
 

 

USING A BEE COLONY ALGORITHM FOR NEIGHBORHOOD SEARCH 

IN JOB SHOP SCHEDULING PROBLEMS 
 

Chin Soon Chong Malcolm Yoke Hean Low 

Planning and Operations Management School of Computer Engineering 

Singapore Institute of Manufacturing Technology Nanyang Technological University 

71 Nanyang Drive, 638075, Singapore Nanyang Avenue, 639798, Singapore 

Email: cschong@simtech.a-star.edu.sg Email: yhlow@ntu.edu.sg 

 

Appa Iyer Sivakumar Kheng Leng Gay 

School of Mechanical and Production Engineering School of Electrical and Electronics Engineering 

Nanyang Technological University Nanyang Technological University 

Nanyang Avenue, 639798, Singapore Nanyang Avenue, 639798, Singapore 

Email: msiva@ntu.edu.sg Email: eklgay@ntu.edu.sg 

 

 

 

KEYWORDS 

Scheduling, honey bee colony, neighborhood search. 

 
ABSTRACT 

This paper describes a population-based approach that 

uses a honey bees foraging model to solve job shop 

scheduling problems. The algorithm applies an efficient 

neighborhood structure to search for feasible solutions 

and iteratively improve on prior solutions. The initial 

solutions are generated using a set of priority 

dispatching rules. Experimental results comparing the 

proposed honey bee colony approach with existing 

approaches such as ant colony, tabu search and shifting 

bottleneck procedure on a set of job shop problems are 

presented. The results indicate the performance of the 

proposed approach is comparable to other efficient 

scheduling approaches. 

 
1 INTRODUCTION 

Rapid expansion of global economy is leading to intense 

competition in global market which has further resulted 

in challenging manufacturing environment with lower 

product costs, shorter product life cycles and more 

product variety. An effective scheduling system can play 

a significant role in reducing inventory level and cycle 

times while improving on-time delivery and the 

utilization of critical resources. The importance of 

manufacturing scheduling can be noted from the 

extensive studies of scheduling algorithms for job shop 

problems in the past four decades by researchers and 

practitioners (Blackstone et al. 1982, Rajendran and 

Holthaus 1999, Jain and Meeran 1999).  

 

Scheduling is defined as the allocation of limited 

resources to tasks over time to meet an objective 

(Pinedo 1995). In a manufacturing environment, 

resources are usually machines while tasks are 

operations relating to jobs. A scheduling problem can 

thus be characterized by a set of jobs and each job 

consists of a set of operations that must satisfy specific 

constraints such as machine capacity and precedence 

constraints. The objective of scheduling is to determine 

the job schedules that optimize a measure of 

performance (Rajendran and Holthaus 1999). 

Commonly known performance measures are utilization, 

tardiness, cycle time and throughput. For our work, we 

focus on makespan, which is closely related to the 

utilization. Improving makespan will lead to better 

throughput rate and subsequently lower product cost. 

 

Due to factorial explosion of possible solutions, job 

shop scheduling (JSP) problems are a member of a large 

class of intractable numerical problems known as NP-

hard (Pinedo 1995, Jain and Meeran 1999). Solution 

techniques for shop scheduling problems range from 

simple priority dispatching rules such as SPT (shortest 

processing time) to more elaborate techniques such as 

branch and bound (Brucker et al. 1994), tabu search 

(Nowicki and Smutnicki 1996), shifting bottleneck 

procedure (Balas and Vazacopoulos 1998), simulated 

annealing (Van Laarhoven et al. 1992) and ant colony 

(Blum and Sampels 2004, Campos et al. 2001). Priority 

dispatching rules are commonly deployed in industry 

due to their ease of implementation, speed and 

flexibility. However, the performance of a dispatching 

rule is highly dependent on various shop factors (Baker 

1984), and no single rule can distinctively dominates 

others (Park et al. 1997). 

 

Branch and bound algorithms are exact methods for 

finding global optimal solutions, but these methods 

often require excessive computation time. In 

comparison, approximate methods based on meta-

heuristics such as tabu search (TS) and shifting 

bottleneck procedure (SBP) have been more 

successfully applied to shop scheduling problems. A 

meta-heuristic is an iterative solution procedure, which 

incorporates secondary heuristics into a more 

sophisticated framework (Glower 1986). The family of 

meta-heuristics includes deterministic or probabilistic 

learning methods. TS and SBP fall in the first category, 
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while simulated annealing and ant colony belong to the 

second category.  

 

This work aims to explore a probabilistic learning 

approach, which is based on nectar collection in honey 

bee colonies, to job shop scheduling problems. This 

research is inspired by the work done by Nakrani and 

Tovey (2004), on using a honey bee algorithm for 

dynamic allocation of Internet servers. In their 

algorithm, servers and HTTP request queues in an 

Internet server colony are modeled as foraging bees and 

flower patches respectively. In another bee colony 

related paper by Teodorovic and Dell'orco (2005), bee 

colony optimization (BCO) approaches with fuzzy sets 

are used to solve ride-matching problem in the  

transportation domain. It is concluded that models based 

on swarm intelligence principles could contribute to the 

solution of complex engineering and management 

problems. 

 

Our proposed algorithm is based on local search 

procedure by using an efficient neighborhood structure, 

which is adapted from work done by Nowicki and 

Smutnicki (1996). The scheduling approach is an 

iterative improvement method that starts from a given 

initial solution, and continuously looks for better 

solutions. This work is a further activity of our earlier 

work (Chong et al. 2006) on the honey bee foraging 

model. The ealier algorithm always constructs shop 

schedules from scratch based on preferred operation 

sequence. To compare the performance of the honey bee 

algorithm, a computational study is done on a set of 

benchmark problems. 

 

This paper first describes how honey bee colonies 

deploy forager bees to collect nectar amongst diverse 

flower patches in Section 2. The concept of 

neighborhood search is then described in Section 3. In 

Section 4, the mappings of job shop scheduling meta-

heuristics to honey bees forager deployment is given. 

Subsequently, the implementation details are discussed 

in Section 5. This is followed by a comparative study on 

the performance of the honey bee approaches on the 

benchmark problems in Section 6. The paper ends with 

conclusions and future work in Section 7. 

 
2 HONEY BEE COLONY 

Colonies of social insects such as bees have instinct 

ability known as swarm intelligence (Nakrani and Tovey 

2004, Teodorovic and Dell'orco 2005). This highly 

organized behavior enables the colonies of insects to 

solve problems beyond the capability of individual 

members by functioning collectively and interacting 

primitively amongst members of the group. In a honey 

bee colony for example, this behavior allows bees to 

explore the environment in search of flower patches 

(food sources) and then indicate the food source to the 

other bees of the colony when they return to the hive. 

Such a colony is characterized by self-organization, 

adaptiveness and robustness. 

 

Seeley (1995) proposed a behavioral model of self-

organization for a colony of honey bees. In the model, 

forager bees visiting flower patches return to the hive 

with nectar as well as a profitability rating of respective 

patches. The collected nectar provides feedback on the 

current status of nectar flow into the hive. The 

profitability rating is a function of nectar quality, nectar 

bounty and distance from the hive. The feedback sets a 

response threshold for an enlisting signal which is 

known as waggle dance, the length of which is 

dependent on both the response threshold and the 

profitability rating. The waggle dance is performed on 

the dance floor where individual foragers can observe. 

The foragers can randomly select a dance to observe and 

follow from which they can learn the location of the 

flower patch and leave the hive to forage. This self-

organized model enables proportionate feedback on 

goodness of food sources.  

 
3 NEIGHBORHOOD SEARCH 

Neighborhood or local search moves from an initial 

solution by a sequence of neighborhood changes, which 

improve each time the value of the objective function until 

a local optimum is found (Hansen and Mladenović 2001). 

The connectivity property pertaining to local search 

states that starting with any feasible solution, there exists 

some sequence of moves that will reach an optimal 

solution. 

 

Neighborhood structures play a very important role in 

local search as the time complexity of a search depends 

on the size of the neighborhood and the computational 

cost of the moves (Ten Eikelder et al. 1997). In the 

history of JSP problems, many neighborhood structures 

have been identified. The most general neighborhood 

definition consists of swapping any adjacent pair of 

operations on the same machine. This neighborhood is 

large and not all moves will lead to feasible schedules. 

 

Van Laarhooven et al. (1992) derived an improved 

neighborhood structure that consists only of those moves 

that involve swapping any adjacent pair of critical 

operations which require the same machine. Swapping 

two adjacent non critical operations will not lead to 

shorter critical path as the path in the original schedule 

still exists in the new schedule. Matsuo et al. (1988) 

further proved that swapping two critical adjacent 

operations i and j will never give shorter critical path if 

machine preceding operation of i and succeeding 

operation of j are also critical.  

 

A subsequent neighborhood enhancement is defined by 

Nowicki and Smutnicki (1996). This neighborhood is  

based on the concept of blocks. A block is a maximal 

sequence (i.e. of at least one) of adjacent critical 



 

 

operations that require the same machine. They proved 

that swapping the first or last two operations on the first 

or last block respectively will never lead to an 

immediate improvement in the makespan if these blocks 

contain more than two operations. For our bee colony 

algorithm, we make use of this neighborhood structure. 

 
4 HONEY BEE COLONY ALGORITHMS 

 

This section details algorithms to perform job shop 

scheduling inspired by the behavior of honey bee 

colony. There are two major characteristics of the bee 

colony in searching for food sources: waggle dance and 

forage (or nectar exploration). We will discuss in 

separate sub-sections on how we map these 

characteristics of a bee colony to job shop scheduling. 

 
4.1 Waggle Dance 

A forager fi on return to the hive from nectar exploration 

will attempt with probability p (see Table 2) to perform 

waggle dance on the dance floor with duration D = diA, 

where di changes with profitability rating while A 

denotes waggle dance scaling factor. A forager will also 

attempt with probability ri to observe and follow a 

randomly selected dance. The probability ri is dynamic 

and also changes with profitability rating. If a forager 

chooses to follow a selected dance, it will use the ‘path’ 

taken by the forager performing the dance to guide its 

direction for flower patches. We refer this path as the 

‘preferred path’ of the forager. The preferred path for a 

forager is a series of landmarks from a source (hive) to a 

destination (nectar). While a forager will try to follow 

the preferred path, it may stray off the preferred path 

from time to time. 

 

For job shop scheduling, the profitability rating is 

related to the objective function, which in our case, is 

makespan. Let Pfi denote the profitability rating for a 

forager at time t, it is given by: 
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where, 
iCmax  = makespan of the schedule generated by a 

forager fi at time t. 

 

The bee colony’s average profitability rating, Pfcolony is 

given by: 
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where, 

  n  = number of waggle dance at any time t (we 

only consider those bees that are dancing when 

computing profitability rating). Note that this represents 

a sample of the colony’s actual profitability 

 

The dance duration, di, is given by: 
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The probability ri of following a path is adjusted 

according to the profitability ratings of a forager and the 

colony based on the lookup Table 1 (adopted from 

Nakrani and Tovey 2004). Essentially, a forager is more 

likely to randomly observe and follow a waggle dance 

on the dance floor if its profitability rating is low as 

compared to the colony’s.  

 

Table 1: Lookup Table for Adjusting Probability of 

following a Waggle Dance 

 

 
4.2 Forage (Nectar Exploration) 

For nectar foraging, a population of foragers will 

cyclically construct solutions for job shop scheduling 

problems. The foraging task is based on a neighborhood 

structure. In the algorithm, each forager keeps a list of 

‘preferred’ neighborhood moves to guide its search for 

better solutions. A move denotes two successive 

operations in a critical block, that can potentially 

improve the objective function. Each forager maintains 

its own preferred move list, which can be adopted by 

other foragers during a waggle dance. We define this set 

of preferred moves as ijψ . The list of moves is updated 

whenever a move is taken by the forager. 

 

The foraging algorithm for each forager starts with an 

initial schedule generated by a priority dispatching rule, 

which is selected from a pre-defined set. By having a set 

of dispatching rules, a better diversification in searching 

can be achieved. A list of allowed moves, defined as 

ijϕ , is then derived from the generated schedule. These 

moves are based on the neighborhood structure of 

Nowicki and Smutnicki (1996). Denoting the number of 

elements in a set or list as # , it can be implied that 

( )
ijij ϕψ ∩# = 1 or 0. 

 

A forager subsequently chooses a move from the 

allowed move list ( ijϕ ) according to the following rule 

at time t: 

 

Profitability Rating ri 

Pfi < 0.5Pfcolony 0.60 

0.5Pfcolony ≤ Pfi < 0.65Pfcolony 0.20 

0.65Pfcolony ≤ Pfi < 0.85Pfcolony 0.02 

0.85Pfcolony ≤ Pfi  0.00 
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where, 

ijρ  = rating of moveij of operations i and j 

(operation i precedes operation j) 

ija  = attractiveness of moveij 

ijP  = probability to apply moveij 

The rating ijρ  of a moveij is provided by: 
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where, 

γ  = value to be assigned to moves found in the list 

of preferred moves that are used to guide a 

forager, γ  < 1.0. 

 

It should be noted that for the first nectar exploration 

expedition by the foragers, ijρ  will be assigned the 

same value for all allowed moves (since ( )
ijψ#  = 0, 

and thus ( )
ijij ϕψ ∩#  = 0).  

 

The derivation of the attractiveness is based on the 

localized effect of a move. The computation of the 

attractiveness of a move is defined as follows: 
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where, 

ijn  = localized net change of start and end times of 

neighborhood  

 

The localized net change is associated with the sum of 

the start time changes of the operation succeeding 

operation j on the same machine, and the operations 

succeeding operations i and j of the respective jobs, 

before and after operation moveij. Figure 1 shows the 

schedules before and after move {Oj,k, Op,q}. Note the 

start time changes for operations Ox,y, Oj,k+1 and Op,q+1. 
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Figure 1: Schedules Before and After an Operation 

Move. (a) Schedule Before an Operation Move; (b) 

Schedule After an Operation Move 

 

Once a move in the neighborhood is selected, the 

selected move is evaluated exactly by updating the start 

and end times of all the operations after the move is 

performed, and the makespan for the new schedule is 

computed. The list of preferred moves for the forager 

under consideration will be updated accordingly. The 

parameters α and β adjust the relative importance of the 

weight in the move that is found in the list of preferred 

moves versus the attractiveness of a move. 

 

This foraging algorithm differs from our earlier foraging 

algorithm (Chong et al. 2006). The earlier algorithm is 

based on a list of preferred operations instead of 

preferred moves, and the attractiveness of the operation 

is related to its processing time. The previous algorithm 

always construct new schedules from scratch, based on a 

list of preferred operations for the foragers. 

 
4.3 Algorithmic Framework 

A combination of waggle dance and forage algorithms 

constitutes one cycle (or iteration) in this evolutionary 

computation approach. This computation will run for a 

specific number of iterations, Nmax. The global best 

solution after the Nmax iterations will be presented as the 

final schedule at the end of run. In the algorithm, there 

are l number of honey bees, each of these bees will first 

observe the waggle dance to select a path to follow. The 

bees will then leave the hive to forage for nectar. The 

global best solution will be updated and saved. 

 



 

 

5 IMPLEMENTATION DETAILS 

The honey bee colony algorithms are developed using 

Java. A list of elite solutions is used to denote foragers 

that are performing waggle dance on the dance floor. 

The duration of a waggle dance is linked to the number 

of iterations that an elite solution is to be kept in the list. 

Each elite solution contains forager’s preferred list of 

moves, its makespan, maximum number of iterations 

allowed and the current iteration number (i = 1 to Nmax) 

when a solution is added into the list. After every 

foraging cycle, the list is updated to remove elite 

solutions that have exceeded the maximum number of 

iterations allowed. 

 

In our implementation, the list of preferred moves is 

stored in a lookup table. This table contains moves that 

link two operations together. Each operation can only be 

linked to another operation, and this link may be 

changed or updated when a a new move is selected and 

taken. The initial solutions are generated using several 

priority dispatching rules. These rules are FIFO (first in 

first out), SPT (shortest processing time), SRPT 

(shortest remaining processing time), MWKR (most 

work remaining), MOR (most operations remaining) and 

RND (random dispatching, i.e. randomly select a job). 

The rules are randomly selected by the foragers. 

 

6 EXPERIMENTAL EVALUATION 

In this section we describe the benchmark problems, 

benchmark algorithms and present experimental results. 

 

6.1 Problem Instances 

The job shop scheduling is a very well studied problem 

and has a large number of standard benchmarks for 

which the optimal value or an upper bound is known. 

We have selected a set of 82 job shop problem instances 

based on the paper by Ganesan et al. (2004). The sizes 

of these problems range from 6 to 50 jobs and 5 to 20 

machines.  

 

6.2 Benchmark Algorithms 

To evaluate the performance of the proposed bee colony 

algorithm, we have included four other approaches in 

our experimental study. The first is our previous version 

of bee colony foraging model based on preferred 

operation path (Chong et al. 2006). The second is an ant 

colony algorithm by Dorigo et al. (1996). The third 

algorithm is a tabu search algorithm developed by 

Nowicki and Smutnicki (1996). The fourth is a shifting 

bottleneck procedure (SBP) proposed by Adams et al. 

(1988). The latter three algorithms are programmed 

based on the information from the published papers. 

 

6.3 Experiments and Results 

Since bee colony and ant colony are probability based 

algorithms, a total of 5 replication runs have been 

performed for each job shop problem to obtain average 

results. To differentiate between the two versions of our 

bee colony algorithms, we term the previous version in 

the paper by Chong et al. (2006) as bee 1 while the new 

version as bee 2. We have performed fine tuning on the 

parameters for some of the algorithms, and the final 

settings of major parameters are presented in Table 2. 

The parameter tunning is performed by changing each 

individual parameter on a range of discrete values while 

fixing other parameters. Based on the experiments, we 

then choose a better value of each of these parameters. 

In general, the performance of the algorithms are 

dependent (or sensitive) to the values of these 

parameters. Most of the values are kept the same for 

both bee 1 and bee 2. An example is the dance duration, 

which is associated with the the waggle dance scaling 

factor, A is kept to be the same value for bee 1 and bee 

2. Note that no parameter settings are required for SBP.  

 

Table 2: Parameter Settings for the Algorithms 

 

Parameter Bee 1 Bee 2 Ant Tabu 

Iterations, Nmax 200 1250 500 50 

Population, l No. of 

jobs 

No. of 

jobs 

No. of 

jobs 

 

Alpha, α 1.0 1.0 1.0  

Beta, β 1.0 1.0 1.0  

Rating, ρij 0.99 0.99   

Waggle dance scaling 

factor, A 

100 100   

Probability to 

perform waggle 

dance, p 

0.001 0.001   

Evaporation 

coefficient, ρ 
  0.01  

Max. no.. of elite 

solution   

20 20  20 

Max. size of tabu list    8 

 

Table 3 summarizes the relative performance in terms of 

percentage pertaining to makespan for bee 1, bee 2, ant 

colony, tabu search and shifting bottleneck heuristics. 

The results show the average, minimum and maximum 

percentage differences from the best known makespan 

for the 82 job shop problems. The second last row 

records the number of best solutions achieved among the 

5 heuristics. The last row exhibits the relative execution 

time for the 5 heuristics in comparison to the fastest 

heuristic, bee 2. 

 

Table 3: Relative Performance of Bee 1, Bee 2, Ant 

Colony, Tabu Search and SBP 

 

Relative 

Improve-

ment 

Bee 1 Bee 2 Ant Tabu  SBP 

Mean (%) 12.32 7.74 11.85 8.06 7.42 

Min. (%) 0 0 0 0 0 

Max. (%) 40.08 29.35 38.24 38.86 37.14 

Best solutions 13 19 14 21 23 

Execution 

time 

1.95x 1x 1.86x 1.25x 1.59x 



 

 

 

From the results, bee 2 is ranked second in terms of 

mean percentage improvement, falling behind SBP and 

ranked first in terms of maximum percentage 

improvement. Although bee 2 performs slightly worse 

than SBP, bee 2 achieves its results in the shortest 

execution time. In addition, SBP will terminate when 

successive iterations do not give improved results. Thus 

the results represent the best performance this version of 

SBP can give and no further improvement possible even 

with additional computation time available. In contrast, 

other heuristics should improve with increasing 

computation time. The better results of bee 2 as 

compared to bee 1 can be attributed to the efficient 

critical block neighborhoods and multiple initial 

solutions generated by priority dispatching rules. 

Although both bee 2 and tabu search use the same 

neighborhood structure, the former is able to take 

advantage of starting with multiple initial solutions due 

to its inherently population-based approach. 

 

Comparing the performance of peers, bee 1 and ant 

colony heuristics, bee algorithm performs slightly worse 

than ant algorithm in terms of mean and maximum 

percentage improvement. The time taken to solve the 

job shop problems for both heuristics is very similar 

with ant colony being slightly faster. Evidently, both bee  

1 and ant colony heuristics under perform bee 2, tabu 

search and shifting bottleneck procedures primarily due 

to: 1) solutions are always constructed from scratch; 2) 

problems specific knowledge of job shop such as 

neighborhood structure and machine bottlenecks  is not 

used in the heuristics. 

 

7 CONCLUSIONS AND FUTURE WORK 

We have implemented job shop scheduling algorithm 

based on self-organization of honey bee colony for 

solving job shop scheduling problems. The algorithm is 

founded on neighborhood search based foraging. This 

proposed algorithm outperforms the previous version of 

our algorithm which always constructs new schedules 

based on preferred operation sequence. 

 

The experimental studies show that the effectiveness of 

finding better solutions is dependent on the efficiency of 

constructing new solutions and escaping local 

optimums. Modifying previous solutions to obtain new 

solutions (i.e. bee 2, tabu search and shifting bottleneck) 

instead of constructing new solutions from scratch (i.e. 

bee 1 and ant colony) performs better in terms of 

makespan and computational time. The strategy of using 

tabu list to avoid local optimums is observed to be more 

effective as compared to probabilistic-based approaches. 

Further, job shop problem related knowledge such as 

neighborhood structure in tabu search and bee 2, and 

machine bottlenecks in shifting bottleneck can result in 

significant improvement in the performance of 

heuristics. 

 

With the performance of bee colony heuristics 

comparable to well known heuristics such as tabu search 

and shifting bottleneck, we intend to apply the bee 

colony heuristic to more realistic semiconductor 

manufacturing scheduling problems. One of the works 

we intend to pursue is to deploy the algorithms in a 

distributed computing environment using software 

agents (Low et al. 2005).  
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