimization problem

minimize F =
∑

i

max (Tmaxi)+



+c1

∑

ij

max
ij

(0, ds − rij(t)) +

+c2

∑

i

max
i

(0, vi(t)− vmaxi
) ,

i, j, i 6= j, 0 ≤ t ≤ max
i

(Tmaxi
)

subject to

Po,Tmax (9)

where c1 and c2 stand for a large scalar to penalize
the violation of constraints and the solution of the min-
imization problemminPo

F is a set ofn control points
Po = {Po1, . . . , Pon} andTmax a set ofn maximal times
Tmax = {Tmax1 , . . . , Tmaxn}. Each optimal control
point Poi, i = 1, . . . , n uniformly defines one optimal
path, which ensures collision avoidance in the sense of a
safety distance and will be used as a reference trajectory
of thei-th robot and will be denoted asri(t). The optimal
solution is also subjected to the time, because also the
velocities of the robots are taken into account in the
penalty function.

V. SIMULATION RESULTS

In this section the simulation results of the optimal
cooperative collision avoidance between three mobile
robots are shown. The study was made to elaborate the
possible use in the case of a real mobile-robot platform.
In the real platform we are faced with the limitation of
control velocities and accelerations. The simulation study
was done for two mobile robots only, because of the
transparency. The maximal allowed tangential velocity of
the first mobile robot isvmax1 = 0.3m/s and the maximal
allowed tangential velocity for the second mobile robot is
defined asvmax2 = 0.25m/s.

The starting pose of the first mobile robotR1 in
generalized coordinates is defined asqs1 =

[
0, 1,−π

4

]T

and the goal pose asqg1 =
[
1, 0.5,− 3π

4

]T
. The boundary

velocities of the first mobile robot are the start tangential
velocity vs1 = 0.10m/s and the goal tangential velocity
vg1 = 0.10m/s. The second robotR2 starts inqs2 =[
1, 0,− 3π

4

]T
and has the goal poseqg2 =

[
0.5, 1, −3π

4

]T
.

The boundary velocities of the second mobile robot are
the start tangential velocityvs2 = 0.10m/s and the
goal tangential velocityvg2 = 0.10m/s. The x and y
coordinates are defined in meters. The safety distance is
defined asds = 0.40m.

The optimal setPo can be found by using one of
the unconstrained optimization methods, but the initial
conditions are very important. The optimization should
be started with initial parameters which ensure a feasible
solution. We are optimizing the total sum of all paths
which are subjected to the certain conditions according
to the safety distances and velocities of the robots. The
velocity condition implies the implementation of the
maximal time for each robot into the optimization routine.
This implies that the initial setPo will be defined as

Po = {(xo1, yo1), (xo2, yo2)}

wherexoi andyoi are defined as follows:

xoi =
xsi + xgi

2
, yoi =

ysi + ygi

2
, i = 1, 2

The initial maximal times are defined asTmax1 = 10s
and Tmax2 = 20s to fulfill the maximal velocities con-
straints. The penalty parameters arec1 = 2 and c2 = 2.
The obtained results of the optimization routine are the
following Po1(1.2505, 0.4996), Po2(0.1076, 0.3161) and
Tmax1 = 7.3004 and Tmax2 = 7.3006. The minimal
value of penalty functionF equals to maximal time
Tmax2 .

The real tangential velocities profiles of avoiding robots
R1 andR2 in normalized time variable are given in Fig. 4.
It is shown that the velocities profiles of both robots fulfill
the boundary velocities requirements and also fulfill the
allowed maximal velocities conditions. The simulated po-
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Fig. 4. The real velocities of avoiding robotsR1 andR2 in normalized
time variable.

sitions of both two robots that are cooperatively avoiding
the collision are shown in Fig. 5. In Fig. 6 the distances
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Fig. 5. The paths of collision avoiding robotsR1 andR2.

between the mobile robots are shown. It is also shown that
all the distancesr12 satisfy the safety-distance condition.



They are always bigger than prescribed safety distance
ds.
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Fig. 6. The distancer12 between robotsR1 andR2.

VI. CONCLUSION

The optimal cooperative collision-avoidance approach
based on B́ezier curves allows us to include different
criteria in the penalty functions. In our case the reference
path of each robot from the start pose to the goal pose
is obtained by minimizing the penalty function, which
takes into account the sum of all absolute maximal times
subjected to the distances between the robots, which
should be bigger than the minimal distance defined as the
safety distance and the maximal velocities of the robots.
The proposed cooperative collision-avoidance method for
multiple nonholonomic robots based on Bézier curves
shows great potential and in the future will be imple-
mented on a real mobile-robot platform.
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