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ABSTRACT 

The characteristics of pneumatic artificial muscles - or 
McKibben muscles - make them very interesting for the 
development of robotic applications that feature low 
impedance in terms of their interaction with the 
environment, such as can be the case with orthoses or 
certain wearable robots. In order to research the 
applicability of these actuators in industrial applications, 
an experimental one-degree-of-freedom set-up based on 
pneumatic muscles manufactured by Festo has been 
built at Ikerlan. This paper presents the modelling of a 
pneumatic muscle in Modelica as a new component. 
After that, the paper describes the set-up constructed and 
shows the complete model in Dymola/Modelica, in 
addition to validation of the model with some 
experimental data.  
 
INTRODUCTION 

Most robots use actuators and control systems which 
feature high mechanical impedance, both for historical 
and technological reasons. In contrast, there is evidence 
in the natural world that natural impedances in animals 
are quite low. Nowadays there are a great many robotic 
applications, as for instance protheses, orthoses and 
wearable robots, where low impedance is required in 
terms of interaction with the environment. The 
observation of nature and the use of biologically-
inspired components (sensors and actuators) open up 
new ways in the design of biomimetic robotic devices. 
Electroactive polymers (EAPs) are one of the new 
technologies existing, although their applicability 
remains far from industrial applications. Pneumatic 
artificial muscles - or McKibben muscles - are a very 
interesting alternative. 
 
Unfortunately, pneumatic artificial muscles evidence 
certain very non-linear force-length characteristics, like 
animal muscles, and controlling them and obtaining the 
performance features demanded by some applications 
are no easy issues. There has been quite a lot of activity 

regarding the modelling and control in recent years 
(Tondu and Lopez 2000; Colbrunn et al. 2001; Petrovic 
2002; Schröder et al. 2003). 
 
For the purpose of researching the applicability of 
pneumatic muscles in industrial applications and in the 
development of orthoses and wearable robots,  an 
experimental one-DoF set-up based on pneumatic 
muscles manufactured by Festo has been designed and 
constructed at the Ikerlan research centre.  
 
This paper first and foremost presents a brief review of 
the pneumatic muscle models that feature in literature. 
The analytical model chosen is then described, followed 
by the modelling of a new component in 
Dymola/Modelica as an extension of the PneuLib 
library. Following the description of the experimental 
set-up that has been constructed, its complete modelling 
is shown in the aforementioned package. Lastly, 
validation of the model with experimental data is shown. 
 
BRIEF REVISION OF PNEUMATIC MUSCLE’S 
MODELS 

Membrane or pneumatic muscle actuators are highly 
non-linear systems. Many authors have worked on the 
idea of obtaining a model that represents the behaviour 
of these devices. The aim of the model is to relate the 
pressure and length of the pneumatic muscle to the force 
it exerts along its entire axis. Figure 1 shows the well-
known outline of the constitution of the pneumatic 
muscle. L is the length of the cylinder and D the 
diameter. Assuming inextensibility of the mesh material, 
the geometric constants of the system are the thread  
length b and the number of turns n for a single thread. α 
is the angle between the thread and the long axis of the 
cylinder. The angle changes as the length of the muscle 
changes. 
 
From these premises, Tondu and Lopez (2000) have 
carried out a mathematical development based on the 
application of theorem of virtual work, which has led 
them to obtain the following equation:  
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0r  being the nominal inner radius,  l  the length of the 

muscle, 0l  the initial nominal length, P the pressure and 

0α  the initial angle between the membrane fibres and 
the muscle axis. 
 
In this initial approximation, it has been assumed that 
the thickness of the muscle walls is very small and it 
may also be assumed that pressure is transmitted evenly 
throughout the membrane. However, there is a major 
phenomenon which Tondu and Lopez (2000) consider 
to improve equation (1): the fact that the shape of the 
muscle is not cylindrical on the ends, but rather is 
flattened. To represent this, they incorporate a 
correction factor k, been equation (1) as follows:  
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Tondu and Lopez (2000) establish two options for the 
choice of parameter k: On the one hand, they propose 
considering a constant value for k which may vary 
depending on the material that the muscle is made of 
and, on the other, they suggest making the parameter k 
depend on the pressure in the muscle at any given time. 
According to their studies, this last-mentioned option is 
the one that provides the most complete model. 
 
Other analytical expressions for calculating the force of 
a pneumatic muscle may be found in technical literature. 
Thus, in (Colbrunn et al. 2001), (Petrovic 2002) and 
(Umetani et al. 1999), formulas equivalent to (2) are put 

forward based on the same principles as Tondu and 
Lopez (2002), and may be readily deduced from each 
other. In all of them is reflected the fact that the force 
exerted by the muscle has a linear relation with the 
pressure inside it and non-linear with the contraction. 
However, calculating the parameters in an analytical 
way is complicated and inaccurate, which is why they 
need to be adjusted via experimental trials. 
 
PNEUMATIC MUSCLE MODEL IN MODELICA 

Model selection 

As has been explained in the previous section, there is a 
relation between the force exerted by the muscle along 
its axis and the pressure and contraction it experiences. 
For the model put forward in this work, the equation (3) 
proposed in (Petrovic 2002) has initially been chosen 
due to the simplicity of 2nd order polynomial adjustment.    
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with q  being the displacement 0q l l= − . 

However, in the experimental trials carried out and 
which are shown later, it was noted that to identify the 
coefficients of equation (3), it had to incorporate a new 
term, independent from the pressure and dependent on 
contraction. Therefore, the ratio between force, pressure 
and contraction in the muscles takes the following form:  
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This correction term ( )qϕ  introduced into the model 
will be determined in each case from the experiences 
needed to identify the parameters of the equation (4) 
taken into consideration. In conclusion, the expression 
that reflects the equation (4) is that which is 
implemented in Modelica in order to govern the force 
exerted by the muscle at all times.  The parameters of 
the model may be identified analytically and 
approximately according to the models that appear in  
(Umetani et al. 1999; Colbrunn et al. 2001; Petrovic 
2002), or experimentally in each case, as is also 
recommended in the aforementioned references. 
 
Model implementation in Modelica 

The model analyzed and selected in the previous section 
has been implemented by using the good qualities of the 
modelling language of physical systems known as 
Modelica.  It is suited for multi-domain modelling, for 
example and in this case, mechatronic models in 
robotics, involving pneumatic, mechanical and control 
subsystems.  
 
The muscle model has been designed, ensuring its 
connectivity with other objects described in Modelica, 
in order to construct different mechanical-pneumatic 
systems. The model consists of two mechanical 
connectors that correspond to the muscle anchorage 
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Figure 1: Geometric model of a pneumatic muscle 
 



 

 

points, and a pneumatic port that makes it possible to 
connect to an external pneumatic circuit. Moreover, an 
output has been included so as to establish the force 
exerted at all times by this pneumatic actuator. 
 
Three main parameters have been taken into 
consideration that characterize the physical properties of 
this type of muscle: nominal length l_nom, nominal 
diameter d_0 and the angle between the fibres and the 
muscle axis alfa. Other magnitudes that may be 
considered as parameters are, for instance, the heat 
transfer coefficient surface_heat_transfer or the 
maximum pressure beyond which the system delivers a 
warning message p_warning. The declaration in 
Modelica language of all these parameters is shown in 
Figure 2, in addition to the local variables used in the 
class. 

 
The equations that characterize the physical behaviour 
of the muscle, and which are grouped together within the 
equation section, are those shown in Figure 3. The first 
equations [1-5] are used to describe the mechanical 
force exerted by the muscle depending on its length 
s_rel and according to the mathematical model selected 
and reflected by equation (4). The displacement of the 
muscle is considered as a state variable of the model. 
 
The volume vol_eff is meticulously calculated using the 
following set of equations [6-10], as even the flattening 
experienced on the ends of the muscle when it is 
contracted (vol_achat) is taking into consideration for 
calculation purposes. 
 
The volume, together with the value of other state 
variables of the model such as the temperature 
temp_muscle on the inside and the air mass m, forms an 
essential part of thermo-dynamic equations of the 
muscle. The first of these [14] refers to the ideal gas 
equation, and the last is the thermo-dynamic continuity 
equation [15]. 
 
The following equations represent the same last two 
equations mentioned before but written in a more 

parameter Real l_nom=200 "muscle nominal lenght (mm)"; 
parameter Real alfa=25 "angle of the fibres of the muscle in degrees"; 
parameter Real d0=20 "nominal diameter of the muscle"; 
parameter Modelica.SIunits.CoefficientOfHeatTransfer h 
      (finalmin=0)=200.0 "coefficient of heat transfer"; 
parameter Modelica.SIunits.Area surface_heat_transfer=0.0126 
      "area for heat transfer"; 
parameter Modelica.SIunits.Pressure p_initial= 
      environment.p_atmosphere  "initial pressure in muscle" 
      annotation (Dialog(tab="Initial", group="Pressure")); 
parameter Modelica.SIunits.Pressure pWarning= 
      environment.pWarning "warning is issued when pressure below 
      this value"     annotation (Dialog(tab="Warning")); 
parameter String StringWarning = environment.StringWarning "text
      is issued when pressure below this value"     annotation 
      (Dialog(tab="Warning")); 
Modelica.SIunits.Temp_K 
      temp_in_out(nominal=environment.temp_surroundings) 
      "temperature of entering or leaving air"; 
Modelica.SIunits.Pressure p_muscle(nominal=5e5, 
      stateSelect=StateSelect.avoid) "muscle pressure"; 
Modelica.SIunits.Temp_K 
      temp_muscle(stateSelect=StateSelect.always,start= 
      environment.temp_surroundings,nominal= 
      environment.temp_surroundings) "muscle temperature"; 
Modelica.SIunits.Velocity v_rel(stateSelect=StateSelect.prefer) 
      "relative velocity between between flange_a and flange_b"; 
Modelica.SIunits.Volume vol_eff(stateSelect=StateSelect.avoid) 
      "effective volume as a function of stroke"; 
Modelica.SIunits.Mass m "gas mass in muscle"; 
Real force "muscle mechanic force"; 
Real phi; 
Real d "muscle diameter"; 
Real vol_eff_cil "muscle volume"; 
Real vol_achat "volume of the flattened zone"; 
Real h_achat "height of the flattened zone"; 
outer PneuLib.Environment environment; 
parameter Real alfa0=alfa*Modelica.Constants.pi/180 "angle of the 
      fibres of the muscle (radians)"; 
parameter Real b=l_nom/cos(alfa0) "lenght of the fibres"; 
parameter Real n=((1/(cos(alfa0))^2)-1)*l_nom^2/ 
      (d0*Modelica.Constants.pi) "number of turns of each fibre"; 

Figure 2: Definition of parameters and local variables 
 

[1] phi= if ((1-(s_rel*1000/l_nom)) > 0.008) then   
      0.00045804*(l_nom-s_rel*1000)^4 
      -0.053424*(l_nom-s_rel*1000)^3                          
      +2.0189*(l_nom-s_rel*1000)^2 
      -43.691*(l_nom-s_rel*1000)+61.62 
      else  -9.2101; 
[2] force = (280-2.2*(l_nom-s_rel*1000)+0.033*(l_nom- 
      s_rel*1000)^2)*port_1.p/1e5+phi; 
[3] flange_b.f= if (force<0.0) then 0.0 else force; 
[4] y= flange_b.f "output port"; 
[5] v_rel = der(s_rel); 
[6] d= (b^2 - (s_rel*1000)^2)/(Modelica.Constants.pi*n); 
[7] vol_eff_cil= (1/4*Modelica.Constants.pi*d^2*s_rel*1000)/1e9 
      "volume without flattening"; 
[8] h_achat= if noEvent(d > d0) then sqrt(d^2/4 - d0^2/4) else 
      0.0001; 
[9] vol_achat= (Modelica.Constants.pi*h_achat/6)*(3*d^2/4 + 
      3*d^2/4 + h_achat^2)/1e9; 
[10] vol_eff= vol_eff_cil + 2*vol_achat  "volume taking into account
      the flattening"; 
[11] temp_in_out = if (port_1.m_dot > 0) then 
      environment.temp_surroundings else temp_muscle; 
[12] p_muscle = port_1.p; 
[13] der(m) = port_1.m_dot; 
[14] p_muscle*vol_eff = m*environment.R*temp_muscle "ideal gas 
      equation"; 
[15] m*der(temp_muscle) + temp_muscle*port_1.m_dot = 
      environment.gamma* temp_in_out*port_1.m_dot + 
      der(vol_eff)*port_1.p/environment.c_v – 
      h*surface_heat_transfer*(temp_muscle – 
      environment.temp_surroundings)/environment.c_v 
      "continuity equation"; 

Figure 3: Equations of the model in Modelica 
 



 

 

understandable format. Equation (5) is the state equation 
of ideal gas: 
 
      eff muscleP V m R T⋅ = ⋅ ⋅  (5) 
 
where m is the air mass and muscleT  the temperature in the 
inside. Veff is the effective volume of the muscle. 
 
The last of the equations taking into account 
corresponds to the thermodynamic continuity equation: 

      

/ ( ) /

muscle
muscle dot

eff
inout dot muscle sou

dT
m T m

dt
dV

T m P Cv h s T T Cv
dt

⋅ + ⋅ =

γ ⋅ ⋅ + ⋅ − ⋅ ⋅ −

 (6) 

With dotm  being air mass flow rate, γ  the ratio of 
specific heat capacities, inoutT  the temperature of air 
entering or leaving muscle, Cv  specific heat capacity at 
constant volume, s  the heat transfer surface area, h  
heat transfer coefficient and souT  the temperature of the 
surroundings. 
 
DESCRIPTION OF EXPERIMENTAL SET-UP 

A human arm orthosis-type application has been taken 
into consideration when designing the set-up. To this 
end and albeit with a single degree of freedom, it was 
considered that it should allow for the greatest angular 
displacement possible, and that it should be able to 
transport the greatest mass possible at the tip (emulating 
a weight borne by the hand). On the other hand, 
however, it needed to be confined to the length of the 
pneumatic muscles. In seeking a compromise between 
all the specifications, a displacement of around 60º and 
a maximum mass to be moved at the tip of 8 kg were set. 
By trying to minimize the length of the muscle required, 
the design focused on the mechanism that would enable 
the arm and inertias to rotate with good dynamics from 
the two precise muscles. 
 

 
The pneumatic muscle that was chosen was the DMSP-
20-200N manufactured by Festo, and the resultant 
mechanism is that shown in Figure 4. The parameter 
values that define the mechanism are: 

      a=5 mm; b=85 mm; c=491 mm; d=40.6 mm; 
      e=129.4 mm; α=0º-60º; β=120º-180º 

A distance L (mm) emerges from these values between 
the ends (joining points of the mechanism) of the 
pneumatic muscles of: 

      175059 2841.6 cos 26624 sinL α β= + ⋅ − ⋅  

When the muscles are without pressure, there is a 
distance of 423 mm, with the length of the muscle fibre 
being 200 mm. The centre of the arm mass with regard 
to the centre of rotation is at a height of 17.6 mm and at 
a horizontal distance of 205 mm, considering that the 
arm is in the horizontal position. The arm mass is 0.987 
kg. The centre of the additional masses placed on the 
end of the arm (up to a maximum 8 kg) would be at a 
height of –24 mm and at a horizontal length of 367 mm 
with regard to the centre of rotation, always bearing in 
mind that the arm is in the horizontal position. Figure 5 
shows an image of the model that has been constructed. 
The prototype may be rotated so that the arm moves in a 
horizontal plane and the effects of gravity are therefore 
cancelled out. 
 
A Festo MPYE-5-1/8HF pneumatic servovalve is 
initially used for actuation, with working pressure being 
6 bar. Festo SDE-D10 pressure sensors are used to 
establish the entry pressure of each muscle. The set-up 
includes a FAGOR S-D90 encoder which supplies 
180000 pulses per turn, so as to measure the rotation 
angle of the arm accurately. A load cell is also included 
on the lower stop of the model (Figure 4 and Figure 5), 
so that the force exerted by the arm against this stop may 
be measured. The stop may be fastened at different 

Figure 4: Geometric model of the robotic arm 
 

Figure 5: Picture of the experimental set-up 
 



 

 

angles, whereby the force exerted by the muscles may be 
calculated at different lengths and different pressures. 
 
PIP8 hardware made by the MPL company is used as a 
controller, which is similar to the MathWorks 
xPCTargetBox and in which the cards needed to control 
the system have been incorporated. The control 
algorithms are implemented in Simulink and code 
generated and downloaded in the aforementioned 
hardware by means of the MathWorks RTW. 
 
MODELLING OF THE EXPERIMENTAL SET-UP 

For composition of the model, connection properties for 
linking objects provided by the graphic interface of 
Dymola have been used. Figure 6 shows the graphic 
representation of the whole model designed in Dymola. 
Its most significant components are explained in detail 
in the following paragraphs. 
 
In constructing the model, elements which have been 
expressly developed for this application (such as the 
pneumatic muscle model), coexist with components 
belonging to commercial libraries. There exist 
components of different domains which are related to 
each other by special objects that carry out the 
connection work between the mechanical part and the 
pneumatic part. 
 
The element that represents the metal arm is an object 
known as bodyBox which models a rectangular-shaped 
rigid solid. An actuated revolute joint object is used to 
define the rotation axis of the body. These objects have 
an additional flange connection. Thus, different 
elements of the Rotational Library can be attached in 
order to change the behaviour of the movement (Pujana-
Arrese et al. 2006). Specifically, a damper has been 
connected in this case and a non-linear element known 
as bearingFriction which includes Coulomb friction 

owing to the axis joint and the arm. As has been 
described in the previous section, the possibility exists 
of coupling up to 8 plates of 1 kg each on one end of the 
arm. The model also features this option, for which 
purpose a bodyBox has been designed of the same size 
as the plates. Furthermore, the amount of weights may 
be configured using a global parameter. 
 
The stops against which the arm impacts when it reaches 
the limits have also been modelled with bodyBox 
elements. The Talka class has been developed in order 
to model the impact between the arm and the stops 
mentioned before, of which two instances have been 
included in the model – one for each point of contact. 
The input for these objects is the relative distance 
between the point of impact of the arm and the 
mechanical stop. When the distance is detected as 
becoming negative the force of the impact is calculated 
based on a spring and damper model. The forces 
calculated are applied to the points of contact on the arm 
using force input elements known as frameForce.  
 
Once all the mechanical components of the model have 
been checked, its pneumatic parts are now analyzed. The 
objects that make it possible for the pneumatic 
components to interact with the mechanical ones are 
connected to the anchorage points of each muscle. These 
objects (lineForce) describe a line of force between 
their two mechanical ports. The magnitude of this force 
depends on the actuator element connected to the ports. 
Obviously, in this case the actuators will be two objects 
of the class that models the pneumatic muscle. 
 
The pneumatic interfaces of the muscles are connected 
to two of the out ports of the proportional valve. Two 
silencers have been fitted to the remaining two outputs 
that function as exhausts, as is the case of the real valve. 
Meanwhile, a source of pressure commanded externally 

 
Figure 6: Model of the whole system in Modelica  

 



 

 

is connected to the entry port. The valve model 
describes a proportional valve with second order spool 
dynamics in such a way that the spool position is almost 
proportional to the signal that commands it. When  the 
valve is inactive, it attempts to close its five ports, 
letting a flow of leaks escape that is also modelled. To 
model the circuit pressure dynamics, this has been 
completed by connecting a lumpedVolume object to 
each port of the valve. All the elements mentioned in 
this paragraph belong to the Pneulib commercial library. 
 
EXPERIMENTAL VALIDATION OF MODELS 

In order to validate the equation (4) which determines 
the force exerted by the pneumatic muscle and to 
identify its coefficients, a series of experimental trials 
are carried out on the prototype constructed.  
Development of the experience involves keeping the 
muscle in a state of constant contraction and slowly 
increasing the pressure, recording the force exerted on a 
load cell. In this way, a family of straight lines is 
obtained with different contractions that relate force to 
pressure. 
 
To carry out the trials, the muscle was firstly set at a 
determined, known length, thanks to the possibility of 
varying the lower stop of the prototype. Furthermore, 
the servovalve was removed so as to prevent undesired 
dynamic influences in such a way that pressurized air 
was introduced directly into the muscle. The experience 
involved blowing air into the muscle in order to make 
the arm descend; however, as the arm was positioned on 
the lower stop, it failed to move and therefore the length 
of the muscle remained constant. The air pressure was 
slowly varied in this position within the range of 0 – 6 
bar and the force exerted by the arm on the lower stop 
was recorded in the load cell. The real force exerted by 
the muscle was calculated using this data, together with 
geometric ratios. 
 
The results obtained are shown in Figure 7. The 
different straight lines correspond to different constant 
contractions of the muscle. The upper straight line refers 
to the nominal length and the lower one to the maximum 

contraction that may be experienced by the muscle in 
this model. It can be proven that the greater the length of 
the muscle, the greater the force it is capable of 
developing, as is gathered from the equation (4). It is 
also noted that the greater the contraction, the further the 
cut of the straight lines with the abscissa axis is from the 
origin – an effect which gave rise to the introduction of 
the correction term ( )qϕ  in the equation (4). 
 
In the case described here and based on the 
experimental results shown in Figure 7, the term  

( )qϕ has been identified by means of a 4th order 
polynomial adjustment. Consequently, the values 
obtained for the different parameters of the model are:   

  
4 3 2

1 2 3

( ) 0.00046 0.053 2.02 43.69 61.62

280       2.2      0.033

q q q q q

D D D

ϕ = ⋅ − ⋅ + ⋅ − ⋅ +

= = − =
 

The same Figure 7 shows the data obtained in simulation 
with the complete model of the prototype for the same 
experience. As is noted, the results in simulation 
coincide very well with the experimental data, which to 
a certain extent is normal, given that this experimental 
data forms the basis used for identifying the parameters 
of the muscle model. 
 
To validate the complete model of the prototype made in 
Dymola/Modelica, open loop trials have initially been 
used on the model.  The control element used is the 
servovalve, which accepts an input signal within the 
range of 0 – 10 V.  The prototype has been rotated in 
order to prevent the effects of gravity in such a way that 
the arm moves on a horizontal plane. A control signal 
has been applied to the servovalve: an impulse train of  
±0.9 V added to a central value of +5 V, over a period 
of 4 seconds. Trials have been carried out using 
different weights placed on the end of the arm. The arm 
completed its entire run from one end to the other using 
this open-loop signal, gently touching the stops. This 
trial has enabled the dynamics of the model to be 
checked and adjusted. An example of the results 
obtained may be viewed in Figure 8, together with those 
obtained in simulation, when there is a 3 kg weight on 

Figure 7: Results of model identification trials 
 

Figure 8: Results in open-loop being the load 3 kg 
 



 

 

the end of the arm. The angle reflected in the ordinate 
axis of the figure corresponds to the angle measured 
from the vertical position (assuming the prototype has 
not been rotated). 
 
As may be observed in the figure, both in the model and 
in the prototype there appears a vibration which 
originates from displacements in both directions in the 
intermediate area of movement, changing the dynamics 
of the system and making it slower. This vibration is due 
to the antagonistic structure of the muscles in the 
prototype, as the pressure and length vary inversely in 
each muscle while the arm is moving.  This behaviour is 
also reflected in the results of the model, the key being 
the change in volume and the flattening at the ends 
during contraction in the model of the pneumatic 
muscle. Although the above-mentioned vibration is not 
evidenced in the results shown in many bibliographical 
references, it does appear in Tondu and Lopez (2000). 
 

CONCLUSIONS 

Pneumatic artificial muscles, or McKibben muscles, are 
very interesting for the development of robotic 
applications that feature low impedance in terms of their 
interaction with the environment, as may be the case 
with orthoses or certain wearable robots.  In this paper, 
the modelling of a pneumatic muscle is shown in 
Dymola/Modelica, being the basis to model mechatronic 
systems based on such muscles. The component 
obtained is applied to the modelling of an experimental 
1 DoF set-up, constructed using pneumatic muscles. The 
results of the experimental trials are used for an initial 
validation of the model. 
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