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ABSTRACT

Monte Carlo simulations are used in many disciplines to 
evaluate  the  steady  state  distributions  of  stochastic 
models.   This  paper  introduces  a  new  procedure  for 
improving  the  accuracy  of  such  simulations.   The 
approach is based on constructing synthetic “alignment 
intervals” that are appended to the output of the original 
simulations, creating extended simulations whose output 
conforms  to  certain  mathematical  relationships. 
Satisfying these relationships is shown to be sufficient 
to  guarantee  that  the  underlying  steady  state 
distributions have been computed accurately.  

INTRODUCTION

Variability is present in the behavior of many real world 
systems.  It is often convenient to regard this variability 
as  the  physical  manifestation  of  some  underlying 
stochastic  process.   This  assumption  leads  to  the 
creation of stochastic models of system behavior.  These 
models  can  then  be  evaluated  through  analytic 
techniques,  numerical  methods,  or  Monte  Carlo 
simulation.

In many cases, analysts are interested in determining the 
steady  state  distribution  of  the  underlying  stochastic 
process.  When Monte Carlo simulation is being used 
for  this  purpose,  the  Ergodic  Theorem  insures  (with 
probability  one)  that  -   if  the  simulation  runs  “long 
enough”, and if the random number generator is “good 
enough”  - the output of the simulation will  provide an 
accurate characterization of the underlying steady state 
distribution.  The first few sections of this paper present 
a new procedure for testing the output of a simulation to 
determine  if  it  has,  in  fact,   provided  an  accurate 
characterization  of  the  underlying  steady  state 
distribution.  

The tests are based on the equivalence of two different 
methods for deriving the equations that characterize this 
distribution.   The  first  method  employs  the  classical 
approach of setting the time derivative of the transient 

distribution equal to zero.  The second method is based 
on  a  new  approach:  a  direct  analysis  of  observable 
quantities  that  simulation  programs  actually  generate. 
Both methods are shown to produce exactly the same 
equations for characterizing the steady state distribution. 
This  provides  the  rationale  for  the  new  testing 
procedure.  A simple example  is used to illustrate the 
issues involved.  

The discussion then turns to cases where the output of 
the simulation does not satisfy the conditions sufficient 
to guarantee accuracy.  It is shown that accuracy can be 
improved  in  such  cases  by  appending  specially 
constructed  “alignment  intervals”  to  the  end  of  the 
original  output  trajectories.  Since  system  behavior 
during these specially constructed alignment intervals is 
driven by  external  calculations  rather  than  calls  on  a 
random  number  generator,  legitimate  philosophical 
concerns arise regarding the validity of this approach. 
These issues are addressed in the final sections of this 
paper.

EXAMPLE – SIMPLE QUEUEING NETWORK

Begin  by  considering  the  simple  queueing  network 
shown in Figure 1.  There are two queues, each served 
by a single server.  A total of three customers circulate 
around the network, cycling between one server and the 
other.

QUEUE

QUEUE

SERVER 1

SERVER 2

THREE CIRCULATING CUSTOMERS

Figure 1:  Simple Queueing Network
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Assume that  the  service  times  at  servers  1  and 2 are 
determined by sampling from exponentially distributed 
random  variables  with  means  of  2  seconds  and  4 
seconds respectively.  The queueing network in Figure 1 
can thus be regarded as the realization of a stochastic 
process.    The structure of this process is  identical  to 
that of an  M/M/1/3 queue

Let P(n)  be the steady state probability that the number 
of customers at server 1 is equal to n  (for n = 0, 1, 2, 3). 
Analytic  expressions  for  P(n)  are  well  known  to 
queueing theorists.  However, suppose for purposes of 
this example that P(n) is not known but is instead being 
evaluated through a Monte Carlo simulation.  

Figure  2 depicts  two possible  trajectories  that  such  a 
simulation might generate.  Both trajectories are exactly 
30 seconds in duration.   This is, of course, too short an 
interval  to  obtain  reliable  estimates  of  an  underlying 
steady  state  distribution,  but  it  is  still  sufficient  for 
purposes of this discussion.
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Figure 2: Two Possible Simulated Trajectories

Begin  by  considering  the  values  of  P(n)  that  are 
associated with the upper trajectory.  

There are zero customers at server 1 for a total of 2 + 4 
+ 6 + 4 = 16 seconds.  Thus P(0) = 16/30  .

Similarly, there is one customer at server 1 for a total of 
1 + 1 + 2 + 1 + 1 + 2 = 8 seconds.   Thus P(1) = 8/30  .

Likewise, there are two customers at server 1 for a total 
of  2 + 1 + 1 = 4 seconds, implying P(2) = 4/30  .

Finally, there are three customers at server 1 for a total 
of  2 seconds, which implies P(3) = 2/30  .

As already noted, the values of P(n) for the underlying 
stochastic process can also be expressed analytically in 
this  simple  case.  Using  the  standard  notational 
conventions  of  queueing  theory,  assume  that  service 

times  at  server  1  are  exponentially  distributed  with 
mean  1/μ   and  that  service  times  at  server  2  are 
exponentially  distributed  with  mean  1/λ.   Then  the 
values of P(n) can be expressed as well known functions 
of the ratio λ/μ.  

P(0) = 1/[1 + λ/μ + (λ/μ)2 + (λ/μ)3]                (1)

P(1) = (λ/μ) P(0)                                            (2)

P(2) = (λ/μ)2 P(0)                                           (3)

P(3) = (λ/μ)3 P(0)                                           (4)

Note that Equations (1) – (4) pertain to the steady state 
distribution  of  the  stationary  stochastic  process 
associated  with  Figure  1.   The  parameters  of  this 
process are μ and λ.   

In the example being considered here, 1/μ = 2 seconds 
(the mean service  time at  server  1)  and 1/λ = 4 (the 
mean service time at server 2).   The ratio λ/μ is thus 
equal to (1/4) ÷ (1/2)  = ½ .  Replacing λ/μ  by ½  in 
Equations (1) – (4) yields the following solution for the 
steady state distribution. 

P(0) =  1/[1 +(½)  + (½)2 + (½)3]  =  8/15     

        =  16/30

P(1) =  1/2   x  8/15   = 4/15                 

                      =  8/30

P(2) = (½)2 x  8/15   = 2/15

        =  4/30

P(3) = (½)3 x  8/15   = 1/15

        =  2/30

Note  that  the  attained  state  distribution  actually 
observed in the upper trajectory of Figure 2 is identical 
to  the  theoretical  steady  state  distribution  computed 
using  the  mathematical  equations  derived  from  the 
underlying stochastic process. 

This perfect alignment between observed and theoretical 
results is, of course, the goal of Monte Carlo simulation. 
However, in this case the 30 second simulation interval 
seems much too short to expect this goal to be satisfied. 

Is  the  observed  alignment  between  the  simulator’s 
output and the analytic solution merely the consequence 
of  a  highly  specialized  and  artfully  constructed 
trajectory, or is it  the result of fundamental principles 
that  can  be  generalized  to  a  broad  class  of  possible 
trajectories?  

As this paper will demonstrate, fundamental principles 
are  indeed involved,  and these  principles  extend  well 
beyond the simple example that has just been presented.



CLASSICAL ANALYSIS APPROACH

It is helpful to begin by returning to first principles and 
reviewing the classical approach for deriving the steady 
state  distribution  of  any  continuous  time  Markov 
process.

The first  step is  to  identify  the  states  of  the  Markov 
process and the “permissible” transitions between these 
states.  Essentially, a transition is “permissible” if the 
specification of the Markov process allows it to occur 
with a probability that is greater than zero.

In the example illustrated in Figure 1, the state of the 
process  will  simply  be  defined  as  an  integer  that 
represents the number of customers at server 1.  Thus, 
state can be equal to  0, 1, 2 or 3.

Permissible  transitions  occur  when  a  single  customer 
completes service at one of the servers and proceeds to 
the queue at the other server.    This results in a state 
change of plus or minus one.  The four possible states 
and  the  six  permissible  transitions  are  illustrated  in 
Figure 3.

Figure 3:  State Transition Diagram for Figure 1

The state of this Markov process at any time t can be 
represented  by  a  random  variable  with  distribution 
P(n,t).   In other words, P(n,t) is the probability that the 
Markov  process  is  in  state  n  at  time  t.   P(n,t)  is  a 
function  of  t  that  depends  on  the  initial  state  of  the 
process at time t = 0 and on the values of the parameters 
(in this case, μ and λ.).   

Intuitively, it is reasonable to believe that, if the value of 
t becomes large enough, the dependence of P(n,t) on the 
initial  state  will  become  negligible  and  P(n,t)  will 
become completely independent of t.  Stochastic process 
that  conform to  these  intuitive  notions  are  said  to  be 
“ergodic”.

From  a  mathematical  perspective,  the  condition  that 
P(n,t) is independent of t can be made precise by stating 
that the derivative of  P(n,t) with respect to t is equal to 
zero for each value of n.  Since this is a Markov process, 
system state at time t + Δt depends only system state at 
time  t  and  on  the  parameters  μ  and  λ.   These 
observations  make  it  possible  to  write  down  the 
derivative of P(n,t) with respect to t for each value of n. 
Setting  each  derivative  equal  to  zero  yields  the 

following  set  of  four  equations  that  the  steady  state 
distribution must satisfy:

                 μ P(0) = λ P(1)                                            (5)

       [μ + λ ]P(1)  = μ P(0) + λ P(2)                              (6)

       [μ + λ ]P(2)  = μ P(3) + λ P(3)                              (7)

                μ P(3)  = λ P(2)                                            (8)

Equations derived in this manner are commonly referred 
to  global  balance  equations.   When combined  with  a 
“normalization equation” expressing the fact  that   the 
sum of P(n) over all values of n must be equal to 1, it 
becomes  possible  to  solve  these  equations  for   P(n). 
This yields the steady state distribution that has already 
been presented  in Equations (1) – (4).

ALTERNATIVE ANALYSIS APPROACH

In the preceding section,  the global balance equations 
(5)  –  (8)  were  obtained  by setting  certain  derivatives 
equal to zero.  These same equations can also be derived 
through an  alternate  set  of  highly intuitive  arguments 
that  refer  solely  to  the  observable  properties  of  the 
output generated by Monte Carlo simulations.

To proceed, note that the state transition diagram shown 
in Figure 3 can be adapted to track the progress of any 
simulation as it executes over time.   Simply add a token 
to the diagram and assume that it moves from circle to 
circle via one of the arrows whenever the length of the 
queue at server 1 changes.  The position of the token at 
any instant represents the current state of the system.

It  should  be  immediately  apparent  that,  during  the 
course of any finite simulation interval, the number of 
transitions that the token makes out of a given state will 
be equal to the number of transitions it makes into that 
state.   The only exceptions are the initial state,  which 
has one extra  transition out (just after the start  of the 
simulation)  and  the  final  state,  which  has  one  extra 
transition in (just before the end of the simulation).   If 
the initial and final states are identical, these two extra 
transitions will  balance one another, implying that the 
number  of  transitions  out  is  equal  to  the  number  of 
transitions in for all possible states.  This condition is 
often referred to as “flow balance”.

IMPLICATIONS OF FLOW BALANCE

To examine  the  implications  of  flow balance  from a 
mathematical perspective, let C(n) denote the number of 
times  during  the  execution  of  a  simulation  that  a 
customer completes service at server 1 while the system 
is in state n.  Similarly, let A(n) denote the number of 
times  that  a  customer  completes  service  at  server  2 
while the system is in state n.  

0 1 2 3



For  state  0,  transitions  out  occur  only  as  a  result  of 
service  completions  at  server  2  (causing  a  transition 
from state 0 to state 1).    The number of times these 
transitions occur is equal to A(0).  Similarly, the only 
transitions into state 0 occur while the system is in state 
1  and  the  single  customer  at  server  1  completes  its 
service.  The number of times these transitions occur is 
equal to C(1).  The flow balance condition thus implies:

                 A(0) = C(1)

For  state  1,  there  are  two  possible  transitions  in  (a 
completion at server 2 while in state 0 or a completion 
at server 1 while in state 2).  Similarly,  there are two 
possible transitions out (a completion at server 1 while 
in state 1 or a completion at server 2 while in state 1). 
For state 2,  flow balance implies:

        A(1) + C(1) = A(0) + C(2)
                        
Similar considerations regarding state 3 imply:

        A(2) + C(2) = A(1) + C(3)

State 3 is similar to state 0:
        
                  C(3) = A(2)

The  next  step  is  to  convert  these  four  flow  balance 
equations  so they are expressed in terms of transition 
rates rather than raw counts.  Suppose that T(n) is the 
amount of time the system spends in state n during the 
simulation interval.  Then T = T(0) + T(1) + T(2) + T(3) 
must  equal  the total  length of the simulation interval. 
Also,  T(n)/T must  be equal  to the proportion of  time 
(during the simulation interval) that the system spends 
in state n.   This quantity is denoted by P(n):

              P(n) = T(n)/T

Simple algebra then implies that the four flow balance 
equations given above can be re-written as follows:

                   [A(0)/T(0)] P(0)  = [C(1)/T(1)] P(1) 

[A(1)/T(1) + C(1)/T(1)] P(1) = [A(0)/T(0)] P(0)  
                                                           + [C(2)/T(2)] P(2)

[A(2)/T(2) + C(2)/T(2)] P(2) = [A(1)/T(1)] P(1)  
                                                           + [C(3)/T(3)] P(3)

                  [C(3)/T(3)] P(3)  =  [A(2)/T(2)] P(2)

Note  that  these  four  equations  are  valid  for  any 
trajectory generated by any simulation that conforms to 
the state transition diagram illustrated in Figure 3.  The 
only requirement is that the trajectory must satisfy flow 
balance:  this is, the initial and final states must be the 
same.   No distributional  assumptions  of  any type  are 
required.

EFFECT OF DISTRIBUTIONAL ASSUMPTIONS

In this particular example, service times at server 1 are 
assumed  to  be  generated  by  sampling  from  an 
exponentially distributed random variable whose mean 
is 1/μ seconds.  In addition, service times at server 2 are 
assumed  to  be  generated  by  sampling  from  an 
exponentially  distributed  random  variable  with  mean 
1/λ.   These  distributional  assumptions have important 
implications for  the expected values of A(n)/T(n)  and 
C(n)/T(n) that appear in the flow balance equations  at 
the bottom of the preceding column.
 
Consider  server  1  first.   C(n)  is  the  total  number  of 
requests completed by this server while the system is in 
state  n (i.e.,  while  there  are n customers at  server  1). 
Also,  T(n)  is  the  total  time  spent  in  state  n.   Thus, 
C(n)/T(n)  is the conditional request completion rate at 
server 1 while the system is in state n.

Since  service  times  at  server  1  are  assumed  to  be 
generated  by  sampling  from  a  random  variable  with 
mean 1/μ, the unconditional completion rate at server 1, 
computed  over  all  times  that  the  server  operates,  is 
expected  to  equal  μ.   This  is  true  regardless  of  the 
service time distribution.   The additional  fact  that  the 
service time distribution is exponential implies that the 
service  completion  process  is  memoryless  (i.e.,  the 
probability that a completion will occur at any instant is 
independent of the amount of service that the customer 
currently being served has already consumed).

The  memoryless  property  implies  that  conditional 
completion  rates  (conditioned  on  system  state)  will 
always  be  the  same  as  the  overall  (unconditional) 
service  completion rate.   In other  words,  the quantity 
C(n)/T(n) is expected to equal μ for all values of  n (for 
n = 1, 2 and 3).  This condition, which can be verified 
by direct inspection of any trajectory, is referred to as 
completion rate homogeneity. 

Applying the same argument to server 2, it also follows 
that the values of A(n)/T(n) are expected to equal λ for n 
= 0, 1 and 2.  In other words, the completion rates at 
server 2 are also expected to be homogeneous

If  the  flow  balance  equations  at  the  bottom  of  the 
preceding  column  are  modified  so  that  C(n)/T(n)  is 
replaced  by  μ  for  n  =  1,  2  and  3  and  A(n)/T(n)  is 
replaced by λ for n = 0, 1 and 2, these four equations 
become identical to Equations (5) – (8). 

To summarize the main point, Equations (5) – (8)  have 
just  been  derived  under  two  very  different  sets  of 
assumptions.  First, it was shown that Equations (5) – 
(8) are satisfied by the steady state distribution of the 
Markov process associated with Figure 1.  Then, it was 
shown that Equations (5) – (8) are also satisfied by the 
output  of  any  simulation  model  based  on  Figure  1, 
provided the output satisfies the observable conditions 



of  flow balance and homogeneous completion rates at 
servers 1 and 2.  

Solving Equations (5) – (8) for P(n) will always yield 
Equations  (1)  –  (4).   It  follows  that  both  sets  of 
assumptions are sufficient to generate exactly the same 
values of P(n).

APPLICATION TO SIMULATION OUTPUT

This observation leads to a simple test for the validity of 
simulation results.  For example, suppose that a Monte 
Carlo  simulation of the system illustrated in  Figure  1 
generates a trajectory that satisfies flow balance (initial 
state  =  final  state).   Suppose  further  that  completion 
rates at server 1 and server 2 are homogeneous: that is, 
C(n)/A(n) = μ for n = 1, 2, 3 and A(n)/T(n) = λ for n = 
0, 1, 2.  Then the attained distribution associated with 
this trajectory (i.e., the measured values of P(n)) will be 
identical  to  the  values  obtained  by  evaluating  the 
analytic expression for the steady state distribution with 
parameters set equal to corresponding measured values. 

The  upper  trajectory  in  Figure  2  provides  a  concrete 
example  of  such  a  trajectory.  To  verify  that  all  the 
values of  C(n)/T(n) are  equal,  note that  the values of 
T(0), T(1), T(2) and T(3) are 16, 8, 4 and 2 respectively. 
In addition, the values of C(1), C(2), and C(3) are 4, 2 
and 1 respectively.    Thus,  the  value  of  C(n)/T(n)  is 
equal to .5  for n = 1, 2 and 3.   

Similarly, the values of A(0), A(1) and A(2) are equal to 
4, 2 and 1 respectively.  This implies that the values of 
A(n)/ T(n) are equal to .25  for n = 0, 1 and 2.  

These  simple  relationships,  combined  with  the 
observation that the initial and final state are the  same, 
are sufficient to guarantee with 100% certainty that the 
attained  distribution  associated  with  this  particular 
trajectory  will  be  identical  to  the  steady  state 
distribution  of  underlying  Markov  process  (with 
parameter values μ = .5 and λ = .25).  

Note  that  this  conclusion  does  not  require  a  priori 
knowledge  of  the  steady  state  distribution  associated 
with the underlying stochastic process.  As long as flow 
balance is satisfied and the conditional completion rates 
for  server  1  and  server  2  are  homogeneous,  the 
simulation  is  guaranteed  to  produce  an  accurate 
characterization  of  the steady state  distribution  of  the 
underlying stochastic process. 

The Ergodic theorem and the Law of Large Numbers 
imply that, if the simulation runs long enough, this same 
conclusion  can  be  asserted  with  probability  one. 
However, as the upper trajectory in Figure 2 illustrates, 
it  is  not  always necessary to run the simulation for a 
lengthy interval of time to insure that the conclusion is 
correct.

Of  course,  it  is  entirely  possible  for  a  Monte  Carlo 
simulation to generate a trajectory that does not satisfy 
these goals.  The lower trajectory in Figure 2 provides 
such an example.  The two areas of difference between 
the upper and lower trajectories are marked with vertical 
arrows.

For the lower trajectory  μ = (4+2+1)/(7+5+2) =  .5 and 
λ = (4+2+1)/(16+7+3) = .25.   Since the parameters of 
the underlying Markov process are the same, the values 
of  P(n)  should  be  the  same  if  the  simulation  has 
produced  an  accurate  result.   However,  P(1)  is  7/30 
rather than 8//30, and P(2) is 5/30 rather than 4/30.  The 
appearance  of  inaccurate  results  should  not  be 
surprising in this case since the completion rates at both 
server 1 and server 2 fail to satisfy homogeneity.

For server 1:  C(1)/T(1) = 4/7  
        C(2)/T(2) = 2/5  

                      C(3)/T(3) = 1/2  

For server 2:  A(0)/T(0) = 4/16  
                       A(1)/T(1) = 2/7 

        A(3)/T(3) = 1/5  

GENERALIZATIONS & EXTENSIONS

Thus far, this discussion has concentrated on the simple 
model shown in Figure 1 and on the associated Markov 
process characterized by the state transition diagram in 
Figure 3.  It is a routine matter to apply exactly the same 
reasoning to any system being modeled by a continuous 
time Markov process.   Simply draw the state transition 
diagram  and  use  it  to  identify  those  conditional 
completion rates that will have  to satisfy homogeneity 
conditions.  

Once the homogeneity conditions are identified, simply 
run a simulation and test the generated trajectory to see 
if these conditions have been satisfied.   If they have, 
and if  flow balance is also satisfied,   it  can be stated 
with absolute certainty that the simulation has generated 
an  accurate  characterization  of  the  steady  state 
distribution of the underlying stochastic process.   

Of course, the parameters of the underlying stochastic 
process must be determined by actually  measuring the 
generated  trajectory (rather than referring to the input 
parameters of the simulation program).   Assuming that 
the simulation has run for a reasonably long interval of 
time,  these measurements should yield values that  are 
nearly  identical  to  the  parameter  values  specified  as 
input to the simulation program.

Note that this entire process can be carried out in cases 
where  the  analytic  expression  for  the  steady  state 
distribution is unknown.  
  



SYNTHETIC ALIGNMENT INTERVALS

As  this  discussion  has  illustrated,  analysts  who  use 
Monte  Carlo  simulations  to  evaluate  steady  state 
distributions should, under ideal circumstances,  expect 
these  simulations  to  generate  trajectories  that  satisfy 
flow balance and various forms of homogeneity.  

In  cases  where  these  conditions  are  not  satisfied,  the 
accuracy  of  the  simulation  can  –  in  principle  –  be 
improved  by  extending  the  trajectory  so  that  the 
conditions can be met.

There are two ways to extend the simulation.   The first 
is  to  allow  the  simulation  program  to  run  for  an 
additional interval of time.  The Ergodic theorem and 
the Law of Large Numbers imply that, in the limit, the 
required  assumptions  will  almost  always  be  satisfied. 
The  flow  balance  requirement  can,  in  principle,  be 
satisfied simply by modifying the simulation program 
so that it only terminates at points where the final state 
is equal to the initial state.  However, the time needed to 
achieve these goals may be unacceptably long.

As an alternative, consider the possibility of appending 
specially constructed “alignment intervals” to the end of 
the  original  simulations.   The  objective  of  these 
alignment intervals is  to bring the extended trajectory 
into compliance with the required assumptions.  Since 
synthetic  alignment  intervals  are  not  generated  by 
calling upon the random number generator that drives 
the  simulation  program,  it  constitutes  an  artificially 
tailored appendage  to  the original  simulation.    Thus, 
care must be taken when interpreting the results of the 
extended simulation. 

To understand some the issues involved, note that the 
information  represented  within  a  steady  state 
distribution is only a subset of the information that can 
be  obtained  by  analyzing  the  associated  stochastic 
process.   For  example,  in  the case  of  a  single  server 
queue,  the  steady  state  distribution  contains  detailed 
information  about  queue  length,  but  contains  no 
information at all about the lengths of busy periods.  In 
fact,  two stationary stochastic processes with different 
internal  structures  (and  different  busy  period 
distributions)  can  have  exactly  the  same  steady  state 
distribution (Buzen 2006a).

The  point  is  that  appending  a  non-random alignment 
interval  to  the  output  of  a  Monte  Carlo  simulation  is 
almost  certain  to  interfere  with  various  behavioral 
properties of the extended trajectory.  Homogeneity and 
flow  balance  are  not  sufficient  to  insure  that  all 
properties of the stochastic process are preserved.  Even 
though the extended trajectory is no longer “random”, 
and even though it no longer exhibits all the properties 
of a faithful stochastic simulation, it is still possible to 
demonstrate  that  the  extended  trajectory  does  in  fact 
provide  a  completely  accurate  characterization  of  the 

underlying steady state distribution.   This observation 
provides the philosophical justification for appending a 
non-random alignment interval to the end of a stochastic 
trajectory.

In  many  cases,  it  is  reasonable  to  assume  that  the 
original Monte Carlo simulation has generated a steady 
state distribution that is quite close to the exact solution. 
The approach outlined here can be used to inspect the 
output of the simulation and identify the most serious 
violations of homogeneity assumptions (while ignoring 
minor violations of homogeneity).   Synthetic alignment 
intervals  that  correct  only the  most  serious  violations 
can then be appended to the original trajectory, resulting 
in an incremental improvement in accuracy.  

Such  a  step-wise  approach  to  improving  simulation 
accuracy may ultimately prove to be the most effective 
procedure for applying these results in practice.   It is 
important to note in this regard that simulation results 
can be surprisingly accurate even though the required 
homogeneity assumptions are not satisfied exactly (Suri 
1983).

A  specific  example  of  an  alignment  interval  that 
correctly  adjusts  the  lower  trajectory  in  Figure  2  is 
presented in the next section. General algorithms for the 
construction of synthetic  alignment intervals  have not 
yet been developed.

EXAMPLE

Figure 4 displays two trajectories, both having durations 
of  30  seconds.   The  upper  trajectory  in  Figure  4  is 
identical to the lower trajectory in Figure 2.  

Assume that the upper trajectory in Figure 4 has been 
generated by a Monte Carlo simulation of the stochastic 
process illustrated in Figure 1.  As previously discussed, 
the  completion  rates  at  servers  1  and  2  are  not 
homogeneous for this trajectory.   In particular,

For server 1:  C(1)/T(1) = 4/7  
        C(2)/T(2) = 2/5  

                      C(3)/T(3) = 1/2  

For server 2:  A(0)/T(0) = 4/16  
                       A(1)/T(1) = 2/7 

        A(3)/T(3) = 1/5  

As already noted,  the values of P(n) for this trajectory 
differ from the correct values obtained by setting  λ/μ 
equal to  ½  in Equations (1) – (4).   In other words, the 
simulation  results  shown  in  the  upper  trajectory  in 
Figure 4 do not accurately characterize the steady state 
distribution of the underlying stochastic process.

The lower trajectory in Figure 4 displays an alignment 
interval that can be used to correct this problem.  If the 
lower trajectory is appended to the upper trajectory, the 



resulting 60 second trajectory will exhibit homogeneous 
service times for servers 1 and 2.   This then implies that 
the  values  of  P(n)  associated  with  the  60  second 
trajectory are  identical  to  the  values of  P(n)  obtained 
from Equations (1) – (4) with  λ/μ   =  ½  .
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Figure 4:  Simulated Trajectory & Alignment Interval

The  following  calculations,  which  are  based  on  the 
complete 60 second trajectory,  verify these remarks.

     T(0) = 2 + 4 + 7 + 3 + 2 + 5 + 5 + 4  
             = 32

     
     T(1) = 1 + 1 + 1 + 1 + 1 + 2 + 1 + 1 + 3 + 1 + 1 + 2
             = 16

     T(2) = 2 + 1 + 2 + 1 + 1 + 1 = 8

     T(3) = 2 + 2 = 4

     C(1) = 8

     C(2) = 4

     C(3) = 2

     A(0) = 8

     A(1) = 4

     A(2) = 2

For server 1, 

     C(1)/T(1) = 8/16 = .5

     C(2)/T(2) = 4/8   = .5

     C(3)/T(3) = 2/4   = .5

For server 2, 

     A(0)/T(0) = 8/32 = .25

     A(1)/T(1) = 4/16 = .25

     A(2)/T(2) = 2/8   = .25

Since flow balance is satisfied and completion rates at 
both server 1 and server 2 are homogeneous, the values 
of  P(n)  must  accurately  characterize  the  steady  state 
distribution of the underlying stochastic process.  

To verify this conclusion, note that the values of P(n) 
from the 60 second trajectory are:

P(0) = T(0)/T = 32/60 = 8/15

P(1) = T(1)/T = 16/30 = 4/15

P(2) = T(2)/T  =  8/30 = 2/15

P(3) = T(3)/T =   4/30 = 1/15

The parameters of the underlying stochastic process are

μ = (8 + 4 + 2)/(16 + 8 + 4) = .5

λ = (8 + 4 + 2)/(32 + 16 + 8) = .25

If these values of λ and μ are substituted into the exact 
analytic solution given in Equations (1) – (4), a routine 
calculation demonstrates that the values of P(n) in the 
60 second trajectory are correct.

In  this  example,  the  length  of  the  alignment  interval 
happens  to  be  identical  to  the  length  of  the  original 
trajectory.  This is not a requirement.  For example,  the 
time scale for all events in the alignment interval could 
be reduced by a factor of two so that the interval was 
only 15 seconds in length.  Homogeneity would still be 
satisfied  in  the  45  second  extended  interval  and  the 
values of P(n) would still be computed correctly.

CONCLUSIONS

By testing the output of a Monte Carlo simulation to see 
if certain mathematical relationships are satisfied, it  is 
possible to determine if the simulation has generated an 
accurate result  (i.e.,  if  the simulation has provided an 
accurate characterization of the steady state distribution 
of the underlying stochastic process).  

If  the  output  fails  to  pass  the  appropriate  tests,  the 
accuracy  of  the  simulation  can  be  improved  by 
appending a synthetic (non-random) alignment interval 
to create  an extended simulation interval  that  does in 
fact  possess  the  desired  characteristics.   An  example 
illustrating this procedure has been provided.



The development of algorithms for the construction of 
synthetic alignment intervals is – at present – an open 
research  problem.   If  general  algorithms  can  be 
developed,  simulation  times  can  be  shortened  and 
confidence in the accuracy of simulation results can be 
enhanced.

The  approach  presented  here  can,  in  principle,  be 
extended to any Monte Carlo simulation of a continuous 
time Markov process.   

BIBLIOGRAPHIC NOTES

The material  presented in this paper represents a new 
application of Operational Analysis.   Introduced thirty 
years  ago  (Buzen  1976a),  operational  analysis  is 
concerned  with  the  development  of  equations  that 
characterize the observable behavior of systems as they 
operate over time.  No assumptions are made regarding 
the  existence  of  an  underlying  stochastic  process. 
Instead,  all  assumptions  are  formulated  in  terms  of 
relationships among quantities that can be observed and 
measured under normal operating conditions.

The  concept  of  homogeneity  as  used  in  this  paper  – 
along with derivations based on homogeneity and flow 
balance – closely parallel  material  that  was originally 
presented  in  (Buzen  1976b).   These  derivations  were 
subsequently  extended  to  a  broad  class  of  queueing 
network  models  (Denning  and  Buzen  1978).   Suri’s 
analysis of the robustness of queuing network formulas 
was based upon operational analysis and the concept of 
homogeneity, but his work did not consider implications 
for Monte Carlo simulation (Suri 1983).

The application of operational analysis to the output of 
Monte Carlo simulations is a very recent development 
that has been characterized as  Operational Analysis 2.0 
(Buzen 2006b).  Since Monte Carlo simulations can be 
regarded as explicit realizations of underlying stochastic 
processes, new issues  are raised by the introduction of 
this  additional  consideration  (e.g.,  the  generation  of 
synthetic alignment intervals). 
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