

USING A BEE COLONY ALGORITHM FOR NEIGHBORHOOD SEARCH

IN JOB SHOP SCHEDULING PROBLEMS

Chin Soon Chong Malcolm Yoke Hean Low

Planning and Operations Management School of Computer Engineering

Singapore Institute of Manufacturing Technology Nanyang Technological University

71 Nanyang Drive, 638075, Singapore Nanyang Avenue, 639798, Singapore

Email: cschong@simtech.a-star.edu.sg Email: yhlow@ntu.edu.sg

Appa Iyer Sivakumar Kheng Leng Gay

School of Mechanical and Production Engineering School of Electrical and Electronics Engineering

Nanyang Technological University Nanyang Technological University

Nanyang Avenue, 639798, Singapore Nanyang Avenue, 639798, Singapore

Email: msiva@ntu.edu.sg Email: eklgay@ntu.edu.sg

KEYWORDS

Scheduling, honey bee colony, neighborhood search.

ABSTRACT

This paper describes a population-based approach that

uses a honey bees foraging model to solve job shop

scheduling problems. The algorithm applies an efficient

neighborhood structure to search for feasible solutions

and iteratively improve on prior solutions. The initial

solutions are generated using a set of priority

dispatching rules. Experimental results comparing the

proposed honey bee colony approach with existing

approaches such as ant colony, tabu search and shifting

bottleneck procedure on a set of job shop problems are

presented. The results indicate the performance of the

proposed approach is comparable to other efficient

scheduling approaches.

1 INTRODUCTION

Rapid expansion of global economy is leading to intense

competition in global market which has further resulted

in challenging manufacturing environment with lower

product costs, shorter product life cycles and more

product variety. An effective scheduling system can play

a significant role in reducing inventory level and cycle

times while improving on-time delivery and the

utilization of critical resources. The importance of

manufacturing scheduling can be noted from the

extensive studies of scheduling algorithms for job shop

problems in the past four decades by researchers and

practitioners (Blackstone et al. 1982, Rajendran and

Holthaus 1999, Jain and Meeran 1999).

Scheduling is defined as the allocation of limited

resources to tasks over time to meet an objective

(Pinedo 1995). In a manufacturing environment,

resources are usually machines while tasks are

operations relating to jobs. A scheduling problem can

thus be characterized by a set of jobs and each job

consists of a set of operations that must satisfy specific

constraints such as machine capacity and precedence

constraints. The objective of scheduling is to determine

the job schedules that optimize a measure of

performance (Rajendran and Holthaus 1999).

Commonly known performance measures are utilization,

tardiness, cycle time and throughput. For our work, we

focus on makespan, which is closely related to the

utilization. Improving makespan will lead to better

throughput rate and subsequently lower product cost.

Due to factorial explosion of possible solutions, job

shop scheduling (JSP) problems are a member of a large

class of intractable numerical problems known as NP-

hard (Pinedo 1995, Jain and Meeran 1999). Solution

techniques for shop scheduling problems range from

simple priority dispatching rules such as SPT (shortest

processing time) to more elaborate techniques such as

branch and bound (Brucker et al. 1994), tabu search

(Nowicki and Smutnicki 1996), shifting bottleneck

procedure (Balas and Vazacopoulos 1998), simulated

annealing (Van Laarhoven et al. 1992) and ant colony

(Blum and Sampels 2004, Campos et al. 2001). Priority

dispatching rules are commonly deployed in industry

due to their ease of implementation, speed and

flexibility. However, the performance of a dispatching

rule is highly dependent on various shop factors (Baker

1984), and no single rule can distinctively dominates

others (Park et al. 1997).

Branch and bound algorithms are exact methods for

finding global optimal solutions, but these methods

often require excessive computation time. In

comparison, approximate methods based on meta-

heuristics such as tabu search (TS) and shifting

bottleneck procedure (SBP) have been more

successfully applied to shop scheduling problems. A

meta-heuristic is an iterative solution procedure, which

incorporates secondary heuristics into a more

sophisticated framework (Glower 1986). The family of

meta-heuristics includes deterministic or probabilistic

learning methods. TS and SBP fall in the first category,

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

while simulated annealing and ant colony belong to the

second category.

This work aims to explore a probabilistic learning

approach, which is based on nectar collection in honey

bee colonies, to job shop scheduling problems. This

research is inspired by the work done by Nakrani and

Tovey (2004), on using a honey bee algorithm for

dynamic allocation of Internet servers. In their

algorithm, servers and HTTP request queues in an

Internet server colony are modeled as foraging bees and

flower patches respectively. In another bee colony

related paper by Teodorovic and Dell'orco (2005), bee

colony optimization (BCO) approaches with fuzzy sets

are used to solve ride-matching problem in the

transportation domain. It is concluded that models based

on swarm intelligence principles could contribute to the

solution of complex engineering and management

problems.

Our proposed algorithm is based on local search

procedure by using an efficient neighborhood structure,

which is adapted from work done by Nowicki and

Smutnicki (1996). The scheduling approach is an

iterative improvement method that starts from a given

initial solution, and continuously looks for better

solutions. This work is a further activity of our earlier

work (Chong et al. 2006) on the honey bee foraging

model. The ealier algorithm always constructs shop

schedules from scratch based on preferred operation

sequence. To compare the performance of the honey bee

algorithm, a computational study is done on a set of

benchmark problems.

This paper first describes how honey bee colonies

deploy forager bees to collect nectar amongst diverse

flower patches in Section 2. The concept of

neighborhood search is then described in Section 3. In

Section 4, the mappings of job shop scheduling meta-

heuristics to honey bees forager deployment is given.

Subsequently, the implementation details are discussed

in Section 5. This is followed by a comparative study on

the performance of the honey bee approaches on the

benchmark problems in Section 6. The paper ends with

conclusions and future work in Section 7.

2 HONEY BEE COLONY

Colonies of social insects such as bees have instinct

ability known as swarm intelligence (Nakrani and Tovey

2004, Teodorovic and Dell'orco 2005). This highly

organized behavior enables the colonies of insects to

solve problems beyond the capability of individual

members by functioning collectively and interacting

primitively amongst members of the group. In a honey

bee colony for example, this behavior allows bees to

explore the environment in search of flower patches

(food sources) and then indicate the food source to the

other bees of the colony when they return to the hive.

Such a colony is characterized by self-organization,

adaptiveness and robustness.

Seeley (1995) proposed a behavioral model of self-

organization for a colony of honey bees. In the model,

forager bees visiting flower patches return to the hive

with nectar as well as a profitability rating of respective

patches. The collected nectar provides feedback on the

current status of nectar flow into the hive. The

profitability rating is a function of nectar quality, nectar

bounty and distance from the hive. The feedback sets a

response threshold for an enlisting signal which is

known as waggle dance, the length of which is

dependent on both the response threshold and the

profitability rating. The waggle dance is performed on

the dance floor where individual foragers can observe.

The foragers can randomly select a dance to observe and

follow from which they can learn the location of the

flower patch and leave the hive to forage. This self-

organized model enables proportionate feedback on

goodness of food sources.

3 NEIGHBORHOOD SEARCH

Neighborhood or local search moves from an initial

solution by a sequence of neighborhood changes, which

improve each time the value of the objective function until

a local optimum is found (Hansen and Mladenović 2001).

The connectivity property pertaining to local search

states that starting with any feasible solution, there exists

some sequence of moves that will reach an optimal

solution.

Neighborhood structures play a very important role in

local search as the time complexity of a search depends

on the size of the neighborhood and the computational

cost of the moves (Ten Eikelder et al. 1997). In the

history of JSP problems, many neighborhood structures

have been identified. The most general neighborhood

definition consists of swapping any adjacent pair of

operations on the same machine. This neighborhood is

large and not all moves will lead to feasible schedules.

Van Laarhooven et al. (1992) derived an improved

neighborhood structure that consists only of those moves

that involve swapping any adjacent pair of critical

operations which require the same machine. Swapping

two adjacent non critical operations will not lead to

shorter critical path as the path in the original schedule

still exists in the new schedule. Matsuo et al. (1988)

further proved that swapping two critical adjacent

operations i and j will never give shorter critical path if

machine preceding operation of i and succeeding

operation of j are also critical.

A subsequent neighborhood enhancement is defined by

Nowicki and Smutnicki (1996). This neighborhood is

based on the concept of blocks. A block is a maximal

sequence (i.e. of at least one) of adjacent critical

operations that require the same machine. They proved

that swapping the first or last two operations on the first

or last block respectively will never lead to an

immediate improvement in the makespan if these blocks

contain more than two operations. For our bee colony

algorithm, we make use of this neighborhood structure.

4 HONEY BEE COLONY ALGORITHMS

This section details algorithms to perform job shop

scheduling inspired by the behavior of honey bee

colony. There are two major characteristics of the bee

colony in searching for food sources: waggle dance and

forage (or nectar exploration). We will discuss in

separate sub-sections on how we map these

characteristics of a bee colony to job shop scheduling.

4.1 Waggle Dance

A forager fi on return to the hive from nectar exploration

will attempt with probability p (see Table 2) to perform

waggle dance on the dance floor with duration D = diA,

where di changes with profitability rating while A

denotes waggle dance scaling factor. A forager will also

attempt with probability ri to observe and follow a

randomly selected dance. The probability ri is dynamic

and also changes with profitability rating. If a forager

chooses to follow a selected dance, it will use the ‘path’

taken by the forager performing the dance to guide its

direction for flower patches. We refer this path as the

‘preferred path’ of the forager. The preferred path for a

forager is a series of landmarks from a source (hive) to a

destination (nectar). While a forager will try to follow

the preferred path, it may stray off the preferred path

from time to time.

For job shop scheduling, the profitability rating is

related to the objective function, which in our case, is

makespan. Let Pfi denote the profitability rating for a

forager at time t, it is given by:

ii
C

Pf
max

1
=

where,
iCmax = makespan of the schedule generated by a

forager fi at time t.

The bee colony’s average profitability rating, Pfcolony is

given by:

∑ =
=

n

i icolony
Cn

Pf
1

max

11

where,

 n = number of waggle dance at any time t (we

only consider those bees that are dancing when

computing profitability rating). Note that this represents

a sample of the colony’s actual profitability

The dance duration, di, is given by:

colony

i

i
Pf

Pf
d =

The probability ri of following a path is adjusted

according to the profitability ratings of a forager and the

colony based on the lookup Table 1 (adopted from

Nakrani and Tovey 2004). Essentially, a forager is more

likely to randomly observe and follow a waggle dance

on the dance floor if its profitability rating is low as

compared to the colony’s.

Table 1: Lookup Table for Adjusting Probability of

following a Waggle Dance

4.2 Forage (Nectar Exploration)

For nectar foraging, a population of foragers will

cyclically construct solutions for job shop scheduling

problems. The foraging task is based on a neighborhood

structure. In the algorithm, each forager keeps a list of

‘preferred’ neighborhood moves to guide its search for

better solutions. A move denotes two successive

operations in a critical block, that can potentially

improve the objective function. Each forager maintains

its own preferred move list, which can be adopted by

other foragers during a waggle dance. We define this set

of preferred moves as ijψ . The list of moves is updated

whenever a move is taken by the forager.

The foraging algorithm for each forager starts with an

initial schedule generated by a priority dispatching rule,

which is selected from a pre-defined set. By having a set

of dispatching rules, a better diversification in searching

can be achieved. A list of allowed moves, defined as

ijϕ , is then derived from the generated schedule. These

moves are based on the neighborhood structure of

Nowicki and Smutnicki (1996). Denoting the number of

elements in a set or list as # , it can be implied that

()
ijij ϕψ ∩# = 1 or 0.

A forager subsequently chooses a move from the

allowed move list (ijϕ) according to the following rule

at time t:

Profitability Rating ri

Pfi < 0.5Pfcolony 0.60

0.5Pfcolony ≤ Pfi < 0.65Pfcolony 0.20

0.65Pfcolony ≤ Pfi < 0.85Pfcolony 0.02

0.85Pfcolony ≤ Pfi 0.00

()
()[] []
()[] []∑

∈

⋅

⋅
=

ijj

ijij

ijij

ij
at

at
tP

ϕ

βα

βα

ρ

ρ

where,

ijρ = rating of moveij of operations i and j

(operation i precedes operation j)

ija = attractiveness of moveij

ijP = probability to apply moveij

The rating ijρ of a moveij is provided by:

()
() ()








∉
∩−

∩⋅−

∈

=
ijij

ijijij

ijij

ijij

ij
move

move

ψ
ϕψψ

ϕψγ

ψγ

ρ
 ,

##

#1

 ,

where,

γ = value to be assigned to moves found in the list

of preferred moves that are used to guide a

forager, γ < 1.0.

It should be noted that for the first nectar exploration

expedition by the foragers, ijρ will be assigned the

same value for all allowed moves (since ()
ijψ# = 0,

and thus ()
ijij ϕψ ∩# = 0).

The derivation of the attractiveness is based on the

localized effect of a move. The computation of the

attractiveness of a move is defined as follows:









≤−

>
=

0,

0,
1

ijij

ij

ijij

nn

n
na

where,

ijn = localized net change of start and end times of

neighborhood

The localized net change is associated with the sum of

the start time changes of the operation succeeding

operation j on the same machine, and the operations

succeeding operations i and j of the respective jobs,

before and after operation moveij. Figure 1 shows the

schedules before and after move {Oj,k, Op,q}. Note the

start time changes for operations Ox,y, Oj,k+1 and Op,q+1.

Op,q-1

Oj,k-1

Oj,kOa,b Op,q

ma

mb

mc

Time

md

me

Ox,y

Oj,k+1

Op,q+1

(a) Schedule before operation move {Oj,k, Op,q}

Oe,f

Op,q-1

Oj,k-1

Oj,kOa,b Op,q

ma

mb

mc

Time

md

me

Ox,y

Oj,k+1

Op,q+1

(b) Schedule after operation move {Oj,k, Op,q}

Oe,f

Op,q-1

Oj,k-1

Oj,kOa,b Op,q

ma

mb

mc

Time

md

me

Ox,y

Oj,k+1

Op,q+1

(a) Schedule before operation move {Oj,k, Op,q}

Oe,f

Op,q-1

Oj,k-1

Oj,kOa,b Op,q

ma

mb

mc

Time

md

me

Ox,y

Oj,k+1

Op,q+1

(a) Schedule before operation move {Oj,k, Op,q}

Oe,f

Op,q-1

Oj,k-1

Oj,kOa,b Op,q

ma

mb

mc

Time

md

me

Ox,y

Oj,k+1

Op,q+1

(b) Schedule after operation move {Oj,k, Op,q}

Oe,f

Op,q-1

Oj,k-1

Oj,kOa,b Op,q

ma

mb

mc

Time

md

me

Ox,y

Oj,k+1

Op,q+1

(b) Schedule after operation move {Oj,k, Op,q}

Oe,f

Figure 1: Schedules Before and After an Operation

Move. (a) Schedule Before an Operation Move; (b)

Schedule After an Operation Move

Once a move in the neighborhood is selected, the

selected move is evaluated exactly by updating the start

and end times of all the operations after the move is

performed, and the makespan for the new schedule is

computed. The list of preferred moves for the forager

under consideration will be updated accordingly. The

parameters α and β adjust the relative importance of the

weight in the move that is found in the list of preferred

moves versus the attractiveness of a move.

This foraging algorithm differs from our earlier foraging

algorithm (Chong et al. 2006). The earlier algorithm is

based on a list of preferred operations instead of

preferred moves, and the attractiveness of the operation

is related to its processing time. The previous algorithm

always construct new schedules from scratch, based on a

list of preferred operations for the foragers.

4.3 Algorithmic Framework

A combination of waggle dance and forage algorithms

constitutes one cycle (or iteration) in this evolutionary

computation approach. This computation will run for a

specific number of iterations, Nmax. The global best

solution after the Nmax iterations will be presented as the

final schedule at the end of run. In the algorithm, there

are l number of honey bees, each of these bees will first

observe the waggle dance to select a path to follow. The

bees will then leave the hive to forage for nectar. The

global best solution will be updated and saved.

5 IMPLEMENTATION DETAILS

The honey bee colony algorithms are developed using

Java. A list of elite solutions is used to denote foragers

that are performing waggle dance on the dance floor.

The duration of a waggle dance is linked to the number

of iterations that an elite solution is to be kept in the list.

Each elite solution contains forager’s preferred list of

moves, its makespan, maximum number of iterations

allowed and the current iteration number (i = 1 to Nmax)

when a solution is added into the list. After every

foraging cycle, the list is updated to remove elite

solutions that have exceeded the maximum number of

iterations allowed.

In our implementation, the list of preferred moves is

stored in a lookup table. This table contains moves that

link two operations together. Each operation can only be

linked to another operation, and this link may be

changed or updated when a a new move is selected and

taken. The initial solutions are generated using several

priority dispatching rules. These rules are FIFO (first in

first out), SPT (shortest processing time), SRPT

(shortest remaining processing time), MWKR (most

work remaining), MOR (most operations remaining) and

RND (random dispatching, i.e. randomly select a job).

The rules are randomly selected by the foragers.

6 EXPERIMENTAL EVALUATION

In this section we describe the benchmark problems,

benchmark algorithms and present experimental results.

6.1 Problem Instances

The job shop scheduling is a very well studied problem

and has a large number of standard benchmarks for

which the optimal value or an upper bound is known.

We have selected a set of 82 job shop problem instances

based on the paper by Ganesan et al. (2004). The sizes

of these problems range from 6 to 50 jobs and 5 to 20

machines.

6.2 Benchmark Algorithms

To evaluate the performance of the proposed bee colony

algorithm, we have included four other approaches in

our experimental study. The first is our previous version

of bee colony foraging model based on preferred

operation path (Chong et al. 2006). The second is an ant

colony algorithm by Dorigo et al. (1996). The third

algorithm is a tabu search algorithm developed by

Nowicki and Smutnicki (1996). The fourth is a shifting

bottleneck procedure (SBP) proposed by Adams et al.

(1988). The latter three algorithms are programmed

based on the information from the published papers.

6.3 Experiments and Results

Since bee colony and ant colony are probability based

algorithms, a total of 5 replication runs have been

performed for each job shop problem to obtain average

results. To differentiate between the two versions of our

bee colony algorithms, we term the previous version in

the paper by Chong et al. (2006) as bee 1 while the new

version as bee 2. We have performed fine tuning on the

parameters for some of the algorithms, and the final

settings of major parameters are presented in Table 2.

The parameter tunning is performed by changing each

individual parameter on a range of discrete values while

fixing other parameters. Based on the experiments, we

then choose a better value of each of these parameters.

In general, the performance of the algorithms are

dependent (or sensitive) to the values of these

parameters. Most of the values are kept the same for

both bee 1 and bee 2. An example is the dance duration,

which is associated with the the waggle dance scaling

factor, A is kept to be the same value for bee 1 and bee

2. Note that no parameter settings are required for SBP.

Table 2: Parameter Settings for the Algorithms

Parameter Bee 1 Bee 2 Ant Tabu

Iterations, Nmax 200 1250 500 50

Population, l No. of

jobs

No. of

jobs

No. of

jobs

Alpha, α 1.0 1.0 1.0

Beta, β 1.0 1.0 1.0

Rating, ρij 0.99 0.99

Waggle dance scaling

factor, A

100 100

Probability to

perform waggle

dance, p

0.001 0.001

Evaporation

coefficient, ρ
 0.01

Max. no.. of elite

solution

20 20 20

Max. size of tabu list 8

Table 3 summarizes the relative performance in terms of

percentage pertaining to makespan for bee 1, bee 2, ant

colony, tabu search and shifting bottleneck heuristics.

The results show the average, minimum and maximum

percentage differences from the best known makespan

for the 82 job shop problems. The second last row

records the number of best solutions achieved among the

5 heuristics. The last row exhibits the relative execution

time for the 5 heuristics in comparison to the fastest

heuristic, bee 2.

Table 3: Relative Performance of Bee 1, Bee 2, Ant

Colony, Tabu Search and SBP

Relative

Improve-

ment

Bee 1 Bee 2 Ant Tabu SBP

Mean (%) 12.32 7.74 11.85 8.06 7.42

Min. (%) 0 0 0 0 0

Max. (%) 40.08 29.35 38.24 38.86 37.14

Best solutions 13 19 14 21 23

Execution

time

1.95x 1x 1.86x 1.25x 1.59x

From the results, bee 2 is ranked second in terms of

mean percentage improvement, falling behind SBP and

ranked first in terms of maximum percentage

improvement. Although bee 2 performs slightly worse

than SBP, bee 2 achieves its results in the shortest

execution time. In addition, SBP will terminate when

successive iterations do not give improved results. Thus

the results represent the best performance this version of

SBP can give and no further improvement possible even

with additional computation time available. In contrast,

other heuristics should improve with increasing

computation time. The better results of bee 2 as

compared to bee 1 can be attributed to the efficient

critical block neighborhoods and multiple initial

solutions generated by priority dispatching rules.

Although both bee 2 and tabu search use the same

neighborhood structure, the former is able to take

advantage of starting with multiple initial solutions due

to its inherently population-based approach.

Comparing the performance of peers, bee 1 and ant

colony heuristics, bee algorithm performs slightly worse

than ant algorithm in terms of mean and maximum

percentage improvement. The time taken to solve the

job shop problems for both heuristics is very similar

with ant colony being slightly faster. Evidently, both bee

1 and ant colony heuristics under perform bee 2, tabu

search and shifting bottleneck procedures primarily due

to: 1) solutions are always constructed from scratch; 2)

problems specific knowledge of job shop such as

neighborhood structure and machine bottlenecks is not

used in the heuristics.

7 CONCLUSIONS AND FUTURE WORK

We have implemented job shop scheduling algorithm

based on self-organization of honey bee colony for

solving job shop scheduling problems. The algorithm is

founded on neighborhood search based foraging. This

proposed algorithm outperforms the previous version of

our algorithm which always constructs new schedules

based on preferred operation sequence.

The experimental studies show that the effectiveness of

finding better solutions is dependent on the efficiency of

constructing new solutions and escaping local

optimums. Modifying previous solutions to obtain new

solutions (i.e. bee 2, tabu search and shifting bottleneck)

instead of constructing new solutions from scratch (i.e.

bee 1 and ant colony) performs better in terms of

makespan and computational time. The strategy of using

tabu list to avoid local optimums is observed to be more

effective as compared to probabilistic-based approaches.

Further, job shop problem related knowledge such as

neighborhood structure in tabu search and bee 2, and

machine bottlenecks in shifting bottleneck can result in

significant improvement in the performance of

heuristics.

With the performance of bee colony heuristics

comparable to well known heuristics such as tabu search

and shifting bottleneck, we intend to apply the bee

colony heuristic to more realistic semiconductor

manufacturing scheduling problems. One of the works

we intend to pursue is to deploy the algorithms in a

distributed computing environment using software

agents (Low et al. 2005).

REFERENCES

Adams, J., E. Balas, and D. Zawack. 1988. “The

Shifting Bottleneck Procedure for Job Shop

Scheduling.” Management Science, Vol.34, No.3,

391-401.

Baker, K.R. 1984. “Sequencing Rules and Due-date

Assignments in a Job Shop.” Management Science,

Vol.30, No.9, 1093-1104.

Balas, E. and A. Vazacopoulos. 1998. “Guided Local

Search with Shifting Bottleneck for Job Shop

Scheduling.” Management Science, Vol.44, No.2,

262-275.

Blackstone, J.H., D.T. Phillips and G.L. Hogg. 1982. “

A State-of-the-Art Survey of Dispatching Rules for

Manufacturing Job-Shop Operations.” International

Journal of Production Research Vol.20, No.1, 27-

45.

Blum, C. and M. Sampels. 2004. “An Ant Colony

Optimization Algorithm for Shop Scheduling

Problems.” Journal of Mathematical Modelling and

Algorithms, Vol.3, No.3, 285-308.

Brucker, P., B. Jurisch and B. Sievers. 1994. “A Branch

and Bound Algorithm for the Job Shop Scheduling

Problem.” Discrete Applied Mathematics, Vol.49,

No.1, 109-127.

Campos, M., E. Bonabeau, G. Théraulaz and J.-L.

Deneubourg. 2001. “Dynamic scheduling and

division of labor in social insects.” Adaptive

Behavior, Vol.8, No.2, 83-92.

Chong, C.S., Y.H. Low, A.I. Sivakumar, and K.L. Gay.

2006. “A Bee Colony Optimization Algorithm to Job

Shop Scheduling.” in Proceedings of the 2006

Winter Simulation Conference,

Dorigo, M., V. Maniezzo and A. Colorni. 1996. “Ant

System: Optimization by a Colony of Cooperating

Agents.” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, Vol.26, No.1, 29-

41.

Ganesan, V.K., A.I. Sivakumar, and G. Srinivasan.

2006. “Hierarchical Minimization of Completion

Time Variance and Makespan in Jobshops.”

Computers & Operations Research, Vol.33, No.5,

1345-1367.

Hansen, P. and N. Mladenović. 2001. “Variable

Neighborhood Search: Principles and Applications.”

European Journal of Operational Research,

Vol.130, No.3, 449-467.

Jain. A.S. and S. Meeran. 1999. “Deterministic Job

Shop Scheduling: Past, Present and Future.”

European Journal of Operational Research,

Vol.113, No.2, 390-434.

Low, Y.H., K.W. Lye, P. Lendermann, S.J. Turner, S.

Leo and R. Chin. 2005. “An Agent-based Approach

for Managing Symbiotic Simulation of

Semiconductor Assembly and Test Operations.” in

Proceedings of the 2005 International Conference

on Autonomous Agent and Multiagent Systems

(AAMAS), July 25-29, 2005, Utrecht, The

Netherlands.

Matsuo, H., C.J. Suh, and R.S. Sullivan. 1988. “A

Controlled Search Simulated Annealing Method for

the General Job-Shop Scheduling Problem.”

Working Paper #03-04-88 (1988), Graduate School

of Business, The University of Texas at Aus-tin,

Austin, Texas, USA.

Nakrani, S. and C. Tovey. 2004. “On Honey Bees and

Dynamic Allocation in Internet Hosting Centers.”

Adaptive Behavior, Vol.12, No.3-4, 223-240.

Nowicki, E. and C. Smutnicki. 1996. “A Fast Taboo

Search Algorithm for the Job Shop Problem.”

Management Science, Vol.42, No.6, 797-813.

Park, S.C., N. Raman and M.J. Shaw. 1997. “Adaptive

scheduling in Dynamic Flexible Manufacturing

Systems: a Dynamic Rule Selection Approach.”

IEEE Transactions Robotics and Automation,

Vol.13 No.4 , 486-502.

Pinedo, M. 1995. Scheduling Theory, Algorithms, and

Systems, Prentice-Hall, Englewood Cliffs, NJ., 1995

Rajendran, C. and O. Holthaus. 1999. “A Comparative

Study of Dispatching Rules in Dynamic Flowshops

and Jobshops.” European Journal of Operational

Research, Vol.116, No.1, 156-170.

Seeley, T.D., The Wisdom of the Hive: The Social

Physiology of Honey Bee Colonies, Harward

University Press, Feb. 1996.

Teodorovic, D. and M. Dell'orco. 2005. “Bee colony

optimization - A cooperative learning approach to

complex transportation problems.” Advanced OR

and AI Methods in Transportation, 51-60.

Ten Eikelder, H.M.M., B.J.M. Aarts, M.G.A.

Verhoeven and E.H.L. Aarts. 1997. “Sequential and

Parallel Local Search Algorithms for Job Shop

Scheduling.” In MIC’97 2nd International

Conference on Meta-heuristics, Sophia-Antipolis,

France, Jul 21-24, 75-80.

Van Laarhooven, P.J.M., E.H.L. Aarts and J.K. Lenstra.

1992. “Job Shop Scheduling by Simulated

Annealing.” Operations Research, Vol.40, No.1,

113-125.

AUTHOR BIOGRAPHIES

CHIN SOON CHONG obtained his degree in

Electrical and Electronics Engineering from the City

University of London, UK. He obtained his Master of

Engineering in Computer Integrated Manufacturing

from Nanyang Technological University, Singapore. He

has been involved in simulation, scheduling and

optimization related projects in logistic and

manufacturing IT domains. His current research interest

includes simulation, planning, scheduling, optimization

in the area of manufacturing, logistic, and supply chain.

His e-mail address is : cschong@simtech.a-star.edu.sg.

MALCOLM YOKE HEAN LOW is an Assistant

Professor in the School of Computer Engineering at the

Nanyang Technological University (NTU), Singapore.

He received his Bachelor and Master of Applied Science

in Computer Engineering from NTU in 1997 and 1999

respectively. In 2002, he received his D.Phil. degree in

Computer Science from Oxford University. His current

research interests are in the application of

parallel/distributed simulation, grid computing and agent

technology for the modeling, simulation, analysis and

optimization of complex systems. His e-mail address is:

yhlow@ntu.edu.sg and his web-page can be found at

www.ntu.edu.sg/home/yhlow/.

APPA IYER SIVAKUMAR (Senior member IIE) is an

Associate Professor in the School of Mechanical and

Production Engineering at Nanyang Technological

University (NTU), Singapore, and a Fellow of

Singapore Massachusetts Institute of Technology (MIT)

Alliance (SMA). His research interests are in the area of

simulation-based optimization of manufacturing

performance, supply chain, and dynamic schedule

optimization. Prior to joining NTU, he held various

management positions including technical manager and

project manager for nine years at Lucas Systems and

Engineering and Lucas Automotive, UK. He received a

Bachelors of Engineering from University of Bradford,

UK and a PhD in Manufacturing Systems Engineering

from University of Bradford, UK. His e-mail address is :

msiva@ntu.edu.sg and his web-page can be found at

www.ntu.edu.sg/home/MSiva/.

KHENG LENG GAY obtained his B. Eng, M. Eng and

PhD degrees at the University of Sheffield, England. He

was awarded the Grouped Scholarship in Engineering

and Metallurgy by the University of Sheffield from 1967

to 1970. Since obtaining his PhD, he has been involved

in Education and R&D working in institutions such as

Singapore University (1972-1979), Rutherford and

Appleton Laboratory (England, 1979-1982), NTU

(1982-1995 and 1999-present) and Singapore Institute

of Manufacturing Technology (1989-1999). He has also

been actively involved in promoting innovation in

Singapore through work in various committees: Science

Quiz (MOE), Science Centre Board, National

CAD/CAM (NCB), Tan Kah Kee Young Inventors

Award (TKK Foundation & NSTB) and so on. Currently

Professor Gay is in the School of EEE at NTU. He has

more than a hundred publications in journals,

conference proceedings and books. His e-mail address is

: eklgay@ntu.edu.sg> and his Web-page can be found at

www.ntu.edu.sg/eee/icis/cv/robertgay.html.

