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ABSTRACT 

The role and importance of the simulation rises with the 
increasing speed of computers and simulation tools 
provided nowadays. Safety and less money and time 
demands gives a computer simulation big advantage 
over the experiments on a real system or its model. The 
paper deals with simulation of an adaptive control on a 
nonlinear system represented by a Continuous Stirred 
Tank Reactor (CSTR). This system is mathematically 
described by a set of Ordinary Differential Equations 
(ODE) which are first solved numerically to obtain 
steady-state and dynamic behaviour of the system. The 
adaptive control is based on the recursive identification 
of an External Linear Model (ELM) as a representation 
of the originally nonlinear system. The polynomial 
approach together with the pole-placement method 
gives sufficient control results although the system has 
negative control properties. 
 
INTRODUCTION 

The Continuous Stirred Tank Reactors (CSTRs) are 
often used in chemical or biochemical industry for their 
good control properties. The flow of reactant is fluent 
and it can be in most cases easily controlled by the 
volumetric flow rate (Ingham et al. 2000).  
This paper deals with adaptive control of the isothermal 
CSTR with complex reaction inside the tank (Russell 
and Denn 1972). This system is mathematically 
described by the set of five Ordinary Differential 
Equations (ODE) which are solved numerically via 
well-known Runge-Kutta’s standard method (Johnston 
1982). The steady-state and dynamic analyses presented 
in (Zelinka et al. 2006) results in optimal working point 
and the choice of the External Linear Model (ELM) 
which represents the originally nonlinear CSTR.  
The polynomial approach together with a pole-
placement method and spectral factorization are used 
for design of a controller. Parameters of the controller 
are periodically recomputed according to the parameters 
of the ELM which are estimated recursively during the 
control (Bobal et al. 2005). The ordinary recursive least 

squares method  (Fikar and Mikleš 1999) was used for 
the parameter estimation.  
All proposed control strategies were verified by and 
simulations in mathematical software MATLAB 6.5. 
  
MODEL OF THE PLANT 

The reactor under the consideration is an Isothermal 
reactor with complex reaction (Ingham et al. 2000). 
Reactions inside the reactor can be described by 
following relations: 
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These reactions have sequential (A  X  Y  Z) as 
well as parallel characteristics (B  X, B  Y, B  
Z). Some simplifications must be introduced because of 
complexity of this system. We assume that the reactant 
inside the tank is perfectly mixed and volume of the 
reactant is constant during the reaction. The 
mathematical model of the system is then derived from 
the material balances inside the reactor: 
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dc q c c k c c
dt V
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This set of nonlinear ODE describes behaviour of the 
state variables which are in this case concentrations of 
components A, B, X, Y and Z – cA, cB, cX, cY and cZ in 
time t. Under the simplifications introduced above, this 
model belongs to the class of nonlinear lumped-
parameters systems.  
In the set (2) – (6) q denotes volumetric flow rate, V is 
volume of the tank, k describes rate constants and c are 
concentrations. Numerical subscripts 1, 2 and 3 
represent reaction steps.  
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Table 1: Parameters of the reactor 
 

k1 = 5×10-4 m3.kmol-1.s-1 
k3 = 2×10-2 m3.kmol-1.s-1 
cA0 = 0.4 kmol.m-3 
cX0 = 0 kmol.m-3 
cZ0 = 0 kmol.m-3 

k2 = 5×10-2 m3.kmol-1.s-1 
V = 1 m3 
cB0 = 0.6 kmol.m-3 
cY0 = 0 kmol.m-3 
 

 
Schematic representation of the reactor can be seen in 
Figure 1 and technological parameters and constans are 
shown in Table 1. 
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Figure 1: Continuous Stirred Tank Reactor 

 
STEADY-STATE AND DYNAMIC ANALYSES 

Steady-state Analysis  
The steady-state analysis is the first step in the 
preparation of the optimal controller. It shows 
behaviour of the system in the steady-state, 
mathematically for t  ∞ and results in optimal 
working point in the sense of maximal effectiveness and 
concentration yield.  
The static characteristic for different input volumetric 
flow rate q presented in (Zelinka et al. 2006) shows that 
this system has nonlinear behaviour. The volumetric 
flow rate of the reactant qs = 0.0001 m3.s-1 was chosen 
as a working point for the dynamic analysis and control. 
Steady-state values of the state variables in this working 
point are: 
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Dynamic Analysis  
Dynamic behaviour of the system is obtained after a 
change of the input volumetric flow rate q. Figure 2 
displays output responses of concentration cz to four 
step changes of the input variable q (∆q = ±100%, 
±50% of q) related to its steady-state value.  
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Figure 2: Time response of the output y for various step 

changes of the input volumetric flow rate q 

This recomputation is because of better display of the 
output response - steady-state values are initial 
conditions for numerical solving of the set of ODE (2)-
(6) and consequently the graph starts in zero, i.e. 
 ( ) ( ) s

Z Zy t c t c= −  (8) 

 
Output responses shown in Figure 2 shows that this 
output can be mathematically represented by the second 
order transfer function with relative order one: 
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where s is a complex variable, a0,1,2 and b1,0 are 
coefficients and b0, b1 differs in sign for non-minimum 
phase systems. The transfer function with the first order 
or the second order with relative order two, i.e. 
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could be used too, but simulation experiments have 
shown that transfer function (9) is more suitable 
because it can include non-minimum behaviour which 
cannot be seen from the dynamic behaviour but it can 
occur in some working points during the control. For 
further computation we expect a2 = 1.  
 
ADAPTIVE CONTROL 

Adaptive control is one of the dynamically expanding 
modern control approaches which can be used for 
systems with time delays, nonlinear systems, non-
minimum phase systems etc. These systems have 
negative properties from the control point view and 
control responses with classical P, PI, PID etc. 
controllers can result in unstable or non-optimal 
responses.  
The adaptive approach used in this work is based on a 
choice of the External Linear Model (ELM) of the 
nonlinear process, parameters of which are estimated 
recursively and the controller parameters are then 
recomputed in every step according to the estimated 
parameters of the ELM (Bobal et al. 2005). 
The resultant controller works in continuous-time and in 
our case its structure corresponds to the structure of the 
real PID controller but its parameters vary according to 
the actual working point. 
 
External Linear Model(ELM)  
As it is written above, the originally nonlinear system is 
replaced by the External Linear Model (ELM). We have 
chosen the transfer function described by the equation 
(9) from the previous chapter, i.e. 
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This transfer function fulfils a condition of properness 
deg degb a≤ . 
The ELM can be in continuous time or discrete time 
form. In this work, δ–model was used as an ELM. This 



 

 

model belongs to the class of discrete models but its 
properties are different from the classical discrete model 
in the Z-plain. If we want to convert  
Z-model to δ–model, we must introduce a new complex 
variable γ computed as (Mukhopadhyay et al. 1992)  
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We can obtain infinitely many models for optional 
parameter α from the interval 0 ≤ α ≤ 1 and a sampling 
period Tv, however a forward δ-model  was used in this 
work which has γ operator computed via 

 10
v

z
T

α γ −
= ⇒ =  (12) 

The ELM (9) is then rewritten to the general differential 
equation 
 ( ) ( ) ( ) ( )a y t b u tδ δ′ ′ ′ ′=  (13) 

where t’ denotes discrete time and δ is the operator 
defined according to (12). With decreasing value of the 
sampling period Tv parameters of polynomials a’(δ) and 
b’(δ) approach the parameters of the continuous-time 
model (Stericker and Sinha 1993). 
The relation for the actual output is derived from the 
(13) as 
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where yδ is the recomputed output to the δ-model: 
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where Tv is a sampling period, the data vector is then 
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and the vector of estimated parameters  

 ( ) 1 0 1 0
ˆ ˆˆ ˆ ˆ, , ,T k a a b b⎡ ⎤= ⎣ ⎦θ  (17) 

can be computed from the ARX (Auto-Regressive 
eXtrogenous) model  
 ( ) ( ) ( )1Ty k k kδ δ δ= ⋅ −θ ϕ  (18) 

by some of the recursive least squares methods.  
Simulation experiments have shown that there is no 
need to use forgetting factors because the resulted 
output response is the same for Ordinary Recursive 
Least Squares (ORLS) method and its modifications. 
The ORLS method is one of the basic identification 

methods and it can be formally described by the set of 
equations (Fikar and Mikles 1999): 
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Where ε denotes a prediction error and P is a 
covariance matrix. 
 
Configuration of the Controller 
The configuration with one degree-of-freedom (1DOF) 
was used for the control system set-up. This form has a 
controller in the feedback part – see Figure 3. 
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Figure 3: 1DOF control configuration 

 
The block G in the Figure 3 represents the transfer 
function of the plant (9), w is the wanted value 
(reference signal), e stands for the control error (e = w - 
y), v is a disturbance, u is used for the control variable 
and y denotes the controlled output. Block Q is a 
transfer function of the controller which ensures 
stability, asymptotic tracking of the reference signal and 
load disturbance attenuation and it can be described by 
the polynomials in s-plain as 

 ( ) ( )
( )

q s
Q s

s p s
=

⋅ �
 (20) 

where degrees of the polynomials are computed from  
 ( ) ( ) ( ) ( )deg deg , deg deg 1q s a s p s a s= ≥ −�  (21) 

and parameters of the polynomials ( )p s�  and q(s) are 
computed from a Diophantine equation (Kucera 1993): 
 ( ) ( ) ( ) ( ) ( )a s s p s b s q s d s⋅ ⋅ + ⋅ =�  (22) 
Polynomials a(s) and b(s) are known from the recursive 
identification and the polynomial d(s) on the right side 
of (22) is an optional stable polynomial. Roots of this 
polynomial are called poles of the closed-loop and their 
position affects quality of the control. The degree of the 
polynomial d(s) is in this case 
 ( ) ( ) ( )deg deg deg 1d s a s p s= + +�  (23) 

A choice of the roots needs some a priory information 
about the system’s behaviour. It is good to connect 
poles with the parameters of the system via  spectral 
factorization. 
The polynomial d(s) is then of the fourth degree and it 
can be rewritten for aperiodical processes to the form 

 ( ) ( ) ( )deg degd nd s n s s α −= ⋅ +  (24) 



 

 

where α > 0 is an optional coefficient reflecting closed-
loop poles and stable polynomial n(s) is obtained from 
the spectral factorization of the polynomial a(s) 
 ( ) ( ) ( ) ( )* *n s n s a s a s⋅ = ⋅  (25) 

As written above, the second order transfer function 
with the relative order one was chosen as an ELM of the 
system. As a result, degrees of the polynomials are 
computed via (21): ( )deg 2q s = and ( )deg 1p s =�  
which means, that the transfer function (20) is 
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and the polynomial d(s) is from (24) of the fourth 
degree and it could be chosen as 

 ( ) ( ) ( )2d s n s s α= ⋅ +  (27) 

where α > 0 is an optional parameter which reflects 
some of the closed-loop roots. Parameters of the 
polynomial n(s) which are computed from the spectral 
factorization are defined as: 

 2 2
0 0 1 1 0 0, 2 2n a n a n a= = + −   (28) 

 
Simulation results 
Simulation experiments of the adaptive control 
theoretically described in previous sections were done 
in the mathematical software Matlab, version 6.5.1. 
As it is written in the dynamic analysis part, the 
concentration of the output Z, cZ, subtracted from its 
steady-state value cZ

s was chosen as the output variable 
y and the change of the input volumetric flow rate, ∆q 
in %, was set as the control input variable u, i.e. 
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The control study was done for time 10 000 s with the 
sampling period Tv = 2 s. The input variable u(t) was 
limited due to the physical realization to the bounds  
u(t) = <–100%;+100%>. The initial parameters for 
identification were – [ ]ˆ 0.1,0.1,0.1,0.1=Τθ and Pii = 
1·107 for i = 1,..,4. The simulation study was peformed 
for a different position of the parameter α = 0.005; 0.01 
and 0.05 and for five step changes of the reference 
signal w(t) every 2 000 s. Results are shown in Figure 4 
and Figure 5. 
The results show that the control response is quicker 
with the increasing value of α. On the other hand, the 
course of the input variable u(t) is smoother and 
overshoots of the output variable are lower for lower 
values of α. The overshoots of the output variable are a 
bit higher and changes of the input variable are big after 
the step change of the reference signal at the very 
beginning of the control. This is caused by the recursive 
identification which has small problems because of less 
amount of information at the beginning. 
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Figure 4: Output variable y(t) for various values of 

parameter α 
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Figure 5: Input variable u(t) for various values of 

parameter α 
 
The quality of the control was evaluated by the quality 
criteria Su and Sy computed for a time interval as 
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where Tf is the final time – in this case Tf = 10 000 s. 
 

Table 2: Criteria of control quality 
 

 Su Sy 
α = 0.005 5812.4614 0.0040 
α = 0.01 49566.6667 0.0026 
α = 0.05 116646.6775 0.0031 

 
Results for all three simulation studies are shown in 
Table 2. As you can see, increasing value of the 
parameter α affects mainly changes of the action value 
u(t) which is illustrated by the criterion Su. On the other 
hand, value of the criterion Sy, which is related to the 
control error, is the best for α = 0.01 and nearly similar 
to the other values. 
The Figure 6 and Figure 7 display course of the 
identified parameters during control. Lines clearly show 
that the chosen ordinary recursive least-squares method 
has no problem with the identification of the ELM 
except for the starting time – that is why the data in both 
figures are cut from time 200 s when we have enough 
information about the system. The Figure 7 shows that 
b’0 has very small value and does not change 
significantly during the control which means that we 
could neglect it.  
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Figure 6: The course of the identified parameters a’1 

and a’0 during the control 
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Figure 7: The course of the identified parameters b’1 

and b’0 during the control 
 
 
CONCLUSION 

The paper presents simulation results of the control of 
the nonlinear process represented by the isothermal 
CSTR with a complex reaction. The used adaptive 
control is based on the recursive identification of the 
external linear model of the nonlinear plant where 
estimated parameters of the system are used for 
computation of the controller’s parameters via the 
polynomial approach and pole-placement method. 
Control results show that the proposed controller has 
good control responses although the system has 
nonlinear behaviour. Moreover, the output can be tuned 
by the choice of a different position of the parameter α. 
Increasing value of the parameter results in higher speed 
of the control. However smaller values of this parameter 
produce lower overshoots and smoother course of the 
control action. The simulation studies show that there is 
no need to use forgetting factors in the recursive 
identification because the used ordinary recursive least-
squares method has no problem with the estimation. 
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