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Abstract— In the area of hardware design, there is a
noticeable trend towards the use of run-time reconfig-
urable elements as parts of System-on-Chips (SoCs),
SoCs themselves are frequently targeted to reconfig-
urable platforms such as field programmable gate arrays.
This development is a challenge to established high-level
modelling and simulation methods which assume a static
structure of the simulated system. The present paper
describes the extension of the SystemC framework with
support for the simulation of run-time reconfiguration
of tile-based architectures. The proposed solution is set
out in detail and its application to an exemplary recon-
figurable SoC design is described.

Keywords— SystemC Modelling, Run-Time Reconfig-
uration

I. Introduction

Over recent years, the demand for flexible and adapt-
able System-on-Chips (SoCs) increased as more and
more features per system became required. Addition-
ally, the hardware development cycles must compete
with the rapid changes of application-specific require-
ments such as protocols in the network domain, or video
and audio formats in the multimedia section.

Current FPGA (Field Programmable Gate Arrays)
devices such as members of the Xilinx Virtex series [Xil-
inx, 2005a], [Xilinx, 2005b] provide features for partial
run-time reconfiguration. SoCs based on these devices
may exchange certain modules at run-time without in-
terruption of unaffected system parts. The reconfigura-
tion can be performed within the system so that there
is no need for external administration instances. There
are many examples proving that certain applications
are significantly accelerated by applying the capabili-
ties of a run-time reconfigurable device [Compton and
Hauck, 2002].

As the approach of merging spatial and temporal
computing [DeHon and Warzynek, 1999] strongly dif-
fers from classical hardware and software design cur-
rent developer tool suites only provide limited support
for run-time reconfigurability. Thus, simulation and
high-level models play a more important role to keep
up with the tremendous growth of complexity in SoC
design. The application of simulation in hardware de-
sign is a state-of-the-art technique for testing, verifica-

tion, and profiling purposes. It generally provides ex-
haustive views and allows in-depth analysis of crucial,
otherwise inaccessible system parts. Using higher-level
methods for modelling and simulation especially for hy-
brid hardware/software systems, SystemC [SystemC,
2006] brought out by a pool of companies is frequently
applied. SystemC is a C++ class library that allows
simulation of hardware/software systems modelled on
varying abstraction levels.

Models may benefit of pure C++, the SystemC li-
brary including core language and data types, method-
ology and technology-specific libraries on top of native
SystemC as well as any C++ library to implement mod-
ule functionalities such as cryptographic cores.

Furthermore, SystemC backs the top-down design
methodology so that each module can be iteratively
redesigned which leads to a hierarchical design. Nowa-
days, an increasing number of tools also use SystemC as
a hardware description language to support modelling
and simulation on different levels.

Unfortunately, SystemC does not provide abilities
for partial run-time reconfiguration. Simulated mod-
els are completely instantiated before the simulation
process starts and cannot be exchanged, removed, or
added during simulation, i.e. at run-time from the sim-
ulated system’s point of view. Dividing the device in
a coarse-grained array structure is one of the design
strategies proposed in reconfigurable SoC design. The
tile-based model for SystemC presented here applies
this approach for high-level modelling and design.

This article is organised as follows: In Section II,
an overview of related projects covering modelling and
simulation is given. Furthermore, Section III presents
state-of-the-art devices applied for run-time reconfig-
urable SoCs. Section IV sets its focus on the over-
coming of the shortly described SystemC limitations
to run-time reconfigurability and shows the proposed
modelling technique. Finally, Section V gets a picture
of the simulation-model application across and in Sec-
tion VI a conclusion is drawn.
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II. Related Work

SystemC is widely accepted in the field of SoC design.
Nevertheless, it is mandatory to overcome the limita-
tions of the basic modelling and simulation principles
in order to apply SystemC to partially run-time recon-
figurable systems. Currently, there are several projects
developing or extending SystemC frameworks and mod-
els with run-time reconfigurability. Due to the fact that
all modules must be instantiated at the beginning of
each simulation process, [de Brito et al., 2006] extended
the SystemC kernel with a mechanism to switch mod-
ules on and off at run-time.

Other approaches do not need any kernel modifica-
tions. [Amicucci et al., 2006] uses a sort of template
class that contains the usual sensitive functions of the
module. These function bodies scheduled for execu-
tion by the kernel consist of a function pointer that
is re-targeted by the reconfiguration. The proposed
model includes a reconfiguration controller attached to
the run-time reconfigurable module.

OSSS+R [Schallenberg et al., 2006] also bases on
polymorphic functions and objects. It introduces run-
time reconfigurability to SystemC with the goal to sup-
port the complete design flow from a high-level descrip-
tion down to a synthesised bit stream for an FPGA.
[Schallenberg et al., 2006] uses a fixed base design with
reconfigurable modules containing reconfiguration con-
trollers tightly-coupled to the reconfigurable area part.

The ADRIATIC project [Pelkonen et al., 2003], [Qu
et al., 2005] enhances SystemC by a framework for sys-
tem analysis and even resource estimation. Based on
these tools a complete design flow is proposed. The
basic architecture is bus-based and includes multiple
hardware accelerators assisting a general-purpose pro-
cessor. At least one accelerator is reconfigurable utilis-
ing its own configuration scheduler and memory.

All in all, the capabilities of these approaches are
often limited by basic architecture models or tightly-
coupled reconfiguration controller and area.

Barros presents a general formal approach of mod-
elling and simulating run-time reconfigurable systems
[Barros, 1997]. Here, the systems, called dynamic
structure discrete event systems, are basically described
by networks of modules representing internal relations
and interactions of the system modules. Beside defin-
ing input and output sets and functions for output and
time progress, the description comprises states of the
structure and a state transition function. Additionally,
an abstract simulator for system models utilising this
formalism is provided so that the models can directly
be executed [Barros, 1998].

III. System-on-Chip Design

Modern System-on-Chip designs usually comprise
configurable components or are realized on configurable
hardware platforms. This eases the adaptation of a sin-
gle SoC design for different application areas and, thus,
helps spreading the non-recurring engineering (NRE)
costs over larger quantities. As configurable devices
continuously evolve in the direction of partial reconfig-

urable devices, these techniques now become available
for SoC designs as well. Utilising partial reconfigurable
devices as SoC components or as a hardware platform
for SoCs, system designs cannot only be adapted to dif-
ferent application areas during design time, but can be
adapted to changing operation conditions during run-
time, too. This additionally increases the range of ap-
plications of a single SoC design.

Typical representatives of partially reconfigurable
devices are the Xilinx Virtex-II, Virtex-4, and Virtex-
5 FPGA series. The basic structure of these FPGA
series consists of an array of configurable logic blocks
(CLBs) and hierarchically organised routing resources.
In addition, dual-ported SRAM modules (Block-RAM),
multipliers, and, depending on the device, application
specific components such as processor cores or DSP
components are regularly spread over the device. The
configuration data is stored into SRAM which can ei-
ther be accessed by external interfaces or internally by
using an internal configuration access port (ICAP). All
mentioned Virtex FPGAs series provide the possibility
to selectively change parts of the configuration during
run-time. This feature is referred to by Xilinx as ac-
tive partial reconfiguration [Xilinx, 2005c] and allows
configurable elements of the FPGA to be reconfigured
without interrupting the operation of logic circuits con-
figured into other parts the FPGA. The smallest unit
that can be reconfigured on the hardware level is re-
ferred to as a frame. A frame spans a fraction of the
width of one CLB column. Its height depends on the
Virtex series it is part of. For the Virtex-II series, a
frame spans the entire height of a device [Xilinx, 2005a].
This results in a so called column-based reconfigura-
tion, as the smallest unit that it makes sense to ex-
change is a CLB column with the width of one CLB and
the height of the device. With regard to the exemplary
SoC shown in Figure 1, this is equivalent to exchang-
ing a complete column at once. The columns are vi-
sualised by combining tiles in grey and white columns.
The Virtex-4 and Virtex-5 series offer a finer reconfig-
uration granularity. For these architectures, the height
of a frame is a multiple of 16 or 20 CLBs, respectively,
[Xilinx, 2007a], [Xilinx, 2007b]. Thus, the smallest unit
that can be reconfigured consists of a tile with a width
of one CLB and a height of 16 or 20 CLBs. Applied
to the SoC in Figure 1, it is equivalent to exchanging
only a single square at once without any effect to the
column or row.

The reduced and adjustable height of a frame for the
Virtex-4 and Virtex-5 series eases the design of dynam-
ically reconfigurable systems. Logic resources of the
FPGA can be exploited more efficiently, as the area al-
located for a hardware module can be adjusted more
precisely to the actual required amount of logic re-
sources for one module. Depending on the size of a
currently configured hardware module, a dynamically
reconfigurable SoC may comprise of a varying num-
ber of modules. To guarantee communication among
a varying number of hardware modules with different
sizes and locations, special communication units with
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Fig. 1. Column/tile-based design of an examplary System-on-Chip.

fixed positions at the edges of the tiles have to be pro-
vided. These units, which are called bus macros, con-
sists of communication lines crossing the border of adja-
cent tiles, with starting points and endpoints routed to
LUTs (Look-Up Tables). Dynamically exchanged hard-
ware modules can connect to these units and thereby
get access to predefined communication channels. In
partial reconfigurable systems these predefined commu-
nication channels can itself be reconfigured, allowing an
adaptation of the communication resources of a design
to the actually instantiated hardware modules.

An example for such a SoC design is given in Fig-
ure 1. Four hardware modules are mapped onto a re-
configurable area which is partitioned into a grid of
rectangular tiles. Each tile can either be used for the
realization of a hardware module, for the communica-
tion network or it can be left blank. Besides the case
that a tile is completely used for the realisation of a
hardware module, each tile provides bus macros for the
connection to adjacent tiles, shown in Figure 1 as small
boxes within a tile. Depending on the position of the
actually instantiated hardware modules and their com-
munication requirements, communication channels can
be created using predefined communication tiles.

IV. Simulation Model

A common approach of modelling SoCs or generally
hardware is the decomposition into independent mod-
ules of different functionality with well-defined inter-
faces. An important issue of reconfigurable SoCs is the
hardware/software co-design of these systems. Run-
time reconfigurable systems are often managed or con-
trolled by a software instance running on an embed-
ded, hard [Koch et al., 2006] or soft-core [Ullmann et
al., 2004], or attached processor [Majer et al., 2006]

combined with dedicated hardware modules. So, run-
time reconfigurable SoCs demand hardware-software
co-development and, of course, a combined model to
avoid gaps between hardware and software. An envi-
ronment that fulfils the requirements for hybrid sys-
tems is SystemC, a C++ class library for system and
hardware design.

A. Tile Model

Modelling SoCs realised on run-time reconfigurable
platforms demand that the platform reconfiguration ca-
pabilities are included as well. For example, leaving
out the constraints of the platform could lead to wrong
simulation results because of assuming wrong timing
models.

The derivation of a SystemC simulation model from
a run-time reconfigurable hardware design can be
achieved by transferring the basic entities presented in
Section III to SystemC modules. The area is divided
into a one dimensional sequence of columns or even a
two dimensional grid of tiles. The latter is more gen-
eral because a column can be seen as a row of tiles, cf.
Figure 1. A tile is used as a container encapsulating all
needed functionalities.

Figure 2 shows the abstract model of a tile. The in-
ner process of a SystemC module is implemented using
a synchronous sequential circuit (SSC), asynchronous
sequential circuit (ASC) or combinatorial circuit (CC)
represented by SC CTHREAD, SC THREAD and SC METHOD.
Each tile activates all of these methods and sets their
sensitivity to any incoming port including the system
clock. The method bodies only consist of a function
pointer that indicates the currently configured func-
tionality. These pointers are represented by arrows in
Figure 2. The complete set of functionalities consists of



SC_CTHREAD
ssc()

SC_METHOD
cc()

SC_THREAD
asc()

Fig. 2. SystemC simulation model of a tile.

functions of all three classes. The classes or subsets are
not disjoint. At least the empty or idle function as well
as functions implementing simple signal transfer from
incoming to outgoing ports for the communication net-
work are members of all subsets shown in Figure 2.
Although it is possible to implement any processing
unit using only an SC THREAD, the other module meth-
ods are kept to easily allow combinations of individual
functions. So, there is no need to have separated and
combined implementations. Furthermore, the imple-
mentation of an SSC becomes more difficult by avoid-
ing triggers raised by an arbitrary port, for example.
Of course, a growing array of tiles increases simulation
time by processing unused methods several times per
simulated cycle per tile. The bus macros used as con-
nectors in the FPGA design are represented in Figure 2
by multiple ports. The set of ports per edge is given by
the superset of ports required by all implemented func-
tionalities so that each function might be connected to
any neighbour. Thus, all ports are rarely used simulta-
neously, the number of ports can be reduced by mod-
elling bus macros by ports for a complex, self-defined
record that includes any incidence of occurring data
types.

B. System Model

In complete system models based on reconfigurable
tiles area consumption of different modules must be
taken into account. The tile size is determined by the
smallest module and the size of the bus macros needed
to ensure connectivity. Modules that consume more
area than provided by a single tile allocate multiple
adjacent tiles.

Figure 3 shows a SoC model with modules of varying
sizes. Due to the fact that a tile always performs the
complete functionality of a simulated hardware mod-
ule, modules are compounded from tiles so that more
than a single tile is consumed. In the simulation model
the tiles are not equally used. There is one tile, called
master tile, of the compound that executes the task
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Fig. 3. Tile-based simulation model of an examplary SoC.
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Fig. 4. Reconfiguration process for part of the run-time reconfig-
urable area activated by ICAP utilising the global management
level of the simulation model.

while the others are functionally switched off or have
to route signals so that the module is connected to
its neighbours. In Figure 3, the master tile is empha-
sised by a short description in a solid rectangular shape
whereas the compound is marked by a transparent full-
sized module. The shown simulation model belongs to
the design of Figure 1. Here, the background function-
ality of compound tiles is sketched as well. In general,
they are idle but some route signals to establish the
complete communication network.

C. Run-Time Reconfiguration

Run-time reconfiguration demands access to the con-
figuration memory of the device. As mentioned before
the access is gained by writing the new configuration to
the ICAP. This technique for reconfiguration is reused
in the SystemC model. After retrieving the data, the
ICAP simulation module enables the new configura-
tion after receiving a switch command. In contrast to
other models presented in Section II, the ICAP or re-



configuration port does not have direct port access to
the tiles reconfigured in this process. This process is
performed using the capabilities of standard C++ by
utilising global or parent-class data structures. The
configuration switch indicates that the current configu-
ration must be at least (partially) exchanged and, thus,
the reconfiguration method per tile is called via these
data structures of higher levels to achieve a new config-
uration. Since standard methods are executed within
a simulated cycle the new configuration takes over in-
stantly. Figure 4 depicts this process: the ICAP signals
upwards to the configuration switch layer that a switch
has to be performed. The configuration switch layer
processes the signal and executes the reconfiguration
methods of the affected tiles. The reconfiguration of a
tile functionality itself is performed by re-targeting the
function pointer of any repeatedly executed method.

From the application’s point of view, the synchro-
nisation of the reconfiguration and the application-
specific processing within the module is rather cru-
cial. Asynchronous reconfiguration can lead to data
loss or system inconsistencies if a module cannot com-
plete its task. Basically, current FPGA devices as men-
tioned before do not support any mechanisms for syn-
chronisation. This task is completely committed to
the system designer. Thus, reconfiguration and mod-
ule processes are not synchronised by the simulation
model inherently. Necessary synchronisation mecha-
nisms have to be included in the application. The con-
figuration switch is performed when the ICAP signals a
switch command without paying attention to the state
of the module. To avoid trouble during the simulation,
module processes with internal states should be imple-
mented in a way that state transitions always takes
place at the end of a function execution. The state is
stored globally within the module and reset in case of
reconfiguration. Therefore, wait() statements can be
avoided in reconfigurable functions targeted by func-
tion pointers described before.

V. Application Example

In the following, an exemplary partially reconfig-
urable SoC design called DynaCORE [Albrecht et al.,
2006] which is modelled using the described technique
is presented. DynaCORE is a run-time reconfigurable
coprocessor for network processors. It is designed to re-
lease the network processor from computational inten-
sive tasks such as encryption/decryption, compression,
or network-intrusion detection. One characteristic of
this application area is that the composition of network
flows and thus the tasks to be performed change during
time. Hence, a flexible solution is required where the
types and numbers of hardware modules mapped onto
the system can be adapted to the characteristics of the
network flow.

The structure of the DynaCORE architecture is de-
picted in Figure 5. The system is divided into a static
and a reconfigurable part. The static part is made up
of global control and system management logic while
the reconfigurable part contains the actual hardware
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Fig. 5. The architecture of DynaCORE includes a tile-based
reconfigurable area for data processing. Hardware assists (HA)
perform provided tasks.

modules or hardware assists in terms of assisting the
network processor. The hardware modules and the sys-
tem control logic are connected by a topology adaptive
network-on-chip (NoC) called CoNoChi [Pionteck et al.,
2006], which allows the adaptation of the communica-
tion structure to the number and location of currently
configured hardware modules.

In DynaCORE, incoming network packets are evalu-
ated in the receive unit. The dispatcher determines the
type of processing and forwards the packets to the ap-
propriated hardware modules. There, the packets are
processed by one or multiple hardware modules in a
chain and finally forwarded to the transmission unit. In
case a currently unsupported function is needed or the
reconfiguration manager detects a significant change in
the traffic profile the system is adapted utilising partial
reconfiguration. In contrast to the hardware modules,
the reconfiguration manager is a software program exe-
cuted on an embedded processor core. Here, the hard-
ware/software co-design features of the SystemC model
are utilised.

The simulation model and the high-level SoC archi-
tecture of DynaCORE are absolutely compatible. The
decoupled implementation of reconfiguration manager
and reconfigurable area do not demand the integration
of additional software parts. Furthermore, the synchro-
nisation of reconfiguration and data processing can be
neglected for this specific application area. Neverthe-
less, the protocol of CoNoChi provides a synchronisa-
tion mechanism to avoid data loss.

VI. Conclusion

Motivated by current run-time reconfigurable devices
the tile-based simulation model for SystemC is de-
rived from SoC designs. The transfer of the tile-based
modelling approach to SystemC allows the application
of run-time, even partial reconfiguration techniques in
SoC models for designing, testing, verifying, and eval-
uating on a high level. In contrast to other models, the
architecture does not require a certain reconfiguration
controller per reconfigurable unit and, thus, is highly
adaptable to the design. The tile size and port def-



initions can be freely defined as well as it is possible
for FPGA designs. Furthermore, the reconfiguration
of the device and the reconfiguration of the applica-
tion are kept basically independent. The simulation
model maintains the independence of simulated appli-
cation and hardware device. This quality is sketched in
the given application example. So, the transfer of the
coarse-grained, scalable tile-based model to SystemC is
supposed to be a further step to close the gap of spatial
and temporal computing.
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versity of Lübeck in 2002. In the same
year, he joined the Institute of Com-
puter Engineering, University of Lübeck.
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