SYSTEMATIC TESTBENCH SPECIFICATION FOR
CONSTRAINED RANDOMIZED TEST AND FUNCTIONAL
COVERAGE

Alexander Krupp and Wolfgang Mueller
Paderborn University /C-LAB, Fuerstenallee 11, D-33102 Paderborn, Germany
E-mail: {Alexander.Krupp,Wolfgang.Mueller} @Qc-lab.de

Abstract— Functional Verification is well-accepted for
Electronic System Level (ESL) based designs and is sup-
ported by a variety of standardized Hardware Verifi-
cation Languages like PSL, e, and SystemVerilog. In
this article, we present the classification tree method for
functional verification (CTM/FV) as a novel method to
close the gap from the verification plan to the specifica-
tion of randomized tests and functional coverage for test
configurations. CTM/FV is introduced based on graph-
ical means from which we automatically generate Sys-
temVerilog code as a testbench for constraint-based ran-
domized tests and functional coverage, where concepts
are outlined by the automotive example of an adaptive
cruise controller.

I. INTRODUCTION

With increasing complexity, electronic systems de-
sign became a verification-centric activity. In this con-
text basic concepts of formal verification E8] and sim-
ulation [7] were unified and advanced under the um-
brella of Assertion Based Verification (ABV) fi3]. To-
day, we can observe significant progress in tools man-
aging and processing assertions and testbench features
(i.e., randomized tests and functional coverage) in or-
der to improve quality of designs and efficiency of ESL
testbenches. Tools like Questa, vManager, Specman of-
fer verification management and code generation for
hardware verification languages (HVL) like PSL, e, and
System Verilog El()] They provide advanced support for
assertion-based simulation, formal verification, func-
tional coverage specification, and constraint-based ran-
dom test generation. Though those tools already pro-
vide great help in test configuration management, we
currently observe a big gap from the verification plan
to the specification of assertions and testbench features
since there is no systematic method for test configura-
tion development.

In this article, we introduce the classification tree
method for functional verification (CTM/FV) as a
novel method to support the systematic development of
test configurations. CTM/FV is based on the classifica-
tion tree method for embedded systems (CTMgumg) [l]
with extensions for random test generation as well as for
functional coverage and general property specification.
We introduce CTM/FV as a methodology to fill the gap
from the verification plan to the coding of constraint-
based randomized tests and functional coverage as a
two-step method: (i) creation of the classification tree
(ii) creation of (sample) abstract test sequences. To
give CTM/FV specifications a well-defined semantics
and to demonstrate its applicability for testbench gen-
eration, we present CTM/FV with a mapping to Sys-
temVerilog. This covers the automatic generation of
random tests, and functional coverage expressions. As

Proceedings 21st European Conference on Modelling and Simulation

Ilvan Zelinka, Zuzana Oplatkova, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

CTM/FV is derived from CTMgys, it is also compli-
ant to the IEC61508 standard for the development of
electronic safety related systems.

The remainder of this paper is structured as follows.
The next section introduces related work before we
give short overviews of what we need from System Ver-
ilog and the Classification Method for Embedded Sys-
tems (CTMgmp). Thereafter, we present our method-
ology for random test generation and functional cover-
age specification and their mapping to System Verilog.

II. RELATED WORK

C-based languages like SystemC and SystemVerilog
are well accepted for electronic systems description and
verification. In simulation, classical gate level designs
considered a toggle coverage based on stuck-at fault
models as a quality metrics {7]. At higher levels of ab-
straction, different implicit code coverage metrics are
already applied for several years like statement/edge,
condition, decision, and MCD (modified condition de-
cision) coverage E2] However, those measurements are
often not sufficient because they just give information
that different parts of the code are exercised and always
presume an existing golden design. Therefore, com-
plementary principles of assertion-based and functional
verification with explicit specification of design-specific
assertions and testbench features like functional cover-
age and constraints for randomized tests became really
popular E13]

Several so-called hardware verification languages
(HVLs) for functional specification are available for
functional verification, like PSL Hj, e [0}, and the
System Verilog subset [5] For tool support, Mentor
Graphics, for instance, provides the Questa Verifica-
tion Platform E15], which supports coverage-driven,
and constrained-random verification. Cadence offers
vManager for the management of functional verifica-
tion specification and execution, and Specman for test-
bench automation [16] The latter supports constraint-
driven test generation, functional coverage analysis,
and assertion checking. The management features of
vManager aim at the automatic scheduling of comput-
ing resources for verification. Both tools link to several
FElectronic Design Automation (EDA) simulators and
operate on all major existing description languages such
as Verilog, VHDL, and SystemC.

When applied correctly, functional coverage comple-
ments and surpasses code coverage measurements. Ex-
plicit functional coverage definitions are derived from
the specification, give meaning to coverpoints, and,
moreover, they enable detection of omissions in the

code. The main disadvantage is that there is currently
no method to systematically guide the user through
the activity of annotating the model with randomized
tests, coverage statements, and assertions. To over-
come this, we apply the Classification Tree Method
(CTM), which was developed for structured test de-
velopments in software systems EB] However, there
was only little work investigating CTM beyond the ini-
tial application, such as Singh et al. who combined
Z with CTM E12:] As a significant advance for au-
tomotive systems design, Conrad recently introduced
an extension of CTM for embedded software labeled
CTMeMmB El] Several tool suites with CTMgyp sup-
port became available, e.g. MTest from dSPACE [14],
a test automation environment for Model/Hardware-
In-the-Loop simulation, which integrates the Razorcat
Classification Tree Editor (CTE).

In E9] we already presented initial ideas for the appli-
cation of classification trees for functional verification.
Based on these ideas, we introduce CTM/FV as a com-
plete method for randomized test and functional cov-
erage specification with SystemVerilog code generation
combining tree and test case specification. CTM/FV
is introduced to complement existing approaches for
the specification of verification plans by the means of
CTM/FV-based testbench development and thus fills
the gap from the verification plan to code generation.
Though we present CTM/FV in combination with Sys-
temC and for SystemVerilog code generation, CTM/FV
principles apply for e language specifications and other
modelling languages as well.

III. SYSTEMVERILOG

Verilog and VHDL have been the two dominant hard-
ware description languages for simulation and synthe-
sis over the last 15 years. To increase its market share,
Verilog was initially published as IEEE Std. 1364 in
1997. Later, Accellera advanced Verilog to SystemVer-
ilog 3.1 in 2002 and to SystemVerilog 3.la, which
became an IEEE Standard [5] in 2005. SystemVer-
ilog IEEE Std.1800-2005 introduces many features for
real object-oriented and communication-centric designs
like classes, interfaces, and interprocess communication
synchronization. Moreover, SystemVerilog supports
the specification of random tests and properties, where
the latter can be used for verification as an assump-
tion, an assertion, or a coverage specification given by,
e.g., tool directives assert, assume, expect, and cover.
An assert statement enforces a property for a checker,
an assume property can be considered as a hypothesis
to prove the property, and the expect statement waits
for a property evaluation. Coverage statements spec-
ify an explicit coverage metric by means of covergroups
with coverpoints and bins for variables as given by the
following example.
bit [9:0] v_a;
enum { red, green, blue } color;
covergroup cg @(posedge clk);

coverpoint v_a {

bins a = { [0:63],64};
bins b ... ;

bins others[] = default;
}
coverpoint color;
endgroup

The example shows a covergroup, which is triggered
on a clock. The covergroup contains a first coverpoint,
which associates a variable v_a (a 10-bit integer) with
a number of bins. Each bin matches a value range and
keeps a hit state for the variable value. A hit is deter-
mined once a matching value for a bin has occurred.
Here, bin « is hit by an integer value between 0..63,
and by 64. The bin others declared with the default
keyword is hit by values unmatched by any other bin.
The number of bins determines the size of the coverage
space for a coverpoint: a coverage of 40% for a cover-
point consisting of 5 bins means, that 2 bins have been
hit. A second coverpoint associates to a state variable
color. Tt implicitly declares three bins, one for each
possible value of the variable. The coverage value for
a covergroup is the average calculated across all of its
coverpoints. Overall coverage is calculated in a similar
way from coverage of all covergroup instances. Cov-
erage calculation can be influenced through optional
parameters on covergroups and coverpoints. Besides
covering a single domain, a coverpoint can cover several
domains (cross coverage), and sequences of transitions.

A very powerful SystemVerilog feature is the speci-
fication of constraints for randomized test generation,
which refer to data structures randomized as objects
that contain random variables and user-defined con-
straints. Constraints, for instance, can be efficiently
used to specify corner cases. The following example
instantiates a class CX and randomizes its member =,
such that it conforms to the constraint « > 0.

class CX
rand bit[7:0] x; ...
endclass

CX cx = new;
success = cx.randomize() with {x>0;};

In the remainder of this paper, we focus on the gen-
eration of testbench features, i.e., cover statements and
random tests, from our CTM extensions, which are in-
troduced in the next section. Those parts and the other
property specifications represent an independent part
of SystemVerilog, which can be easily bound to other
languages so that we can easily use it in combination
with our SystemC simulation models.

Iv. CTM

Classification Trees were developed at Daimler-Benz
AG in the early nineties for the systematic specifica-
tion of test cases [3] In classification trees, potential
inputs to a system under test are defined as a tree with
composition, classification, and class nodes. A simple
example for a brake system is given in Fig. 1) Start-
ing from the root node, the testbench is partitioned by
composition nodes into the ‘environment’; ‘driver’; and
‘vehicle’. A composition can be hierarchically struc-
tured into further compositions, which are finally par-
titioned into classifications representing concrete input

composition _
classification |—m
class A

dry

combination table

environment

-vehicle

inactive <5km/h
5..60km/h

strong >60km/h

\ ice
1 braking to stop on ice

[
2 strong braking on wet road \r
I

=

3 braking in snow covered curve

N 1

Fig. 1: Classification Tree Example: Adaptive Cruise Control

domains. Our example, for instance, has a classifica-
tion for ‘road conditions’ under the composition ‘envi-
ronment’. Each classification finally has classes, which
represent different subdomains of test data. For ‘road
conditions’ classification, the corresponding classes are
‘dry’, ‘wet’, ‘snow’, and ‘ice’. Classes of the classifi-
cation tree make up the columns of a combination ta-
ble where horizontal lines represent test cases made up
from classes. The development of classification trees
and associated combination tables is supported by the
classification tree method (CTM) 3], which in turn is
based on the category-partition method [11]

For embedded systems testing, Conrad 1] has ex-
tended the classification tree method to the Classifica-
tion Tree Method for Embedded Systems (CTMgums).
In CTMgmB, classifications are derived from the in-
terface of the system under test (Fig. 23 upper half).
Classes are given by values or intervals, derived from
the specification. The combination table defines ab-
stract test sequences with time annotated test steps,
called synchronisation points, which refer to classes,
ie., to value intervals, as shown in figure i3 Inter-
polation functions such as step, ramp, and sine are
assigned to transitions between two synchronisation
points, where different functions are indicated by differ-
ent line styles. A concrete test sequence is then derived
by value instantiation from classes, and, finally by in-
terpolation and discretization to fit a sampling rate.

V. CTM/FV

The following subsections describe the Classification
Tree Method for Formal Verification CTM/FV, and
demonstrates its relation to SystemVerilog coverage
and constraints for randomized test in the definition
of a verification plan. The approach is illustrated by
means of an Adaptive Cruise Controller as a design
example from the automotive domain. An ACC is a
radar-based system, which keeps either a desired speed,
or the distance to an obstacle in front.

A typical verification plan relates design features to
the design specification, defines verification strategies,
and, e.g. for testbench generation includes an exe-

cutable and machine readable part, which describes
test configuration, testbench infrastructure, and test
completion criteria fi7]. CTM/FV as an extension of
CTMEgump assists in the structured definition of test
configuration and test coverage criteria, up to the point
where automatic generation of a hardware verification
language (like SystemVerilog) is possible. This closes a
gap in the definition of the verification plan to relieve of
manual coding of assertions, random constraints, and
coverage statements. Application of CTM/FV involves
two development steps: the creation of a Classification
Tree, and the creation of Abstract Test Sequences, con-
straints and coverage information.

For our outline, we presume that the interface defi-
nition of the ACC is available in any system descrip-
tion language like VHDL, SystemVerilog, or SystemC
so that we just have to bind the design under test to
the SystemVerilog testbench. The following example
shows a binding of the ACC to a SystemVerilog cover-
age definition (ACC_COV).
bind ACC ACC_COV acc_cov_bind

(.clk(clk), .desired_speed(desired_speed),...);

In order to arrive at a complete testbench, it has to be
noted here, that the user has to decide on the sampling
rate of the testbench at an earlier phase.

A. Creation of Classification Tree

Considering the example of an Adaptive Cruise Con-
trol (ACC), the following SystemC code fragment may
sketch an interface definition.

SC_MODULE (ACC)

{
sc_in<int> desired_speed;
sc_in<int> tracking_distance;
sc_in<int> desired_distance;
sc_in<bool> tracking;

};

Based on that interface we semi-automatically create
a classification tree for the ACC testbench (ACC_TB)
with ACC_TB as root node. We just consider sc_in
and sc_inout ports of the interface and create one clas-
sification node for each of them. In complex designs

desired_speed

100

1 Constraint1 -t —-F+--4-=-F-F-F+-q4-=-4-+-+1

1.1dist 1
1.2dist 2

1.3dist 3 -r-r-r—=a—~—r-r-r-a17-="71~-71T° 7T

Fig. 2: Adaptive Cruise Controller with CTM/FV constraints and coverage

with several interfaces, intermediate nodes (i.e., com-
positions) are inserted for each interface. However, in
our small example, the classifications are taken as di-
rect descendants of the root node and we arrive at a tree
with classifications desired_speed, tracking_distance, de-
sired_distance, tracking, etc. (see F1g2)

In a next step, the user manually creates classes for
each classification. The creation of classes for test val-
ues and test intervals mostly depends on the design
specification, design features, and intended coverage,
and requires the designer’s expertise. For the classifi-
cation desired_speed, for instance, this is measured in
meters per second with the classes [—5 : —1] for back-
ward, 0 for stopping, and other intervals and test points
like [1 : 4] for driving forward (see Fig.2for other exam-
ples). Based on that basic structure of the classification
tree, we continue to define random test and functional
coverage, which are defined as tree annotations and as
tables referring to the existing classes.

A.1 Constraints and Weights for Random Tests

CTM/FV defines constraints for random test case
generation as boxed tables in place of the combina-
tion table. They refer to the different classes as given
in Fig.®% Each boxed table defines a constraint com-
pound, with each line in the table representing a sin-
gle constraint. A single constraint is defined by plac-
ing annotated points and an optional square on the
line. Points on a line define weights for the class.
When no value is given, the default weight is 1. In
Fig. £ for example, the first line defines the weights
20 and 80 for tracking = 0, and tracking = 1, respec-
tively. Conditional constraints are given by a square
and points, where the square specifies the condition
and points specify which inputs are to be constrained.
E.g., the square for tracking = 1 in our example de-

fines and implication, such that desired_distance is
distributed with weights {20, 60,20} across associated
classes {10, [11,99],100}. Therefore the boxed table de-
fines Constraintl with simple dependencies between
tracking and desired_speed. Random test generation
shall be executed with weights depending on the differ-
ent class instantiations for tracking, where the corre-
sponding SystemVerilog code gives the precise seman-
tics:

rand CT_value tracking, desired_distance;

constraint Constraintl {
tracking.value == {0 := 20, 1 := 80};
tracking.value == 1 -> (
desired_distance.value inside {
10:=20, [11:99]/=60,100:=20
};
);
tracking.value == 0 -> (
desired_distance.value inside {
10:=1,[11:99]/=1,100:=1
};
);

For the generation of randomized variables, classes
like tracking and desired_distance are given as instan-
tiations of type C'T_value, which is a struct containing
a value and a transition. For tracking, weight is de-
fined with a distribution of 20% and 80%, respectively.
For desired_distance, a different distribution is chosen,
depending on the value of tracking: if tracking = 0,
desired_distance is set to 10 or 100 with a distribution
of 20% each, and it is set to a value from the interval
[11,99] with a distribution of 60% for the interval. If
tracking = 1, desired_distance is set with equal distri-
bution to the corner cases and the interval, with 33.3%
each.

A.2 Functional Coverage and Bins.

Hardware verification languages provide means for
the definition of an individual coverage metric. Sys-
temVerilog has covergroups, coverpoints, and bins for
the definition of functional coverage. CTM/FV sub-
trees naturally map to such definitions without any
major modification. I.e., classifications refer to a set
of coverpoints and each class refers to a bin. As an
example, take the following SystemVerilog code, which
directly corresponds to the tree in Fig. 2%

covergroup ACC_TB @(posedge clk);

ddl: coverpoint desired_distance
{bins ddi[1] = {10}; };
dd2: coverpoint desired_distance
{bins dd2[1] = {[11:99]}; };
dd3: coverpoint desired_distance
{bins dd3[1] = {100}; };
tr0: coverpoint tracking
{bins tri[1] = {0}; option.weight = 1;};
trl: coverpoint tracking
{bins tr2[1] = {1}; option.weight
endgroup;

4;3};

Here, the coverpoint dd2 for input variable de-
sired_distance contains a bin for the interval [11 : 99],
for instance. In SystemVerilog, covergroups and cover-
points may have options like weight or goal. In our clas-
sification tree, this just needs an annotation for classes.
In the example, the two classes of tracking are anno-
tated with weights: 0 := 1 and 1 := 4, which directly
correspond to coverpoints trl and tr2 in the code.

A similar approach has to be taken when considering
tests with floating-point values, as common with Mat-

lab/Simulink models. The classification tree in figure 3

shows classes, which encompass the continuous value
range from —5.0 to 70.0 by means of intervals between
values. For coverage computation we introduce a toler-
ance e in order to better cover the corner cases between
intervals and values. For floating point test cases, a
class 5 is represented as [5.0 — e : 5.0 + ¢] and the in-
terval 0.0 : 5.0 becomes Je : 5.0 — e¢[. This mapping
reflects the intended use of bins and coverage specifica-
tions, since floating point-based calculation hardly ever
matches an exact value. Please note, that coverage of
floating-point values is not supported by IEEE 1800-
2005f5]. We apply a notation similar to SystemVerilog
for floating-point coverage:

coverpoint desired_speed {

bins dsO = { [-5.000:-0.001[};

bins ds1 = { [-0.001: 0.001] };

bins ds2 = {] 0.001: 4.999[};

bins ds3 = { [4.999: 5.001] };
¥

The syntax allows floating-point numbers and open
intervals. A coverage tolerance of e = 0.001 is gen-
erated here during the translation step from the clas-
sification tree. The generator will have to adapt the
tolerance relative to the order of magnitude of the cov-
ered value, of course.

For cross coverage definitions and their representa-
tions in the classification tree we can use a similar rep-
resentation as for the definition of random test con-

5 15,20[

1 Testsequence 1
1.1t=0

1.2t=5

1.3t=8 |8
1.41=11 J\(\
1.5t=20
1.6t=25
1.7 t=45
1.8t=65
1.9 t=66
1.10t=70
1.11t=74
1.121=80
1.13t=90
1.14t=100
1.15t=110

N
J

)

/

/

YOOOOOOOLC

i
\
§

OC

Fig. 3: Sample Test Sequence for an Adaptive Cruise Controller

straints. In contrast, we apply rectangles marking clas-
sifications with annotations rather than squares and
points.

As an example, the following SystemVerilog code
shows cross coverage statement over tracking_distance,
desired_distance, and tracking for the previously in-
troduced ACC_TB covergroup. The line in the clas-
sification tree table has three annotated rectangles for
the three classifications and corresponds to the follow-
ing code.

tdxds: cross tracking_distance,

desired_distance,
tracking {

bins cr_tri[] = binsof(trl);
bins cr_tr0[1] binsof (tr0);

}

B. Creation of Abstract Test Sequences

In CTMEgMB, the definition of abstract test sequences
is accomplished by a set of combination tables, one
for each test sequence. Fig. i3 gives the example
of one fraction of a test sequence for the classifica-
tion desired_speed. Selected test points on each line
(i.e., each synchronisation point) refer to the different
classes. For realistic tests, we assign an interpolation
function to each transition between two synchronisation
points of one classification. An interpolation function
can be of type (step, linear, sine), which is represented
by different line styles. When no line is given, the step
interpolation is assigned as a default.

The sample test sequence in Fig. i3 starts at ¢ = 0
with desired_speed = 0. Then it changes to 10, 5]

at t = 8, to 5 at t = 11, and to]5,20[at ¢t = 20,
where it remains until ¢ = 50 before returning to 0
at t = 100. Note that the individual synchronisation
points are coarse-grained and refer to fine-grained time
points of the sampling rate. Recall from Section 3 that
the test sequence is considered as abstract since not a
concrete value for each interval has been selected yet.
The next paragraph outlines how the definition of those
test sequences can support automatic generation of ran-
domized test and transition coverage specification.

B.1 Test Sequences for Random Tests.

For random test generation, we associate a CTM/FV
test sequence with SystemVerilog for a random se-
quence production specification. The different test se-
quences then show up as different alternatives of a pro-
duction in the grammar. In addition, each test se-
quence is given by a production rule with the sequence
of synchronization points. For each synchronization
point, we assign the values/intervals as well as the tran-
sition type and randomize over the interval. We finally
have to apply an interpolation since the synchronisa-
tion points of the abstract test sequence are considered
as sparse w.r.t. the sampling rate.

Given the sample test sequence in Fig. 3 we can au-
tomatically generate the following SystemVerilog ran-
dom sequence.

randsequence(ts)
ts ctsl | ts2 | ... | oL
tsl : tsl_1 ts1_2 ts1_3 tsl1_4 ts1_5
tsl_6 ts1_7 ts1_8 ts1_9 ts1_10
ts1_11 ts1_12 ts1_13 ts1_14 ts1_15;
tsl_1 :
{ desired_speed.value = 0;
tracking_distance.value = 100;

desired_speed.transition = STEP;

interpolate(desired_speed,...);
};
tsl_2 :

{ desired_speed.randomize() with {
desired_speed.value inside {[1:4]} &&
desired_speed.transition = LINEAR

}s

interpolate(desired_speed,...);
};
tsl_3 :

endsequence

In this example, different test sequences are given as
tsl, ts2 etc. where tsl refers to the sample test se-
quence of Fig. 3

B.2 Transition Coverage.

Test sequences also seamlessly apply for the gen-
eration of transition coverage specifications without
further modification. The following example directly
refers to test sequence tsl in Fig. i3

covergroup tsl @(tsl_trigger);
coverpoint desired_speed {
bins ds_tsl = (0 => 0 => [1:4] => 5
=> [6:19] [* 9] => 0 => 0);
};

endgroup;

Here, the corresponding SystemVerilog covergroup
is triggered by the synchronisation point event
tsl_trigger and has a coverpoint for the variable
desired_speed and a single bin, which covers the ab-
stract test sequence tsl. It is easy to see from this
example, that the coverage of all sample test sequences
for a classification tree can be generated and gives intu-
itive means for the efficient specifications of transition
coverages.

VI. CONCLUSIONS AND OUTLOOK

In this article, we introduced the classification tree
method for functional verification (CTM/FV) as a
novel method to support the systematic develop-
ment test configurations. Though we have introduced
CTM/FV just for randomized test and functional cov-
erage specification for SystemC models and automatic
SystemVerilog code generation, our method supports
different HVLs such as the e language and the speci-
fication and documentation of general properties, i.e.,
assertions and assumption as well. Additionally, for a
wider application, we already have solutions to extend
CTM/FV and SystemVerilog for the specification of in-
tervals based on float values.

REFERENCES

[1] M. Conrad. Modell-basierter Test eingebetteter Software im
Automobil. Dt. Universitéts-Verlag, Wiesbaden, 2004.

[2] C. Ghezzi, M. Jazayeri and D. Mandrioli. Fundamentals of
Software Engineering. Prentice-Hall PTR, 1991.

[3] M. Grochtmann and K. Grimm. Classification Trees for
Partition Testing. Softw. Test., Verif., Reliab., 3(2):63-82,
1993.

[4] IEEE. IEEE Std 1850-2005 - Standard for Property Speci-
fication Language (PSL), September 2005.

[5] IEEE. IEEE Std.1800-2005 - Standard for SystemVer-
ilog Unified Hardware Design, Specification and Verification
Language, November 2005.

[6] IEEE. IEEE Std.1647-2006 - Standard for the Functional
Verification Language ’e’, March 2006.

[7] N.K. Jha and S.Gupta. Testing of Digital Systems. Cam-
bridge University Press, 2003.

[8] Th. Kropf. Introduction to formal hardware verification.
Springer, 1999.

[9] A. Krupp and W. Mueller. Classification Trees for Random
Test and Functional Coverage. In Design, Automation and
Test in FEurope (DATE 2006), Munich, Germany, March
2006

[10] W.H.K. Lam. Hardware Design Verification. Prentice Hall
PTR, 2005.

[11] Th.J. Ostrand and M.J. Balcer. The Category-Partition
Method for Specifying and Generating Functional Tests.
Commun. ACM, 31(6):676-686, 1988

[12] H. Singh, M. Conrad, and S. Sadeghipour. Test Case Design
Based on Z and the Classification-Tree Method. In ICFEM
’97, Washington, DC, USA, 1997. IEEE Computer Society.

[13] Synopsys. Assertion-Based Verification - White Paper.
March 2002. www.synopsys.com/simulation.

[14] http://www.dspace.de/ww/en/gmb/home/products/sw/
expsoft/mtest.cfm, Dec 2006

[15] http://www.mentor.com/products/fv/abv/questa_afv,
Dec 2006

[16] http://www.cadence.com/products/functional_ver/
vmanager/, Dec 2006

[17] Cadence Design Systems. Reducing Block, Chip, and Sys-
tem Design Risk with a ”Plan-To-Closure” Verification Ap-
proach, White Paper, San Jose, CA, USA, 2006.

	I Introduction
	II Related Work
	III SystemVerilog
	IV CTM
	V CTM/FV
	V-A Creation of Classification Tree
	V-A.1 Constraints and Weights for Random Tests
	V-A.2 Functional Coverage and Bins.

	V-B Creation of Abstract Test Sequences
	V-B.1 Test Sequences for Random Tests.
	V-B.2 Transition Coverage.

	VI Conclusions and Outlook

