
IMPROVING SIMULATION ACCURACY THROUGH THE USE OF
SYNTHETIC ALIGNMENT INTERVALS

Jeffrey P. Buzen
Independent Consultant

12-607 Mountain Laurels Dr.
Nashua, NH 03062, USA

E-mail: buzen@post.harvard.edu

KEYWORDS

Stochastic simulation, queueing systems and network
models, stochastic models, Markov models.

ABSTRACT

Monte Carlo simulations are used in many disciplines to
evaluate the steady state distributions of stochastic
models. This paper introduces a new procedure for
improving the accuracy of such simulations. The
approach is based on constructing synthetic “alignment
intervals” that are appended to the output of the original
simulations, creating extended simulations whose output
conforms to certain mathematical relationships.
Satisfying these relationships is shown to be sufficient
to guarantee that the underlying steady state
distributions have been computed accurately.

INTRODUCTION

Variability is present in the behavior of many real world
systems. It is often convenient to regard this variability
as the physical manifestation of some underlying
stochastic process. This assumption leads to the
creation of stochastic models of system behavior. These
models can then be evaluated through analytic
techniques, numerical methods, or Monte Carlo
simulation.

In many cases, analysts are interested in determining the
steady state distribution of the underlying stochastic
process. When Monte Carlo simulation is being used
for this purpose, the Ergodic Theorem insures (with
probability one) that - if the simulation runs “long
enough”, and if the random number generator is “good
enough” - the output of the simulation will provide an
accurate characterization of the underlying steady state
distribution. The first few sections of this paper present
a new procedure for testing the output of a simulation to
determine if it has, in fact, provided an accurate
characterization of the underlying steady state
distribution.

The tests are based on the equivalence of two different
methods for deriving the equations that characterize this
distribution. The first method employs the classical
approach of setting the time derivative of the transient

distribution equal to zero. The second method is based
on a new approach: a direct analysis of observable
quantities that simulation programs actually generate.
Both methods are shown to produce exactly the same
equations for characterizing the steady state distribution.
This provides the rationale for the new testing
procedure. A simple example is used to illustrate the
issues involved.

The discussion then turns to cases where the output of
the simulation does not satisfy the conditions sufficient
to guarantee accuracy. It is shown that accuracy can be
improved in such cases by appending specially
constructed “alignment intervals” to the end of the
original output trajectories. Since system behavior
during these specially constructed alignment intervals is
driven by external calculations rather than calls on a
random number generator, legitimate philosophical
concerns arise regarding the validity of this approach.
These issues are addressed in the final sections of this
paper.

EXAMPLE – SIMPLE QUEUEING NETWORK

Begin by considering the simple queueing network
shown in Figure 1. There are two queues, each served
by a single server. A total of three customers circulate
around the network, cycling between one server and the
other.

QUEUE

QUEUE

SERVER 1

SERVER 2

THREE CIRCULATING CUSTOMERS

Figure 1: Simple Queueing Network

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

Assume that the service times at servers 1 and 2 are
determined by sampling from exponentially distributed
random variables with means of 2 seconds and 4
seconds respectively. The queueing network in Figure 1
can thus be regarded as the realization of a stochastic
process. The structure of this process is identical to
that of an M/M/1/3 queue

Let P(n) be the steady state probability that the number
of customers at server 1 is equal to n (for n = 0, 1, 2, 3).
Analytic expressions for P(n) are well known to
queueing theorists. However, suppose for purposes of
this example that P(n) is not known but is instead being
evaluated through a Monte Carlo simulation.

Figure 2 depicts two possible trajectories that such a
simulation might generate. Both trajectories are exactly
30 seconds in duration. This is, of course, too short an
interval to obtain reliable estimates of an underlying
steady state distribution, but it is still sufficient for
purposes of this discussion.

30

2

2
2

2
2

64 4

0

30

2

2
2

2
74 3

0

2

1
11

11 1

1 1 1 1
1

1

Figure 2: Two Possible Simulated Trajectories

Begin by considering the values of P(n) that are
associated with the upper trajectory.

There are zero customers at server 1 for a total of 2 + 4
+ 6 + 4 = 16 seconds. Thus P(0) = 16/30 .

Similarly, there is one customer at server 1 for a total of
1 + 1 + 2 + 1 + 1 + 2 = 8 seconds. Thus P(1) = 8/30 .

Likewise, there are two customers at server 1 for a total
of 2 + 1 + 1 = 4 seconds, implying P(2) = 4/30 .

Finally, there are three customers at server 1 for a total
of 2 seconds, which implies P(3) = 2/30 .

As already noted, the values of P(n) for the underlying
stochastic process can also be expressed analytically in
this simple case. Using the standard notational
conventions of queueing theory, assume that service

times at server 1 are exponentially distributed with
mean 1/μ and that service times at server 2 are
exponentially distributed with mean 1/λ. Then the
values of P(n) can be expressed as well known functions
of the ratio λ/μ.

P(0) = 1/[1 + λ/μ + (λ/μ)2 + (λ/μ)3] (1)

P(1) = (λ/μ) P(0) (2)

P(2) = (λ/μ)2 P(0) (3)

P(3) = (λ/μ)3 P(0) (4)

Note that Equations (1) – (4) pertain to the steady state
distribution of the stationary stochastic process
associated with Figure 1. The parameters of this
process are μ and λ.

In the example being considered here, 1/μ = 2 seconds
(the mean service time at server 1) and 1/λ = 4 (the
mean service time at server 2). The ratio λ/μ is thus
equal to (1/4) ÷ (1/2) = ½ . Replacing λ/μ by ½ in
Equations (1) – (4) yields the following solution for the
steady state distribution.

P(0) = 1/[1 +(½) + (½)2 + (½)3] = 8/15

 = 16/30

P(1) = 1/2 x 8/15 = 4/15

 = 8/30

P(2) = (½)2 x 8/15 = 2/15

 = 4/30

P(3) = (½)3 x 8/15 = 1/15

 = 2/30

Note that the attained state distribution actually
observed in the upper trajectory of Figure 2 is identical
to the theoretical steady state distribution computed
using the mathematical equations derived from the
underlying stochastic process.

This perfect alignment between observed and theoretical
results is, of course, the goal of Monte Carlo simulation.
However, in this case the 30 second simulation interval
seems much too short to expect this goal to be satisfied.

Is the observed alignment between the simulator’s
output and the analytic solution merely the consequence
of a highly specialized and artfully constructed
trajectory, or is it the result of fundamental principles
that can be generalized to a broad class of possible
trajectories?

As this paper will demonstrate, fundamental principles
are indeed involved, and these principles extend well
beyond the simple example that has just been presented.

CLASSICAL ANALYSIS APPROACH

It is helpful to begin by returning to first principles and
reviewing the classical approach for deriving the steady
state distribution of any continuous time Markov
process.

The first step is to identify the states of the Markov
process and the “permissible” transitions between these
states. Essentially, a transition is “permissible” if the
specification of the Markov process allows it to occur
with a probability that is greater than zero.

In the example illustrated in Figure 1, the state of the
process will simply be defined as an integer that
represents the number of customers at server 1. Thus,
state can be equal to 0, 1, 2 or 3.

Permissible transitions occur when a single customer
completes service at one of the servers and proceeds to
the queue at the other server. This results in a state
change of plus or minus one. The four possible states
and the six permissible transitions are illustrated in
Figure 3.

Figure 3: State Transition Diagram for Figure 1

The state of this Markov process at any time t can be
represented by a random variable with distribution
P(n,t). In other words, P(n,t) is the probability that the
Markov process is in state n at time t. P(n,t) is a
function of t that depends on the initial state of the
process at time t = 0 and on the values of the parameters
(in this case, μ and λ.).

Intuitively, it is reasonable to believe that, if the value of
t becomes large enough, the dependence of P(n,t) on the
initial state will become negligible and P(n,t) will
become completely independent of t. Stochastic process
that conform to these intuitive notions are said to be
“ergodic”.

From a mathematical perspective, the condition that
P(n,t) is independent of t can be made precise by stating
that the derivative of P(n,t) with respect to t is equal to
zero for each value of n. Since this is a Markov process,
system state at time t + Δt depends only system state at
time t and on the parameters μ and λ. These
observations make it possible to write down the
derivative of P(n,t) with respect to t for each value of n.
Setting each derivative equal to zero yields the

following set of four equations that the steady state
distribution must satisfy:

 μ P(0) = λ P(1) (5)

 [μ + λ]P(1) = μ P(0) + λ P(2) (6)

 [μ + λ]P(2) = μ P(3) + λ P(3) (7)

 μ P(3) = λ P(2) (8)

Equations derived in this manner are commonly referred
to global balance equations. When combined with a
“normalization equation” expressing the fact that the
sum of P(n) over all values of n must be equal to 1, it
becomes possible to solve these equations for P(n).
This yields the steady state distribution that has already
been presented in Equations (1) – (4).

ALTERNATIVE ANALYSIS APPROACH

In the preceding section, the global balance equations
(5) – (8) were obtained by setting certain derivatives
equal to zero. These same equations can also be derived
through an alternate set of highly intuitive arguments
that refer solely to the observable properties of the
output generated by Monte Carlo simulations.

To proceed, note that the state transition diagram shown
in Figure 3 can be adapted to track the progress of any
simulation as it executes over time. Simply add a token
to the diagram and assume that it moves from circle to
circle via one of the arrows whenever the length of the
queue at server 1 changes. The position of the token at
any instant represents the current state of the system.

It should be immediately apparent that, during the
course of any finite simulation interval, the number of
transitions that the token makes out of a given state will
be equal to the number of transitions it makes into that
state. The only exceptions are the initial state, which
has one extra transition out (just after the start of the
simulation) and the final state, which has one extra
transition in (just before the end of the simulation). If
the initial and final states are identical, these two extra
transitions will balance one another, implying that the
number of transitions out is equal to the number of
transitions in for all possible states. This condition is
often referred to as “flow balance”.

IMPLICATIONS OF FLOW BALANCE

To examine the implications of flow balance from a
mathematical perspective, let C(n) denote the number of
times during the execution of a simulation that a
customer completes service at server 1 while the system
is in state n. Similarly, let A(n) denote the number of
times that a customer completes service at server 2
while the system is in state n.

0 1 2 3

For state 0, transitions out occur only as a result of
service completions at server 2 (causing a transition
from state 0 to state 1). The number of times these
transitions occur is equal to A(0). Similarly, the only
transitions into state 0 occur while the system is in state
1 and the single customer at server 1 completes its
service. The number of times these transitions occur is
equal to C(1). The flow balance condition thus implies:

 A(0) = C(1)

For state 1, there are two possible transitions in (a
completion at server 2 while in state 0 or a completion
at server 1 while in state 2). Similarly, there are two
possible transitions out (a completion at server 1 while
in state 1 or a completion at server 2 while in state 1).
For state 2, flow balance implies:

 A(1) + C(1) = A(0) + C(2)

Similar considerations regarding state 3 imply:

 A(2) + C(2) = A(1) + C(3)

State 3 is similar to state 0:

 C(3) = A(2)

The next step is to convert these four flow balance
equations so they are expressed in terms of transition
rates rather than raw counts. Suppose that T(n) is the
amount of time the system spends in state n during the
simulation interval. Then T = T(0) + T(1) + T(2) + T(3)
must equal the total length of the simulation interval.
Also, T(n)/T must be equal to the proportion of time
(during the simulation interval) that the system spends
in state n. This quantity is denoted by P(n):

 P(n) = T(n)/T

Simple algebra then implies that the four flow balance
equations given above can be re-written as follows:

 [A(0)/T(0)] P(0) = [C(1)/T(1)] P(1)

[A(1)/T(1) + C(1)/T(1)] P(1) = [A(0)/T(0)] P(0)
 + [C(2)/T(2)] P(2)

[A(2)/T(2) + C(2)/T(2)] P(2) = [A(1)/T(1)] P(1)
 + [C(3)/T(3)] P(3)

 [C(3)/T(3)] P(3) = [A(2)/T(2)] P(2)

Note that these four equations are valid for any
trajectory generated by any simulation that conforms to
the state transition diagram illustrated in Figure 3. The
only requirement is that the trajectory must satisfy flow
balance: this is, the initial and final states must be the
same. No distributional assumptions of any type are
required.

EFFECT OF DISTRIBUTIONAL ASSUMPTIONS

In this particular example, service times at server 1 are
assumed to be generated by sampling from an
exponentially distributed random variable whose mean
is 1/μ seconds. In addition, service times at server 2 are
assumed to be generated by sampling from an
exponentially distributed random variable with mean
1/λ. These distributional assumptions have important
implications for the expected values of A(n)/T(n) and
C(n)/T(n) that appear in the flow balance equations at
the bottom of the preceding column.

Consider server 1 first. C(n) is the total number of
requests completed by this server while the system is in
state n (i.e., while there are n customers at server 1).
Also, T(n) is the total time spent in state n. Thus,
C(n)/T(n) is the conditional request completion rate at
server 1 while the system is in state n.

Since service times at server 1 are assumed to be
generated by sampling from a random variable with
mean 1/μ, the unconditional completion rate at server 1,
computed over all times that the server operates, is
expected to equal μ. This is true regardless of the
service time distribution. The additional fact that the
service time distribution is exponential implies that the
service completion process is memoryless (i.e., the
probability that a completion will occur at any instant is
independent of the amount of service that the customer
currently being served has already consumed).

The memoryless property implies that conditional
completion rates (conditioned on system state) will
always be the same as the overall (unconditional)
service completion rate. In other words, the quantity
C(n)/T(n) is expected to equal μ for all values of n (for
n = 1, 2 and 3). This condition, which can be verified
by direct inspection of any trajectory, is referred to as
completion rate homogeneity.

Applying the same argument to server 2, it also follows
that the values of A(n)/T(n) are expected to equal λ for n
= 0, 1 and 2. In other words, the completion rates at
server 2 are also expected to be homogeneous

If the flow balance equations at the bottom of the
preceding column are modified so that C(n)/T(n) is
replaced by μ for n = 1, 2 and 3 and A(n)/T(n) is
replaced by λ for n = 0, 1 and 2, these four equations
become identical to Equations (5) – (8).

To summarize the main point, Equations (5) – (8) have
just been derived under two very different sets of
assumptions. First, it was shown that Equations (5) –
(8) are satisfied by the steady state distribution of the
Markov process associated with Figure 1. Then, it was
shown that Equations (5) – (8) are also satisfied by the
output of any simulation model based on Figure 1,
provided the output satisfies the observable conditions

of flow balance and homogeneous completion rates at
servers 1 and 2.

Solving Equations (5) – (8) for P(n) will always yield
Equations (1) – (4). It follows that both sets of
assumptions are sufficient to generate exactly the same
values of P(n).

APPLICATION TO SIMULATION OUTPUT

This observation leads to a simple test for the validity of
simulation results. For example, suppose that a Monte
Carlo simulation of the system illustrated in Figure 1
generates a trajectory that satisfies flow balance (initial
state = final state). Suppose further that completion
rates at server 1 and server 2 are homogeneous: that is,
C(n)/A(n) = μ for n = 1, 2, 3 and A(n)/T(n) = λ for n =
0, 1, 2. Then the attained distribution associated with
this trajectory (i.e., the measured values of P(n)) will be
identical to the values obtained by evaluating the
analytic expression for the steady state distribution with
parameters set equal to corresponding measured values.

The upper trajectory in Figure 2 provides a concrete
example of such a trajectory. To verify that all the
values of C(n)/T(n) are equal, note that the values of
T(0), T(1), T(2) and T(3) are 16, 8, 4 and 2 respectively.
In addition, the values of C(1), C(2), and C(3) are 4, 2
and 1 respectively. Thus, the value of C(n)/T(n) is
equal to .5 for n = 1, 2 and 3.

Similarly, the values of A(0), A(1) and A(2) are equal to
4, 2 and 1 respectively. This implies that the values of
A(n)/ T(n) are equal to .25 for n = 0, 1 and 2.

These simple relationships, combined with the
observation that the initial and final state are the same,
are sufficient to guarantee with 100% certainty that the
attained distribution associated with this particular
trajectory will be identical to the steady state
distribution of underlying Markov process (with
parameter values μ = .5 and λ = .25).

Note that this conclusion does not require a priori
knowledge of the steady state distribution associated
with the underlying stochastic process. As long as flow
balance is satisfied and the conditional completion rates
for server 1 and server 2 are homogeneous, the
simulation is guaranteed to produce an accurate
characterization of the steady state distribution of the
underlying stochastic process.

The Ergodic theorem and the Law of Large Numbers
imply that, if the simulation runs long enough, this same
conclusion can be asserted with probability one.
However, as the upper trajectory in Figure 2 illustrates,
it is not always necessary to run the simulation for a
lengthy interval of time to insure that the conclusion is
correct.

Of course, it is entirely possible for a Monte Carlo
simulation to generate a trajectory that does not satisfy
these goals. The lower trajectory in Figure 2 provides
such an example. The two areas of difference between
the upper and lower trajectories are marked with vertical
arrows.

For the lower trajectory μ = (4+2+1)/(7+5+2) = .5 and
λ = (4+2+1)/(16+7+3) = .25. Since the parameters of
the underlying Markov process are the same, the values
of P(n) should be the same if the simulation has
produced an accurate result. However, P(1) is 7/30
rather than 8//30, and P(2) is 5/30 rather than 4/30. The
appearance of inaccurate results should not be
surprising in this case since the completion rates at both
server 1 and server 2 fail to satisfy homogeneity.

For server 1: C(1)/T(1) = 4/7
 C(2)/T(2) = 2/5

 C(3)/T(3) = 1/2

For server 2: A(0)/T(0) = 4/16
 A(1)/T(1) = 2/7

 A(3)/T(3) = 1/5

GENERALIZATIONS & EXTENSIONS

Thus far, this discussion has concentrated on the simple
model shown in Figure 1 and on the associated Markov
process characterized by the state transition diagram in
Figure 3. It is a routine matter to apply exactly the same
reasoning to any system being modeled by a continuous
time Markov process. Simply draw the state transition
diagram and use it to identify those conditional
completion rates that will have to satisfy homogeneity
conditions.

Once the homogeneity conditions are identified, simply
run a simulation and test the generated trajectory to see
if these conditions have been satisfied. If they have,
and if flow balance is also satisfied, it can be stated
with absolute certainty that the simulation has generated
an accurate characterization of the steady state
distribution of the underlying stochastic process.

Of course, the parameters of the underlying stochastic
process must be determined by actually measuring the
generated trajectory (rather than referring to the input
parameters of the simulation program). Assuming that
the simulation has run for a reasonably long interval of
time, these measurements should yield values that are
nearly identical to the parameter values specified as
input to the simulation program.

Note that this entire process can be carried out in cases
where the analytic expression for the steady state
distribution is unknown.

SYNTHETIC ALIGNMENT INTERVALS

As this discussion has illustrated, analysts who use
Monte Carlo simulations to evaluate steady state
distributions should, under ideal circumstances, expect
these simulations to generate trajectories that satisfy
flow balance and various forms of homogeneity.

In cases where these conditions are not satisfied, the
accuracy of the simulation can – in principle – be
improved by extending the trajectory so that the
conditions can be met.

There are two ways to extend the simulation. The first
is to allow the simulation program to run for an
additional interval of time. The Ergodic theorem and
the Law of Large Numbers imply that, in the limit, the
required assumptions will almost always be satisfied.
The flow balance requirement can, in principle, be
satisfied simply by modifying the simulation program
so that it only terminates at points where the final state
is equal to the initial state. However, the time needed to
achieve these goals may be unacceptably long.

As an alternative, consider the possibility of appending
specially constructed “alignment intervals” to the end of
the original simulations. The objective of these
alignment intervals is to bring the extended trajectory
into compliance with the required assumptions. Since
synthetic alignment intervals are not generated by
calling upon the random number generator that drives
the simulation program, it constitutes an artificially
tailored appendage to the original simulation. Thus,
care must be taken when interpreting the results of the
extended simulation.

To understand some the issues involved, note that the
information represented within a steady state
distribution is only a subset of the information that can
be obtained by analyzing the associated stochastic
process. For example, in the case of a single server
queue, the steady state distribution contains detailed
information about queue length, but contains no
information at all about the lengths of busy periods. In
fact, two stationary stochastic processes with different
internal structures (and different busy period
distributions) can have exactly the same steady state
distribution (Buzen 2006a).

The point is that appending a non-random alignment
interval to the output of a Monte Carlo simulation is
almost certain to interfere with various behavioral
properties of the extended trajectory. Homogeneity and
flow balance are not sufficient to insure that all
properties of the stochastic process are preserved. Even
though the extended trajectory is no longer “random”,
and even though it no longer exhibits all the properties
of a faithful stochastic simulation, it is still possible to
demonstrate that the extended trajectory does in fact
provide a completely accurate characterization of the

underlying steady state distribution. This observation
provides the philosophical justification for appending a
non-random alignment interval to the end of a stochastic
trajectory.

In many cases, it is reasonable to assume that the
original Monte Carlo simulation has generated a steady
state distribution that is quite close to the exact solution.
The approach outlined here can be used to inspect the
output of the simulation and identify the most serious
violations of homogeneity assumptions (while ignoring
minor violations of homogeneity). Synthetic alignment
intervals that correct only the most serious violations
can then be appended to the original trajectory, resulting
in an incremental improvement in accuracy.

Such a step-wise approach to improving simulation
accuracy may ultimately prove to be the most effective
procedure for applying these results in practice. It is
important to note in this regard that simulation results
can be surprisingly accurate even though the required
homogeneity assumptions are not satisfied exactly (Suri
1983).

A specific example of an alignment interval that
correctly adjusts the lower trajectory in Figure 2 is
presented in the next section. General algorithms for the
construction of synthetic alignment intervals have not
yet been developed.

EXAMPLE

Figure 4 displays two trajectories, both having durations
of 30 seconds. The upper trajectory in Figure 4 is
identical to the lower trajectory in Figure 2.

Assume that the upper trajectory in Figure 4 has been
generated by a Monte Carlo simulation of the stochastic
process illustrated in Figure 1. As previously discussed,
the completion rates at servers 1 and 2 are not
homogeneous for this trajectory. In particular,

For server 1: C(1)/T(1) = 4/7
 C(2)/T(2) = 2/5

 C(3)/T(3) = 1/2

For server 2: A(0)/T(0) = 4/16
 A(1)/T(1) = 2/7

 A(3)/T(3) = 1/5

As already noted, the values of P(n) for this trajectory
differ from the correct values obtained by setting λ/μ
equal to ½ in Equations (1) – (4). In other words, the
simulation results shown in the upper trajectory in
Figure 4 do not accurately characterize the steady state
distribution of the underlying stochastic process.

The lower trajectory in Figure 4 displays an alignment
interval that can be used to correct this problem. If the
lower trajectory is appended to the upper trajectory, the

resulting 60 second trajectory will exhibit homogeneous
service times for servers 1 and 2. This then implies that
the values of P(n) associated with the 60 second
trajectory are identical to the values of P(n) obtained
from Equations (1) – (4) with λ/μ = ½ .

0 30

2

2
2

2
74 3

2
1 1 1 1

1
1

30

2

1
3

2
2

55 4

0

1
11

11 1

Figure 4: Simulated Trajectory & Alignment Interval

The following calculations, which are based on the
complete 60 second trajectory, verify these remarks.

 T(0) = 2 + 4 + 7 + 3 + 2 + 5 + 5 + 4
 = 32

 T(1) = 1 + 1 + 1 + 1 + 1 + 2 + 1 + 1 + 3 + 1 + 1 + 2
 = 16

 T(2) = 2 + 1 + 2 + 1 + 1 + 1 = 8

 T(3) = 2 + 2 = 4

 C(1) = 8

 C(2) = 4

 C(3) = 2

 A(0) = 8

 A(1) = 4

 A(2) = 2

For server 1,

 C(1)/T(1) = 8/16 = .5

 C(2)/T(2) = 4/8 = .5

 C(3)/T(3) = 2/4 = .5

For server 2,

 A(0)/T(0) = 8/32 = .25

 A(1)/T(1) = 4/16 = .25

 A(2)/T(2) = 2/8 = .25

Since flow balance is satisfied and completion rates at
both server 1 and server 2 are homogeneous, the values
of P(n) must accurately characterize the steady state
distribution of the underlying stochastic process.

To verify this conclusion, note that the values of P(n)
from the 60 second trajectory are:

P(0) = T(0)/T = 32/60 = 8/15

P(1) = T(1)/T = 16/30 = 4/15

P(2) = T(2)/T = 8/30 = 2/15

P(3) = T(3)/T = 4/30 = 1/15

The parameters of the underlying stochastic process are

μ = (8 + 4 + 2)/(16 + 8 + 4) = .5

λ = (8 + 4 + 2)/(32 + 16 + 8) = .25

If these values of λ and μ are substituted into the exact
analytic solution given in Equations (1) – (4), a routine
calculation demonstrates that the values of P(n) in the
60 second trajectory are correct.

In this example, the length of the alignment interval
happens to be identical to the length of the original
trajectory. This is not a requirement. For example, the
time scale for all events in the alignment interval could
be reduced by a factor of two so that the interval was
only 15 seconds in length. Homogeneity would still be
satisfied in the 45 second extended interval and the
values of P(n) would still be computed correctly.

CONCLUSIONS

By testing the output of a Monte Carlo simulation to see
if certain mathematical relationships are satisfied, it is
possible to determine if the simulation has generated an
accurate result (i.e., if the simulation has provided an
accurate characterization of the steady state distribution
of the underlying stochastic process).

If the output fails to pass the appropriate tests, the
accuracy of the simulation can be improved by
appending a synthetic (non-random) alignment interval
to create an extended simulation interval that does in
fact possess the desired characteristics. An example
illustrating this procedure has been provided.

The development of algorithms for the construction of
synthetic alignment intervals is – at present – an open
research problem. If general algorithms can be
developed, simulation times can be shortened and
confidence in the accuracy of simulation results can be
enhanced.

The approach presented here can, in principle, be
extended to any Monte Carlo simulation of a continuous
time Markov process.

BIBLIOGRAPHIC NOTES

The material presented in this paper represents a new
application of Operational Analysis. Introduced thirty
years ago (Buzen 1976a), operational analysis is
concerned with the development of equations that
characterize the observable behavior of systems as they
operate over time. No assumptions are made regarding
the existence of an underlying stochastic process.
Instead, all assumptions are formulated in terms of
relationships among quantities that can be observed and
measured under normal operating conditions.

The concept of homogeneity as used in this paper –
along with derivations based on homogeneity and flow
balance – closely parallel material that was originally
presented in (Buzen 1976b). These derivations were
subsequently extended to a broad class of queueing
network models (Denning and Buzen 1978). Suri’s
analysis of the robustness of queuing network formulas
was based upon operational analysis and the concept of
homogeneity, but his work did not consider implications
for Monte Carlo simulation (Suri 1983).

The application of operational analysis to the output of
Monte Carlo simulations is a very recent development
that has been characterized as Operational Analysis 2.0
(Buzen 2006b). Since Monte Carlo simulations can be
regarded as explicit realizations of underlying stochastic
processes, new issues are raised by the introduction of
this additional consideration (e.g., the generation of
synthetic alignment intervals).

BIBLIOGRAPHY

Buzen, J.P. 1976a. “Fundamental Operational Laws of
Computer System Performance,” Acta Informatica,
7, No. 2 (June), 167-182.

Buzen, J.P. 1976b. “Operational Analysis: The key to
the new generation of performance prediction
tools”. In Proceedings of IEEE COMPCON 76
(Washington, DC, Sept.) , 166-171

Buzen, J.P. 2006a. “Counter intuitive aspects of
statistical independence in steady state
distributions”. In Communication Networks and
Computer Systems, J.A. Barria (Ed.), Imperial
College Press, London, 89 – 104.

Buzen, J.P. 2006b. “New Perspectives on
Benchmarking, Modeling and Monte Carlo
Simulation: Operational Analysis 2.0” In CMG
2006 Conference Proceedings (Reno, NV, Dec. 4 –
8), Computer Measurement Group, Turnersville,
NJ.

Denning, P.J and Buzen, J.P. 1978. “The Operational
Analysis of Queuing Network Models,” ACM
Computing Surveys, 10, No. 3, (Sept.), 225-261.

Suri, R. 1983. “Robustness of Queuing Network
Formulas,” Journal ACM, 30, No. 3 (July), 564-
594.

JEFFREY P. BUZEN pioneered the
use of queueing network models for the
analysis of computer system per-
formance in the early 1970s. After
developing the central server model and
the convolution algorithm for his Ph.D.
dissertation at Harvard (1971), he co-

founded BGS Systems, Inc. (1975) where, for 23 years,
he led the team that commercialized these research
results by creating the widely used BEST/1 family of
modeling tools for computer performance management
and capacity planning. Prior to founding BGS Systems,
Dr. Buzen was a member of the Harvard’s Computer
Science faculty (where he taught a course on Operating
Systems attended by Microsoft’s Bill Gates and
supervised the Ph.D. dissertation of Ethernet inventor
Bob Metcalfe). He has returned recently to Harvard and
is now serving as a consultant to the Initiative for
Innovative Computing. Email: buzen@post.harvard.edu

