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Abstract— Emulations and testbeds are popular tools in

networking research. However, what differentiates testbeds

from emulations is not terminologically clear. In this arti-

cle, we first discuss the terms emulation and testbed, and

present the reflexivity principle for identifying testbeds. We

then present a survey of forty two network emulators and

testbeds reported in the literature, categorizing them ac-

cording to the approaches used. Another eighteen that can

be added to this survey as future work are also identified.

I. Introduction

Simulation is an important tool for networking research.
However, concerns about accuracy or computational load
of models used in simulation have lead researchers to search
for ways of combining real and virtual, or to conduct exper-
iments directly on the system under test (SUT), in those
cases where it appears feasible.

While there are considerable number of systems that in-
volve real elements of SUT in the experiment setup in one
way or another, the terms testbed and emulation appear
to be used by different researchers with different meanings.
In this paper we first attempt to discuss what testbeds and
emulators are in Section II. In that section, we introduce
the reflexivity principle for identifying testbeds, and elab-
orate on what it means to use some entities as real in an
emulation-based experiment. This discussion prepare the
grounds for our survey.

Then in Section III, we present our survey of forty two
network emulators reported in literature, and identify the
main approaches used by these systems. Finally, we con-
clude in Section IV.

II. STANCE

A. Testbeds

Before we move on to discuss what emulation is, we
should first define testbeds as they lie on the opposite end
of the spectrum from the simulation, in which everything
is virtual.

The distinguishing property of a testbed is that it sat-
isfies what we will call the reflexivity property1: a testbed
itself is a perfectly normal instance of the system that is
under study (SUT) in a particular experiment, which is
used for meeting various experimental objectives such as
collecting data to be interpreted for obtaining indicative

1Olivier Dalle has been the one to put a name to the property when
the author was explaining the concept to him in private conversations.

results for the SUT. The testbed might be a smaller scale
example of the same kind of system as SUT, but it might
not be an all-aspects-scaled-down version of it. For ex-
ample, a token ring network of five nodes can be used for
developing an application targeted for token ring networks.
Then, the application would later be deployed onto a token
ring network of hundred nodes.

An important point that should always be paid consid-
erable attention in any testbed based experiment is careful
evaluation of in which dimensions the test results can be
regarded as indicative for the properties of the SUT. The
results derived from testbed based experiments are not al-
ways indicative in all dimensions. Scalability is a good
example of the dimensions testbeds are not very useful for
deriving indicative results about. Following the example
of five host token ring network in the previous paragraph,
such a testbed can rarely be indicative of whether the pro-
tocols used in the application under test will scale to net-
works of bigger size, unless one can replicate the situations
of interest in the big target network using just five nodes.

B. Emulation

In an emulation-based experiment, the system under test
(SUT) as defined in the experiment is represented by a
combination of one or more surrogate systems, or in other
words simulators, and parts of the SUT used as real in
the experiment setup. Therefore, the level of abstraction
of representation of SUT in the experiment setup differs
between different parts of the experiment setup, depending
on whether the part is used as real, or simulated, and even
among the different parts that are represented as being
simulated.

Providing an exact definition of what it means to be used
as real in the experiment setup is not always straightfor-
ward. We are going to consider composite SUTs composed
of entities, which can be partitioned into parts, which are
sets of entities in SUT. We will refer to the system in a par-
ticular experiment setup that represents the SUT of that
particular experiment as a stand-in for the SUT (SIFSUT).
Then the property of being used as real can be defined as
follows: An entity E that is a part of SUT in a certain
experiment is considered to be used as real, if E is used in
the SIFSUT as it appears in SUT, for providing the exactly
same function it would provide in SUT. This definition can
easily be extended to parts, which are sets of entities.

Therefore another question to ask in order to find
out whether an experiment setup is emulation-based or
testbed-based is this: what is simulated in the SIFSUT
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for this experiment? The answer depends not only on the
properties of the experimental setup, but also on the defi-
nition of the SUT for the particular experiment. Therefore
the same setup may be considered as a testbed for one
experiment, while it might be more proper to call it an
emulation for some other experiment. This creates a con-
siderable confusion about the difference between testbeds
and emulation-based experiment setups.

For a simulator to be used in emulation, it has to support
the same modes of interaction that the original system uses
in order to interact with other systems in the situation of
interest. Such a simulator that sufficiently supports the
modes of interaction of the original system for the purposes
of a particular emulation-based experiment, is generally
called an emulator.

To give an example, take a flight training simulator. A
flight simulator is mainly an emulator, since it act as the
surrogate for a plane, and interacts with the pilot in many
ways in the same mode as a plane would interact with in
a real flight situation. That is, it “interacts realistically”,
except perhaps for the gravitational effects.

Flight simulation is also a good example that demon-
strates the role of the key-phrase “sufficiently” in our defi-
nition of an emulator. For example, the Microsoft’s Flight
Simulator interacts with the player realistically using the
same mode of information a plane would, such as showing a
graphical representation of an altitude-meter that matches
the plane whose flight is being simulated. If a situation
of interest can be defined over such items that the Flight
Simulator provides a realistic mode of interaction for, the
Flight Simulator could be said to provide sufficient support
for the modes of interaction of interest in the experiment,
and so can be referred to as an emulator in that specific
experiment.

Emulation is perhaps most popular in training applica-
tions such as medical training especially for surgeons, pilot
training in avionics, or training of the nuclear power plant
personnel. This provides realistic training environments
without risking expensive equipment, or more importantly
lives.

Games are another another example of popular applica-
tion of emulation. As an example, consider the 1st person
shoot’em’up games try to realistically interact with the user
by providing a realistic simulation of the point of view from
the character’s eyes.

Another popular example is so called “emulators”, which
are software applications that act as if they are a particu-
lar type of machine or operating systems. To give exam-
ples, there exists “emulators” of Commodore Amiga, ZX-
Spectrum, and Atari platforms, and for operating systems
like Palm Os.

Time is an interesting entity that is part of SUTs in many
experiments. Although running in real-time is considered
to be a characteristic property of emulators by many re-
searchers, time is only another part of the reality that in
theory can be simulated in an emulation based experiment
setup. A simple example is provided by the various com-
puter system emulators mentioned in the previous para-
graph, where time appears already abstracted as timing

signals, and they can be made to run slower or faster than
real-time, while still carrying the properties of an emulator
since they continue to interact with (run) real programs.

III. SURVEY OF NETWORK TESTBEDS AND

EMULATORS

With respect to the discussion in the previous section,
network emulation is characterized by use of real parts of
the network defined as the system under test (SUT), along
with simulators for constructing the stand-in for the system
under test (SIFSUT).

We should point out that discussions about network em-
ulation that can be found in the literature agrees with our
stance, in that it is generally recognized that emulation in-
volves real elements used along with simulators. However,
additional properties are usually required. For example,
Guruprasad et al. presents running in real time also as a
defining property of emulators [1]. As discussed at the end
of the previous section, we do not agree that this should be
taken as a defining property. Nicol et al. also takes run-
ning in real time as a defining property [2]. They further
classify emulators used for networking research into net-
work emulators and real-time simulators, based on whether
time-stepped (which they call time-based) or event-driven
approach to time management is used for the simulation
in the SIFSUT. Although we agree that time-stepped and
event-driven approaches have their own set of advantages
and disadvantages when used in an emulation-based exper-
iment setting, which justifies differentiating between the
two, their naming is quite confusing: both network emula-
tors and real-time simulators as they define, end up used
in emulation-based experiment setups.

In the survey below, we will start with the very few sys-
tems that we consider as testbeds according to our stance.
Then we will look at the emulation systems reported in
the literature, starting from systems that have mostly real
elements, and then move more or less gradually towards
systems that are mostly simulated. This division is not
introduced as a proper categorization, but just to make
presentation a bit more tidy: it is easier to discuss what is
being simulated for the mostly real emulation systems, and
what is being used as real for the mostly simulated ones.

A. Network Testbeds

The systems that would satisfy the reflexivity prop-
erty presented in Section II-A, therefore which would be
called testbeds, are very rare. Ionescu et al. describes
NIST*net2, which provides network resources available to
the researchers [3]. It is built by connecting dedicated
networks in four institutions in Canada. CREATE-NET
is a network installation in a rural part of Italy in the
autonomous province of Trento. It has both wired and
wireless parts. The goal of CREATE-NET is providing a
network where researchers can experiment with networked
communities. Another testbed is MIT RON (Resilient
Overlay Network) [4]. It is a set of hosts distributed over
the Internet (36 in 31 different cites as reported in [4]),
available to the researchers to use by acquiring an account.
It is similar to PlanetLab, however it is not open to every-



one, therefore security is not actively addressed. All hosts
run a normal FreeBSD installation.

B. Network Emulation – Mostly Real Systems

In certain emulation environments reported in the litera-
ture, almost nothing is explicitly simulated, therefore being
considered as a testbed or an emulation environment de-
pends on the definition of the SUT in a given experiment to
be conducted using them. MIT Roofnet is a good example,
where real changing conditions for the wireless channel be-
tween the nodes distributed on the roofs of some buildings
near the MIT campus is used for testing routing in wire-
less networks [5]. PlanetLab is very similar to MIT RON
in the sense that it is made up of some number of hosts
distributed over various sites all over the world, while the
definition of the concept of slides introduces virtuality for
the hosts as used in the experiments, which prevents its
categorization as a testbed according to our stance [6].

In the CMU DSR experiment [7], Maltz et al. uses the
changes of the topology due to mobility of the nodes which
are mounted on cars in the campus, as a surrogate for
topology changes due to mobility in mobile ad hoc net-
works (MANETs). In Ad hoc Protocol Evaluation testbed
(APE), which is not a testbed according to our definition
of it but an emulation, the style in CMU DSR in simu-
lating topology and mobility is taken one step further and
the movements of the people carrying laptops are explicitly
choreographed and controlled [8], [9].

There is a good reason why the emulations related to
wireless networks mentioned up to now are trying to use
real physical conditions as surrogates for the physical con-
ditions in the SUT of the experiments: the physical chan-
nel is hard and computationally intensive to simulate ac-
curately. However, it turns out that there is also a need for
simulating physical channel using the physical conditions
in the emulation in a more controlled way. In the Illinois
Wireless Wind Tunnel (iWWT), an anechoic chamber is set
up which provides isolation of the experiment environment
from outside RF interference, at the same time providing
an anechoic enclosure [10]. The topology is then scaled
down by adjusting transmitting power of the devices put
into the iWWT, and background noise is added explicitly
as needed. Similar methods for creation of wireless chan-
nel effects are also used in ORBIT [11], [12], [13]. However,
the positions of the nodes are fixed in ORBIT on a 20x20
matrix, while in iWWT the researchers use small mobile
robots.

MiNT (Miniaturized Wireless Network Testbed), which
is again not a testbed according to our definition of the
term, is another system that uses the miniaturization,
or scaling down, in order to make use of physical radio
communications in emulating MANETs. In MiNT, radio
signals attenuators are attached to the wireless devices,
thereby reducing their transmission range [14]. Then the
nodes are mounted on small mobile robots that are re-
motely controlled, as in iWWT. An interesting property
of the MiNT is that it can work with NS [15], in such a
way that the physical layer is simulated using MiNT. How-
ever in that case, MiNT becomes a complete simulator,

and ceases to have any entities used as real unless the SUT
involves mobile robots with signal attenuators attached.

In addition to iWWT and MiNT, other researchers also
have looked into using attenuators for controlling the wire-
less channel effects. Kaba and Reichle works with unmodi-
fied computers and network interface cards (NICs), and at-
tempt to build an environment where wireless signal prop-
agation is either attenuated, or guided through cables be-
tween the communicating NICs [16]. Judd and Steenkiste
also capture the signals at the antenna, and uses an FPGA
based digital signal processor to attenuate signals between
the transmitting station and the receiving stations [17],
[18]. Their method makes it more possible to be able to re-
peat wireless physical layer effects across simulation runs,
while still using unmodified NICs.

Another focus in building systems to be used for
emulation-based experiments is the experiment control in
order to allow multiple researchers to share the resources
available. This problem have been targeted in many differ-
ent systems, such as ORBIT, PlanetLab, and MIT RON.
Some of the projects only aim for providing a set of re-
sources for experimenters to build their own emulation-
based experiment setup, such as Embedded Wireless Mod-
ules (EWM) [19], or the UCLA HNT [20].

C. Network Emulation – Mostly Simulated Systems

Some protocols have complex implementations, which
makes re-implementing them for a simulation prone to er-
rors and inaccuracies. For this reason, various researchers
have taken the real protocol implementations in open
source operating systems, and packed them in a way that
they can be incorporated in simulators. In ENTRAPID,
network stack from the FreeBSD is packed in a way to
work in the user level, so that the protocol developers can
experiment with their own protocols incorporated into the
stack [21]. The topology and the physical layer in EN-
TRAPID is simulated, and the processes running on the
simulated nodes need slight modification. Ely et al. also
have worked on the same problem, and they have converted
the FreeBSD 3.3 protocol stack to work as a library in the
user space [22]. Zec and Mikuc modifies the protocol stack
of 4.4BSD operating system in order to allow for multiple
independent instances of the stack to exist in the kernel,
connected via simulated links [23]. Jansen and McGregor
have packed network protocol stacks in Linux, FreeBSD,
and OpenBSD as shared libraries, and implemented an
NS agent that is capable of using these stacks [24]. They
call their approach the Network Simulation Cradle, and
say that their approach can be used with other simulators
as well. Bless and Doll uses OMNeT++ [25] instead of
NS, and incorporate the TCP/IP stack from FreeBSD as a
simple model in OMNeT++ [26]. They address synchro-
nization of the kernel timers that are used by the protocol
stack, with the virtual time in OMNeT++. Furthermore,
the function calls to the socket library are represented by
messages to be received by the simple model they have
developed. Bavier et al. uses a different approach from
the ones mentioned, where they implement Click modu-
lar routers in slices on PlanetLab hosts, and construct the



network that is the stand-in for the SUT as an overlay on
PlanetLab [27].

In some of the systems that allow use of implementations
of protocols as real, it is more difficult to decide whether
the experiment setup constructed using these systems are
emulation-based, or pure simulation. The reason is that
these systems use unusual protocol implementations, at the
same time pointing out that they can be used in real sys-
tems as well. The JEmu system builds on a four layer
protocol stack for MANETs, and at the lowest layer which
corresponds to the radio communications, the frames are
forwarded to a physical layer simulator running on a dif-
ferent host [28]. In [29], Karrer et al. incorporates into NS
protocols that are implemented as Click protocol graphs
used by the Click modular router [30].

A different approach is using real hosts whose traffic is
routed through virtual networks. The emulation extension
of NS is a typical example [31]. NS is monolithic, but since
NS emulation extension simulates whole networks, it is pos-
sible to partition the SUT into different networks and as-
sign them to a set of simulators running on different hosts,
as done in EmuLab [1]. While NS is monolithic, there are
also distributed simulators used in emulation-based exper-
iment setups, such as IP-TNE. IP-TNE is built on IP-TN,
which uses CCTKit that implements the Critical Chan-
nel Traversing (CCT) algorithm for parallel discrete event
simulation [32], [33], [34]. In [35], Bradford et al. dis-
cusses different methods for reading packets from and writ-
ing packets to real networks for network emulators such as
IP-TNE. Another system that uses a discrete event based
simulator is RINSE [36], which is built on iSSF (formerly
known as DaSSF). RINSE uses what Liljenstam et al. call
“multiresolution modeling”, which means that background
traffic is simulated using fluid models that require less re-
sources to simulate, while the traffic of interest —the fore-
ground traffic— is simulated at the packet level. The target
application area of RINSE is network attack preparedness
exercises, and therefore it includes some models that are
not normally found in network simulators, such as CPU
models. In ModelNet, the environment is divided into two
sets of hosts called core nodes and edge nodes [37]. The
network in the SUT is modeled as a set of pipes, which
are assigned to the core nodes. The core nodes then co-
operate to subject the traffic to the bandwidth, congestion
constraints, latency, and loss profile of the target network
topology. The edge nodes are the real hosts whose traffic
is routed through the virtual network. While ModelNet is
targeted for wired IP networks, MobiNet is an extension of
the same approach but it targets MANETs [38]. In addi-
tion, MobiNet allows for multiplexing of virtual nodes on
the edge nodes.

Another popular approach is the use of traffic shapers,
which are placed between the protocol stack and the net-
work device driver in kernels. This way, the protocol stack
and the programs running on it are used as real, while the
rest of the network is simulated. For example, in NET-
Shaper, flow parameters such as bandwidth and delay are
controlled by a user-space program [39], [40]. A similar
approach is taken in EMPOWER [41], which targets wired

IP networks, and EMWIN [42], which is based on EM-
POWER but it targets MANETs. At the extreme case of
traffic shaping, it is possible to simulate presence of con-
nection between nodes in the network with only existence
and non-existence of links. As an example, MNE (Mobile
Network Emulator) is a distributed system which abstracts
away physical layer effects and mobility behind topologi-
cal changes simulated by IPTABLES based packet filtering
controlled from a central controller [43].

An alternative to using traffic shaper modules in the ker-
nel is the use of the universal TUN/TAP driver, which is
designed for implementing tunneling using user level pro-
grams. NCTUns [44], EmuNet [45], and DINEMO [46] use
the TUN virtual network interfaces, which intercept pack-
ets after the IP protocol implementation. NEMAN [47] is a
similar system, but it uses the TAP virtual network inter-
faces, which intercepts frames before they are handled to
the network driver to be sent to the network. Of these sys-
tems, NCTUns and NEMAN are monolithic, while Emu-
Net and DINEMO are capable of being distributed. In
all of these systems, the protocol layers above and includ-
ing IP, along with the programs communicating over the
network, are used as real. Considered from software en-
gineering perspective, DINEMO has the added advantage
of being supported by a simple component model designed
for simulators and emulators.

With the developments that allow multiple operating
systems running on one base operating system, another
approach have recently become possible. User Mode Linux
(UML) provides a virtual Linux kernel running in user
mode. UML have been used for implementing virtual
nodes that are then connected by a network simulated be-
low the network driver layer. vBET [48], which targets
wired networks, and the system developed by Guffens and
Bastin [49], which targets MANETs, are examples to using
UML. Using micro-kernel based approaches have also been
attempted, as exemplified by the work done by Engel et
al. [50], which targets wireless networks.

While it may not be feasible for MANETs or wired net-
works, simulation of all hardware including the CPU so
that unmodified programs can be run, appears to be a fea-
sible technique for emulation-based experiments for sensor
networks. ATEMU is one such system which allows differ-
ent hardware configurations [51]. MEADOWS VMN (Vir-
tual Mote Network) allows multiple virtual motes per phys-
ical host participating in the emulation [52]. The virtual
motes can tun TinyOS, and TinyDB or other applications
on top, while hardware of the mote, and sensor and wireless
channels are simulated.

Another original direction is explored by Haeberlen et al.
in their system called Monarch [53]. In Monarch, the idea is
to use the latency observed at the moment between the host
on which the virtual sender and the virtual receiver resides,
and a remote host on the Internet. For this purpose, for
every packet the virtual sender wants to send, Monarch
captures it and sends a probe packet of the same size to a
remote host associated with the virtual receiver. When a
reply is received, the virtual receiver is allowed to receive
the packet. In the direction from virtual receiver to virtual



sender, Monarch passes the packets without delay. This
way, both the sender and the receiver observes the round-
trip-time obtained from the probe packet. Their approach
targets transport layer studies only, and can be used with
unmodified implementations of transport layer protocols in
the Linux kernel.

IV. CONCLUSION

We have presented in this article a discussion of the terms
emulator and testbeds, where we defined the reflexivity
principle as a test for identifying testbeds, elaborated on
what it means for entities in the SUT to be used as real
in the emulation-based experiment setup. We have also
presented our survey of forty two network emulators and
testbeds reported in the literature.

Our survey mainly focuses on the techniques used for
building emulators for various kinds of networks. Other
surveys exist in the literature, such as that by Kropff et
al. [54], which focuses on MANETs. A small-scale compar-
ative survey also appears in [14].

The survey presented is the most encompassing one re-
ported in the literature known to the author. However,
no claim is made that it is complete. Examples of systems
that can be added to this survey include Netbed [55], Dum-
mynet [56], MobiEmu [57], MASSIVE [58], NIST Net [59],
hitbox [60], Delayline [61], SensorSim [62], W-NINE [63],
ONE [64], ENDE [65], REAL, NEST, PacketStorm, UML-
Sim, RAMON, TOSSIM, EMStar, and possibly some oth-
ers. Future work on this survey should focus on new ways
of categorizing the emulators, as well as extending the num-
ber of emulators being covered in the survey.
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