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ABSTRACT 
 
In discrete event steady-state simulation, deletion of 
data from the initial transient phase of the simulation is 
usually recommended in order to reduce the bias of the 
final estimates. Various heuristics and tests have been 
proposed to aid with this. The plummeting cost of 
simulation, combined with uncertainties about the 
overall reliability of the estimation of the transient 
period, suggest revisiting the notion that deletion is 
essential, especially for longer simulations. We 
consider this in a sequential simulation framework. 
 
1. INTRODUCTION 
 
A standard part of simulation methodology for discrete 
event steady-state simulation is that data from the initial 
transient phase of simulation should be deleted in order 
to reduce the bias of the final estimates. The assumption 
usually underlying this is that the expected value of the 
process being simulated may be changing over the 
transient phase, and thus including these data biases the 
results or increases the variance. Various heuristic 
methods for selecting the number of observations to 
delete, and for testing if the system is adequately close 
to “steady state” have been proposed. A survey of these 
up to 1990 can be found in Pawlikowski (1990). The 
controversy over the virtues of deletion at that time is 
also described in Section 2 of that paper. Notable 
transient methods proposed since then include Yücesan 
(1993), Jackway and deSilva (1992), Goldsman, 
Schruben and Swain (1994). However two comparative 
studies (McNickle, Pawlikowski and Stacey, 1993;  
Ghorbani 2004) have failed to find a substantial 
improvement in overall reliability over a method based 
on Schruben’s test (Schruben 1982, and Schruben 
Singh and Tierney 1983). In fact some of the 
alternatives that have been proposed do not appear to 
perform well at all. Details of our sequential 
implementation of a Schruben-based method can be 
found in Section 3 of Pawlikowski (1990). 
 
A recent survey of transient deletion methods 
(Ghorbani 2004) showed quite mixed results, with some 
methods giving quite inconsistent results in terms of the 
length of transient removed. Some methods showed a 
strong tendency to select an empty-and-idle state as the 
end of the transient period, producing potentially very 

long transient periods that in fact were no use at all 
since simulations are often started from that state. Even 
the method we use, a combination of a heuristic and a 
test, turns out to be predominantly driven by the 
heuristic, with steady state being identified at the end of 
the 25 crossings of the running mean. Given these 
results we ask if it is worth persisting with transient 
deletion methods, or should the reduction in the cost of 
computing simply be used for longer runs or runs to 
more accurate results (smaller values of relative 
precision)? Alternatively does the effect of ignoring the 
transient problem disappear within today’s acceptable 
run times? 
 
There are a number of problems with the evaluation of 
transient deletion methods. This has largely been carried 
out on simple queueing models (since it can only be 
done for systems for which we know the steady-state 
result), and further, much of the evaluation has been 
against a different, albeit related measure of 
convergence to steady-state: the relaxation time. In 
addition studies of methods for dealing with the initial 
transient have concentrated on estimators of means, 
with the result that their performance on other statistics: 
higher moments, quantiles, remains uncertain (one 
exception to this is Lee, Pawlikowski and McNickle, 
2000). Finally few methods have been tested against 
different initial starting conditions. So the overall 
reliability of many proposed methods remains an open 
question. Here for simplicity we will also restrict 
ourselves to queueing models, means, and initiate 
simulation from the "empty-and-idle" state.  
 
With the steep decline in the cost of computing, the 
availability of large-scale computing resources via 
networks and the web, and simulation software that can 
carry out replications in parallel, such as Akaroa2, 
(Ewing, Pawlikowski and McNickle 1999) it is now 
possible to collect very large samples of simulation 
output data for steady-state simulation problems in 
acceptable time and at acceptable cost. Given this, is it 
true that the influence of the initial state of the simulated 
system could be expected to be quite limited, since the 
initial transient may now form a very small fraction of 
the total run? And given the uncertainty about the 
overall performance of some of the deletion methods 
has the balance shifted back in favour of not deleting 
observations?
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2. COVERAGE ANALYSIS 
 
The measure we will use for estimating the effect of the 
initial transient is the coverage of the estimated 
confidence intervals for the final result. That is, if 
supposedly 95% (for example) confidence intervals of a 
specified relative precision are being used as the 
stopping criterion for sequential simulation, we use 
independent replications to measure the fraction of 
estimated confidence intervals which actually contain 
the true value of the parameter of interest. Any bias due 
to the initial transient could be expected to show in 
reduced actual coverage. We follow the coverage 
estimation methodology described in Pawlikowski, 
McNickle and Ewing (1998). There we argued that: 
 
R1. Coverage of the final results from sequential 
simulation should be analyzed sequentially, i.e. analysis 
of coverage should be stopped when the relative 
precision (the relative half-width of the confidence 
interval) of the estimated coverage reaches a specified 
level, say 5%. 
 
R2. An estimate of coverage has to be calculated from a 
representative sample of data, so the coverage 
estimation starts only after a minimum number (say 
200) “bad” confidence intervals have been recorded. 
 
R1 arises from the fact that sequential analysis is the 
only practical way of guaranteeing results of a pre-
specified precision when standard errors are unknown, 
and hence should be used in most steady-state 
simulations. Thus coverage studies, as meta-
simulations, should also reflect this practice. Practically 
also, for this study, sequential analysis was essential as 
producing just one of the estimates of coverage for this 
study could involve up to 15,000 independent 
replications, each using thousands of observations and 
requiring days of elapsed time as a background task. 
 
Sequential analysis does, however, have the problem 
that some of the simulation experiments may stop after 
an abnormally small number of observations have been 
collected, because, by chance, the stopping criterion is 
temporarily satisfied. In Pawlikowski, McNickle and 
Ewing. (1998) and Ewing, McNickle and Pawlikowski 
(2002) our objective was to compare methods of 
confidence interval estimation such as Spectral Analysis 
and Batch Means in a sequential (and multiple 
processor) framework. So simulation runs that were 
abnormally short were discarded by removing those 
more than one standard deviation shorter than the 
average length to remove this extraneous source of 
variation. This step does not seem appropriate here, 
because the initial transient might have some influence 
on the occurrence of abnormally short runs.  
 
Lee, Pawlikowski and McNickle (1999) show that in 
practice there are some practical heuristics that can 
guard against runs that are too short. However in this 

paper the effect of discarding the initial transient data is 
considered without discarding abnormally short 
simulations or applying these heuristics. Thus the 
coverage results appear worse than they would be in 
practice. 
 
3. METHODOLOGY  
 
The experiments were run using the Akaroa2 simulation 
package, using it in its single-processor mode.  The 
automated method based on Schruben’s test as 
referenced above was used to determine the length of 
the initial transient period. This sequential version of the 
Schruben test uses a heuristic to decide on an estimated 
length of initial transient period. This heuristic was 
proposed by Gafarian, Anker and Morisaku (1978) and 
is described in detail in Pawlikowski (1990). Using this 
heuristic, the length of initial transient period is taken to 
be over when the sequence has crossed its running mean 
25 times. Schruben’s test is then used to test for 
stationarity. If the null hypothesis of stationarity is 
rejected, a larger potential transient period is considered 
(Pawlikowski, 1990).  
 
Sequential Spectral Analysis, a modification of the 
method proposed by Heidelberger and Welch (1981) 
and specified in Pawlikowski (1990), was used to 
estimate the confidence interval width. We have found 
that this method gives accurate confidence intervals, 
especially for highly correlated data, such as waiting 
times in highly loaded queues (Ewing, McNickle and 
Pawlikowski 2002, McNickle, Pawlikowski, and Ewing, 
2004). 
 
Experiments were conducted for response times in a 
representative range of queueing models: M/M/1, M/D/1 
and M/H2/1 and a simple computer network model as 
shown in Figure 1. For the M/H2/1 model the square of 
the coefficient of variation is set to 5. 
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Figure 1: The computer network model 
 
For the computer network model the mean CPU service 
time = 6, the mean service time for each disk = 14, p1 = 
p2 = 0.4, all distributions are negative exponential, and 
the source rate is set to give traffic intensities at the CPU 
ranging from 0.1 to 0.9.



4. RESULTS 
 
These graphs plot the average coverage (together with 
95% confidence intervals) from simulating the response 
times in the models specified, for transient deletion 
(solid line) or no deletion (dashed line). So they show 
the actual coverage that was achieved when the required 
coverage was set to that of a 95% (0.95) confidence 
interval having a relative width of either (a) 10% or (b) 
5% 
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(a) Relative Precision = 10% 
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  (b) Relative Precision = 5% 
 

Figure 2: Effect of transient deletion  
M/D/1 

 
 

 

0.0 0.2 0.4 0.6 0.8 1.0

Load

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

 
(a) Relative Precision = 10% 
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(b) Relative Precision = 5% 

 
Figure 3: Effect of transient deletion  

M/M/1 
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(a) Relative Precision = 10% 
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(b) Relative Precision = 5% 

 
Figure 4: Effect of transient deletion  

M/H2/1 
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(a) Relative Precision = 10% 
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(b) Relative Precision = 5% 

 
Figure 5: Effect of transient deletion  
CPU Queue in Computer Network 

 
 
5. DISCUSSION 
 
From the graphs it can be seen that deletion of the initial 
transient does appear to produce some effect on 
coverage for models in which the run lengths are short,  
but that the effect reduces with: the variability of the 
model, and the accuracy of the precision (aside from 
initial effects due to the analysis method the 5% runs are 
about four times as long as those for 10% precision), to 
the point where in a single experiment the reduction in 
coverage would no longer be deemed to be statistically 
significant.  
 
Thus for M/H2/1 at 5% precision the effects are very 
small. Similarly for the CPU queue in the computer 
network model the 5% relative precision runs are also 
almost indistinguishable from those in which a transient 
period has been deleted. This is presumably due to the 
usually positive autocorrelation in the input process 
produced by the feedback of jobs (McNickle, 1984) 
resulting in long run lengths. In all cases the no-deletion 
coverage increases towards that produced when an 
initial transient period is deleted, as the run length 
increases. 
 
It might be thought that unless the transient period is 
deleted, substantially longer runs are needed to achieve 

similar precision. But this turns out not to be the case. 
We give only two tables to save space since all the 
results were similar. Table 1 gives the average numbers 
of observations recorded firstly after the deletion of a 
transient period (column 3) and then if no transient 
period is deleted (column 4), for various values of the 
traffic intensity (ρ) for the M/M/1 model stopped at a 
relative precision of 5%. Thus it corresponds to the 
results shown in Figure 3(b). Table 2 gives similar 
values for the M/H2/1 queue, corresponding to the 
results shown in Figure 4(b).  
  
   

Table 1. Average Run Lengths for M/M/1 with a 
Relative Precision of 5% 

 
ρ No. of obs. 

deleted 
No. of obs. 

after deletion 
No. of obs. 

without 
deletion 

0.1 259 3194 2936 

0.2 265 4440 4139 

0.3 274 6400 5965 

0.4 286 9542 8963 

0.5 302 14945 14089 

0.6 328 24938 23564 

0.7 373 48158 45434 

0.8 466 115418 110470 

0.9 713 492805 488304 
   
 

Table 2. Average Run Lengths for M/H2/1 with a 
Relative Precision of 5% 

ρ No. of obs. 
deleted 

No. of obs. 
after deletion 

No. of obs. 
without 
deletion 

0.1 295 23256 22058 

0.2 322 39233 37624 

0.3 356 58712 55976 

0.4 398 82419 78938 

0.5 460 116171 111961 

0.6 553 172622 167787 

0.7 711 277253 270914 

0.8 1032 556721 548065 

0.9 1743 1934901 1920458 



Rather than requiring more observations, we note that in 
fact the average run lengths without deletion are 
uniformly shorter than those when deletion is used. We 
conjecture that this may be because while the results 
measured during the transient period are biased, they are 
also of low variance, leading to, on the average, shorter 
runs. 
 
We further note that the shorter run lengths alone are 
sufficient to account for the reduction in coverage 
between the deletion and the no-deletion results.   
 
6. CONCLUSIONS 
 
While the use of a reliable method of transient deletion 
such as that based on Schruben’s test or Goldsman, 
Schruben, and Swain (1994) can still be recommended, 
the gains in reduced bias or variance appear to be 
modest. For situations outside those for which transient 
deletion methods have been validated it appears to be 
equally possible to rely on high-precision (i.e. small) 
confidence intervals in order to guarantee the accuracy 
of the final results. Aside from the increased run lengths 
needed to produce this higher precision we did not find 
any evidence that dealing with the transient problem by 
means of specifying higher precision for the results will 
require the collection of substantially more 
observations. 
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