
1

Integrating Symmetries and Symbolic Enabling
Test for Efficient Simulation of SWNs

Lorenzo Capra
Università degli Studi di Milano

Dipartimento di Informatica e Comunicazione
Via Comelico 39, 20131, Milano (Italy)

capra@dico.unimi.it

Abstract— (Stochastic) Colored Petri Nets are a for-
malism widely used to specify and analyze distributed
discrete-event systems. Determining the set of transi-
tion color instances enabled in a given marking is a basic
task affecting analysis techniques based on state-space
exploration, model-checking, and especially discrete-
event simulation (the latter is an interesting alternative
when analytical solutions are unfeasible due to state-
space explosion). An algebraic approach to enabling
test has been recently proposed as kernel for efficient
state-space exploration of SWN, a Stochastic CPN fla-
vor retaining expressive power. The approach is sym-
bolic because it directly manipulates arc functions by
means of rewriting rules. What makes interesting the
SWN formalism is the ability of exploiting behavioral
system’s symmetries, thanks to structured color anno-
tations. This paper illustrates in a semi-formal way how
the symmetry-based technique typical of SWN can be
profitably combined with the SWN symbolic enabling
test, giving rise to a fully symbolic simulation kernel. An
application example to a workflow model is presented.

Keywords— Colored Petri Nets, Enabling Test, Sym-
bolic Techniques

I. Introduction

Colored Petri Nets (CPN) [1] are a high-level Petri
Net formalism widely used to specify and analyze sev-
eral kinds of discrete-event systems, e.g. network proto-
cols, workflow models, flexible manufacturing systems,
distributed algorithms, etc. In particular stochastic
CPN extensions are attractive due to the possibility
they offer of studying the performances of systems, ei-
ther solving the associated stochastic process or via
discrete-event simulation.

Stochastic Well-formed Nets (SWN) [2] are a CPN
subclass retaining expressive power, that may be con-
veniently used to model discrete-event systems exhibit-
ing behavioral symmetries, that can be naturally en-
coded on the SWN structured syntax. In addition to
the effective state-space based analysis techniques ex-
ploiting symmetries, typical of SWN [3], an algebraic
calculus have been recently proposed [4] which allows
some common tasks of SWN’s analysis algorithms to
be developed in an efficient way taking advantage of
structural considerations. In [5] in particular the SWN
calculus has been used to define an algorithm for find-
ing enabled instances of a colored transition in a given
marking without any unfolding. The enabling test has
been recognized to be a critical task in reducing the
complexity of performance-oriented analysis by means
of discrete-event simulation [6], but is also a relevant

task during state-space generation, as well as in model
checking. The approach proposed in [5] relies upon
moving the task complexity from run-time to structural
analysis: it essentially consists in rewriting SWN arc
functions according to algebraic rules, with the pur-
pose of finding a formal expression for local enabling
functions.

This paper illustrates in a semi-formal way how the
symmetry-based techniques typical of SWN can be
profitably merged to the SWN symbolic enabling test,
giving rise to a fully symbolic simulation kernel for
SWN. An application example of the SWN symbolic
enabling test approach to a SWN workflow model is
also presented. The example points out the benefits
coming from the integration of the symbolic enabling
test approach to the SWN symbolic firing rule, on the
perspective of providing an efficient, algebraic, discrete-
event simulation engine for SWN.

The discussion is organized as follows. Section II re-
calls in pragmatic way the SWN formalism and intro-
duces the enabling test computation problem in SWN,
providing the state-of-the-art with regard to several
techniques which may be utilized to approach it. Sec-
tion III overviews the theoretical framework that the
symbolic approach here proposed is based upon. Sec-
tion IV describes the algorithm recently proposed with
the aim to solve in efficient and general way the en-
abling test task in SWN. Section V illustrates how this
approach can be naturally merged to the symbolic firing
mechanism of SWN that exploits symmetries. Section
VI shows an application to a SWN workflow model,
pointing out the possible combination of the symbolic
enabling test with the symbolic marking notion, that
SWN algorithms for effective state-space exploration
rely upon. An outline of the presented work and a dis-
cussion about possible evolutions conclude the paper.

II. The SWN Formalism

Colored PN ([1]) are a major extension of PN be-
longing to the High-Level PN category ([7]). Several
classes of CPN have been developed worldwide. This
work focuses on Stochastic Well-formed Nets (SWN)
[2], a CPN flavor retaining expressive power, charac-
terized by a structured syntax used for effective perfor-
mance analysis [3]. This paper just introduces SWN
informally using a practical example: Fig. 1 shows the
workflow of the document reviewing process that is op-

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

P1

DOC

S

P2

DOC,REVIEWER

P3

DOC,REVIEWER

P4

DOC,REVIEWER

P5
DOC,REVIEWER,STATUS

P6
DOC

P7

DOC

P8
DOC

receive_doc invite_reviewer

timeout

collect_review

get_review
[d(X3)<>timeout]

restart

end_flush

accept

flush

 2π no_accept

 2π

taking_decision

 2π

decision_invalid

 3π

<X1>

<X1>

<X1,S-X2,S timeout>+<X1,X2,X3> <X1>

<X1>

<X1,X2,S accept>+<X1,X3,S noaccept>

<X1,S,S accept>

<X1>

<X1>

P6

no_accept

<X1><X1>

<X1,X2,X3>

<X1>

<X1>

P6

accept

<X1>

<X1,X2,X3>

<X1,X2>
<X1,X2>

<X1><X1,S><X1,X2,S timeout>

<X1,X2>

<X1,X2>

<X1,X2><X1,X2><X1,S><X1>

<X1><X1>

S:m

doc:c
DOC:c

rev:c
REVIEWER:c

timeout:c
noaccept:c
accept:c

STATUS:c

Fig. 1. SWN Workflow of Reviewing Process.

erated by a given organization. The model will be ex-
plained in Section VI.

Formally a SWN is a tuple

(P, T, {C1, ..., Cn},C,W−,W+,H,m0)

P is the finite set of the places of the net, T is the
finite set of the transitions of the net. With respect
to ordinary PN, places may contain tokens of different
identity, these are called colors. A marking maps each
place to a multiset of colors (denoted by a formal sum)
belonging to the place color domain. m0 defines the
initial marking of the net. In the example place P1

initially contains all the colors representing the docu-
ments to be reviewed (

∑
dk∈DOC 1.dk). Color domains

are defined as Cartesian products of basic classes of col-
ors, C1 : DOC, C2 : REV IEWER and C3 : STATUS
in the example (look e.g. at places P2, P4). Basic
color classes Ci may be partitioned into sub-classes de-
noted Ci =

⋃
j Ci,j (e.g. class STATUS is partitioned

into singletons representing the status of a single re-
vision). Transitions are colored too, and their color
domains are implicitly derived from functions labeling
surrounding arcs. A colored transition actually folds to-
gether many elementary ones: in CPN one talks about
instances of a colored transition to denote its own sin-
gle colored entities. Transition invite reviewer in the
example represents many elementary instances (tuples)
(dk, rj). Function C assigns to each s ∈ P ∪ T a color
domain.

W−,W+ and H (called input, output and inhibitor
arc functions, respectively) are mappings assigning to
each pair (t, p) a function F : C(t) → Bag(C(p)), in
turn F assigns to each instance of t a multiset on the
color domain of place p. SWN impose constraints on
the arc function syntax. A color class-i function, here-
after simply class-function, is a mapping C(t) → Ci

and may be an integer linear combination of elemen-
tary functions denoted by: Xk, S, SCi,j

, S − Xk. A
function tuple is a tuple of class functions: 〈X1, X2〉
surrounding invite reviewer is a function tuple where
the first component is a class-1 function and the second

one is a class-2 function.
A guard may be associated to transition t to restrict

its set of admissible color instances. A guard [guard]
is a function C(t) → C(t) useful to filter out from the
domain of a transition t instances which do not satisfy
a given Boolean predicate. In the example, transition
get review is guarded by [d(X3) <> timeout]. The
Boolean predicate is built upon a limited set of ba-
sic predicates: Xi = Xj , d(Xi) = d(Xj), Xi 6= Xj ,
d(Xi) 6= d(Xj), d(Xi) denoting the co-domain of Xi.
Finally, W−(t, p),W+ and H are integer linear combi-
nations of function tuples possibly left-composed to a
guard (e.g., 〈X1, X2〉 ◦ [X1 <> X2]).

Now, let us introduce the semantics of the elemen-
tary symbols: Xk projects the arguments on its k-th
components, possibly a successor operator !d is applied
to Xk when Ci (Ci = d(Xk)) elements are circularly
ordered; S is a constant mapping each element of its
domain to the (multi)set Ci, assumed it is a class-i
function; Si,j is a constant mapping to the (multi)set
Ci,j , assumed it is a class-i function and Ci is par-
titioned in sub-classes; S − Xk is the complement of
the k-th component of the argument. Function tu-
ple applications result in Cartesian products. Refer-
ring to the example, the application of 〈X1, X2〉 to
the color instance (dk, rj) of invite reviewer results in
〈X1, X2〉(dk, rj) = X1(dk, rj)×X2(dk, rj) = (dk, rj).

A priority level is associated to each transition: level
0 is reserved for timed transitions (graphically repre-
sented as white boxes), while all other levels are for
immediate transitions (graphically represented as black
bars), which fire in zero time. An exponential firing rate
is associated to each timed transition, while a weight is
associated to each immediate transition to probabilisti-
cally solve conflicts between immediate transitions with
equal priority.

A reachability-graph is built starting from m0 and
the enabled transition set. In stochastic PN exten-
sions such graph is associated to a Markovian stochas-
tic process for performance analysis purposes. When
no analytical methods are feasible then discrete-event

simulation can be carried out. The structured syn-
tax of SWN arc functions allows system symmetries
(implicitly encoded into SWN models) to be exploited
for the building of a compact Symbolic Reachability
Graph (SRG) and a corresponding stochastic process (a
lumped CTMC), or to perform symbolic discrete-event
simulation runs [3].

A. Enabling Test in SWN

The determination of the enabled instances of a tran-
sition in a given marking is a common task for many
analysis techniques which need to explore the state-
graph of a CPN model. Focusing on SWN, this task
might be efficiently achieved exploiting the structured
syntax of the paradigm. The problem may be stated
in terms of looking for a function EN(m, t) which for
a given marking and transition gives the enabled in-
stances.

The enabling test might be trivially done passing
through the unfolding of a SWN model. This solution
however is highly inefficient. The enabling expression
for SWN is: W−(t, p)(c) ≤ m(p) < H(t, p)(c), ∀p, in
which comparison operators are extended to multisets.
EN(m, t) is obtained by evaluating this expression for
each color c of t. This kind of method however does
not exploit the symmetries encoded in SWN arc func-
tions. In literature several works have been presented
trying to exploit such feature in order to enhance the
computation of EN(m).

The optimization proposed in [6] was integrated in
the GreatSPN tool to improve the efficiency of the SWN
discrete-event simulation engine. This optimization im-
plements some heuristics that may be applied when
SWN arc functions match enough simple patterns and
reveals effective on a restricted set of practical cases.
For instance function tuples cannot include the comple-
ment function, and guards are only partially treated.

The approach proposed in [8] is more related to the
contents of this paper and presents some similarities.
It provides a basic calculus for SWN enabling test,
however is only partially symbolic, does not explicitly
deal with guards, and considers only a subset of class-
functions.

An enhancement of [8] has been recently presented
[5]. Exploiting a calculus recently presented in [4] the
technique is generalized to comprise all SWN features
and this is done symbolically, i.e. without unfolding
SWN nodes. The hypothesis is that W−,W+ and H
may be manipulated by means of operators working
on function tuples in order to obtain a formal expres-
sion for a given colored transition t which, applied to
a marking m, returns its enabled colored instances. In
this paper we show an application of the technique to
symbolic discrete-event simulation of SWN workflow
models.

III. Overviewing the SWN Calculus

[4] introduces an algebraic framework allowing ef-
ficient implementation of several SWN analysis algo-
rithms. The framework is characterized by a high-level

language and a core of functional operators which are
applicable to language’s expressions. The language syn-
tax is a simple extension of SWN arc function syn-
tax.The operators are the ones required by most al-
gorithms based on structural check of Colored PN. In
particular the transpose t, the intersection ∩ and the
difference 	 are needed to compute EN(m). Each top-
level operator has a low-level version acting on elemen-
tary function symbols: Xk, S, S −Xk, SCi,j

and !hXk.
The formal description of the language may be found

in [4], here it is just overviewed. The language L is a
set of expressions Ei closed with regard to the core
O of (functional) operators. An expression E ∈ L is
a formal sum of terms [fi] ◦ Ti ◦ [gi] where [gi] and
[fi] are SWN’s guards and Ti is a SWN’s function tu-
ple with some more extension (the composition sym-
bol ◦ is usually omitted). In order to satisfy the clo-
sure requirement under set O, another extension has
been necessary: class-functions may be linear com-
binations of intersections of elementary functions, so
[X1 6= X2]〈X1∩!2X2 + 3 · (S − X2), X1〉 belongs to
L. The extensions above make the SWN syntax richer
from a descriptive point of view.

The subset composed by Ei ∈ L such that class
functions are intersections of elementary symbols, is re-
garded as the kernel set and is denoted as K. Equiva-
lence between K and L is stated by:

Prop. 1: For each E ∈ L there exists {E′
k} ⊂ K such

that
∑

k E′
k ≡ E

[4] introduces the rewriting rules translating E to
E′. Without losing generality, we shall assume that
W−(p, t) and H(p, t) belong to K.

A. Language Operators

Let F, F ′ : A → Bag(B). Transpose (·)t The operator
t applied to F results in F t : B → Bag(A) such that
F t(b)(a) = F (a)(b) ∀a ∈ A,∀b ∈ B (m(c) denotes the
multiplicity of element c on multi-set m). Focusing
on W−(t, p), given a p’s color instance c, W−(t, p)t(c)
maps to the t’s instances which need c on place p in
order for being enabled, along with its quantity. For
example a function W−(t, p)t = 〈S − X1, 2X1〉: C1 →
Bag(C1 × C1), when evaluated in c1 ∈ C1 maps to
multiset 〈C1− c1, 2.c1〉 = 2.〈C1− c1, c1〉. It means that
t instances in 〈C1−c1, c1〉 require two tokens c1 on place
p to be enabled.
Intersection and Difference (∩,) (F ∩ F ′)(a) =
F (a) ∩ F ′(a) (recall that is m,m′ belong to Bag(C),
then ∀c ∈ C,(m ∩ m′)(c) = min(m(c),m′(c))). Func-
tions F , F ′ are said disjoint if F ∩ F ′ is equal to the
null (multi)set constant ∅. Analogously, (F 	 F ′)(a) =
F (a) 	 F ′(a). When restricting to functions mapping
on sets the 	 operator corresponds to the set-difference
(it will be exclusively used in this context).
Linear extension (F ∗) F ∗ : Bag(C) → Bag(D) is
defined as F ∗(c+c′) = F (c)+F (c′). Abusing notation,
we shall use symbol F to denote a function as well as
its linear extension.

The symbolic framework algorithms operate rewrit-
ings on expressions in K that rely upon the language’s

algebraic properties [4]. Hereafter symbol −→ will de-
note a rewriting application.

Prop. 2: Let E ∈ K, E =
∑

j λj · fj , λj ∈ N. Then:
E ≡ E′, E′ =

∑
k γk · gk where ∀k1, k2: gk1 ∩ gk2 = ∅

In other words any formal sum belonging to K (and
consequently L), can be rewritten into an equivalent
formal sum of pairwise-disjoint terms belonging itself
to K. As an example, tuple 〈2S + X1, X2〉 may be
rewritten as 2〈S −X1, X2〉+ 3〈X1, X2〉.

IV. Efficiently Computing Enabled Instances

The computation of the color instances of transi-
tion t that are enabled in marking m (EN(m, t)) is
accomplished in modular way considering locally en-
abled sets. Given t and place p, a function EN(t,p) :
Bag(C(p)) → P(C(t)) is defined that, when applied to
a given marking of place p, results in the exact set of
color instances of t that are locally enabled in m(p),
thereby denoted EN(t,p)(m(p)). Function EN(t,p) is
formally expressed in terms of language K. The set
of color instances of transition t that are enabled in
m is obtained by intersecting locally enabled sets:
EN(m, t) =

⋂
p EN(t,p)(m(p)).

The technique will be illustrated by means of an ex-
ample (Figure 2) in which the local enabling of a SWN
transition depends on evaluating both an input and a
inhibitor arc-function. Despite its simplicity the exam-
ple is enough complete.

It is necessary to consider colored tokens occurring on
m(p) and evaluate which instances of transition t they
enable. Such information are contained in the trans-
pose of functions W−(t, p) and H(t, p). It is possible
to build an enabling table, which enumerates for each
c′i ∈ C(t), and for each c ∈ C(p), an interval of positive
integer values representing the number of occurrences
of color c in p that ensure the local enabling of c′i. The
first step consists in finding compact representations for
local enabling tables using transposition and difference
operators on language K.

.0.a The Tabular Symbolic Form. The symbolic
framework provides efficient algorithms to compute
the transposes of W−(t, p) and H(t, p). The whole
approach is based on rewriting both W−(t, p)t and
H(t, p)t in (also reciprocally) disjoint sums of terms
(property 2). Let us consider the example on Fig. 2:
W−(t, p1)t and H(t, p1)t are functions C1 → C1 × C1,
operating the framework’s transpose algorithm we ob-
tain:

p2

C1

p1

C1
t

2<X1>

3<X1>

<X1>+2<X2>

Fig. 2. A Simple SWN Model.

〈X1〉t + 2.〈X2〉t −→ 〈X1, S〉+ 2.〈S, X1〉
3.〈X1〉t −→ 3.〈X1, S〉

Applying the disjoining steps [5] to W−(t, p1)t and us-
ing the rewriting rules for operator ∩, results in the
following expression for W−(t, p1)t:
〈X1, S〉+ 2.〈S, X1〉 −→
3.

(
〈X1, S〉 ∩ 〈S, X1〉

)
+ 1.

(
〈X1, S〉 ∩ 〈S, S −X1〉

)
+

2.
(
〈S, X1〉 ∩ 〈S −X1, S〉

)
−→

3.〈X1, X1〉+ 1.〈X1, S −X1〉+ 2.〈S −X1, X1〉

As concerns H(p1, t)t, it is rewritten to:
3.〈X1, S〉 → 3.〈X1, X1〉+ 3.〈X1, S −X1〉

At the end W−(t, p1)t and H(t, p1)t take the expected
forms, respectively:

3.〈X1, X1〉+ 1.〈X1, S−X1〉+ 2.〈S−X1, X1〉
3.〈X1, X1〉+ 3.〈X1, S−X1〉

These expressions may be folded into a single one
EN(t,p1) : Bag(C) → P(C× C), which defines the form
of locally and potentially enabled instances of t in a
generic marking:

b3, 2c 〈X1, X1〉⊕b1, 2c 〈X1, S−X1〉⊕b2,∞c 〈S−X1, X1〉
(1)

(locally means that we are only referring to place p1).
Each term Tk (∈ K) of EN(t,p1) is associated to an inter-
val [αk, βk], αk ∈ N, βk ∈ N ∪ {∞}, defining enabling
bounds for t on p1. EN(t,p1) provides a pattern: the
first term says no instances 〈c1, c1〉 of t will be ever en-
abled. The second and third terms instead say that for
an instance 〈c1, c2〉, c2 6= c1, to be (locally) enabled, it
is necessary and sufficient that color c1 occurs at least
once, but no more than twice, in p1, while c2 must oc-
cur at least twice. Symbols ⊕ and b, c are used to avoid
any confusion with the (multi-)set sum, and guards.

The computation of EN(t,p) is required for each place
p and transition t connected via an input/inhibitor arc.
Even if potentially expensive, it has to be performed
only once, then may be saved as structural information
associated to a given SWN model.

Def. 1: Let EN(t,p) : Bag(C (p)) → P(C (t)) be the
formal sum 1. Then EN(t,p)(m(p)) = EN+ / EN−,
where

EN+ =
⋃

c∈C(p),k:1...n,αk≤m(p)(c)≤βk
Tk(c)

EN− =
⋃

c∈C(p),k:1...n,αk>m(p)(c)∨βk<m(p)(c) Tk(c)

Under the hypothesis (that we can always reconduce to
via function rewriting) that W−(p, t) and H(p, t) can-
not be simultaneously annulled by any argument, the
locally enabled set EN(t,p)(m(p)) is formally expressed
by ([gt] is the transition guard): [gt]EN(t,p)(m(p)).

Intuitively speaking, if a color instance c′ of t matches
one term Tk on the formal sum, and the multiplicity of
a colored token c in p1 such that c′ ∈ Tk(c) ranges over
[αk, βk], then c′ is potentially enabled. If instead the
multiplicity of c in p1 is out of the interval, then c′

cannot be enabled.
Assuming C = {a, b, c, d, e}, let us consider the mark-

ing m(p1) : 3a + 2b + 1c. According to Definition 1
EN(t,p1)(m(p1)) is:

(〈b, S − b〉 + 〈S − a, a〉 + 〈S − b, b〉 + 〈c, S − c〉)−
(〈a, S − a〉 + 〈S − c, c〉 +

∑
∀x/∈m(p1)

(〈x, S − x〉+ 〈S −
x, x〉)) = {〈b, a〉, 〈c, a〉, 〈c, b〉}

A. Efficient Calculation of EN(t,p)

Definition 1 apparently forces one to consider all col-
ors in the domain of p for computing the local enabled
set of transition t at a given marking. The computation
of EN(t,p)(m(p)) may be actually accomplished refer-
ring only at colors in m(p) (the − operator applied to
a multi-set results in its support-set).

The optimization proposed in [5] relies upon splitting
symbolic computation in two steps, to better exploit
information on the shape of the input arc function.

For simplicity we are making the hypothesis that
W−(t, p), when evaluating different from φ, returns a
constant number of tokens: ∀c ∈ C(t),W−(t, p)(c) 6=
φ : |W−(t, p)(c)| = n, n ∈ N. This assumption is
not restrictive, as we can always fall into the hypothe-
sis above (once again) via SWN arc function rewriting
[5]. Then, to compute the local enabled instances of t
in m(p) let us write a sum so defined: for each color
c′ ∈ m(p) the expression EN′(c′) is derived, that results
from applying function (1) as it were a formal sum map-
ping on multisets, taking as coefficients lower-bounds
αk, and treating ⊕ as multiset sum; terms whose
bounds are not satisfied by the multiplicity of c′ in m(p)
are deleted. The multiset EN =

∑
c′∈m(p) EN′(c′) pro-

vides an expression for t’s instances potentially enabled
in m due to the marking of p: the instances of t requir-
ing n tokens from p are the multiset elements having
multiplicity n. They can be computed by intersecting
such terms in EN whose multiplicity sum is n. In the
running example EN is:

2 · 〈S − a, a〉︸ ︷︷ ︸
EN′(a)

+

EN′(b)︷ ︸︸ ︷
(〈b, S − b〉+ 2 · 〈S − b, b〉) + 〈c, S − c〉︸ ︷︷ ︸

EN′(c)

This expression highlights the contributions due to the
different colors {a,b,c} occurring on place p1. Because
|〈X1 + 2.X2〉| = 3 the local enabled color instances of t
are obtained intersecting:

(1) 〈S − a, a〉 ∩ 〈b, S − b〉 → 〈b, a〉;
(2) 〈S − a, a〉 ∩ 〈c, S − c〉 → 〈c, a〉;
(3) 〈S − b, b〉 ∩ 〈c, S − c〉 → 〈c, b〉.

Step 2 consists of taking into account residual terms
in (1) such that αk = 0. The exact set of enabled color
instances is obtained subtracting from color instances
computed during step 1 the set:⋃

c∈m(p),k: αk=0∧m(p)(c)>βk

Tk(c)

V. Extension to Symbolic Markings

The peculiar and most interesting feature of the
SWN formalism is the ability of capturing system’s be-
havioral symmetries thanks to the structured syntax
of color annotations (Section II). In some sense such
symmetries are encoded into the SWN color syntax.
Efficient algorithms can be applied that exploit such

symmetries to build an aggregated state space (called
Symbolic Reachability Graph, or SRG [3]) and its cor-
responding stochastic process (a lumped CTMC), or to
perform symbolic discrete-event simulation runs. These
methods rely upon the notion of Symbolic Marking
(SM) (and symbolic firing rule).

A SM provides a syntactical equivalence relation on
ordinary markings: two markings belong to the same
SM iff they can be obtained from one another by means
of a permutation on unordered color classes that pre-
serves static subclasses, and a rotation on ordered color
classes.

.0.b Symbolic Marking. The definition of a SM m̂
comprises two parts: one specifying the so called dy-
namic subclasses and another representing the distri-
bution of colored symbolic tokens over the places.

Dynamic subclasses define a parametric partition of
color classes preserving static subclasses: Ĉi denotes
the set of dynamic subclass of Ci (in m̂). Let si be
the number of static subclasses of color class Ci (if Ci

is not split then si = 1). The j-th dynamic subclass
Zi

j ∈ Ĉi refers to a static subclass, denoted d(Zi
j), 1 ≤

d(Zi
j) ≤ si, and has an associated cardinality |Zi

j | (i.e.,
it represents a parametric set of colors). It must hold,
∀k : 1 . . . si ∑

j:d(Zi
j)=k |Zi

j | = |Cik|.

If Ci is an ordered class (we assume in that case si = 1),
then its dynamic subclasses must be ordered accord-
ingly, formally there is a homomorphism h : Ĉi → Ĉi

such that h|Ĉi| = h. Intuitively, contiguous dynamic
subclasses represent contiguous (sets of) colors. If all
dynamic subclass of an ordered class are of cardinality
one then we prefer to use the notation ! instead of h.

The formal representation of m̂ is a mapping P →
Bag(Ĉ(p)), Ĉ(p) being the symbolic color domain of p

obtained replacing each Ci in C(p) by Ĉi.
Among several possible (equivalent) definitions for a

SM, two are of particular relevance. The canonical rep-
resentation [2], that minimizes the number of dynamic
subclasses and provides a unique formal representa-
tion. On the opposite there is the split representation
of m̂, where all dynamic subclasses are of cardinality
one. Given a SM m̂ its split representation is obtained
replacing each Zi

j , |Zi
j | > 1, by

∑
k:1...|Zi

j |
Zi

j,k (dou-
ble subscripts denote dynamic subclasses deriving from
splitting). Cardinality, static subclasses, and (possibly)
ordering must be preserved by splitting operation.

Let us consider, once again, the net on Fig. 2: an
example of SM is (place p2 is assumed empty, super-
scripts are omitted as there is only one color class,
∀j, d(Zj) = 1):

m̂(p1) : 3〈Z1〉 + 2〈Z2〉 + 1〈Z3〉
Ĉ = {Zj}j:1...4, |Z1| = 2, |Z2| = |Z3| = |Z4| = 1

An example of ordinary marking belonging to m̂ is

m′(p1) : 3〈a〉 + 3〈b〉 + 〈2c〉+ 1〈d〉.

The split representation of m̂ is:

split(m̂)(p1) : 3〈Z1,1〉 + 3〈Z1,2〉 + 2〈Z2〉+ 1〈Z3〉
|Z1,1| = |Z1,2| = |Z2| = |Z3| = |Z4| = 1

The SM notion is accompanied by that of symbolic
color instance of a transition t. Let C(t) be the color
domain of t and m̂ be a split symbolic marking. The
symbolic color domain of t respective to m̂ is obtained
replacing each Ci in C(t) by Ĉi and is denoted Ĉ(t).
A symbolic color instance of t on m̂ is a tuple ĉ ∈
Ĉ(t). If we consider symbolic color domains (related to
a split SM) functions labeling an arc connecting p and t

have arity Ĉ(t) → Bag(Ĉ(p)) and are defined as in the
ordinary case (see also Section II). For instance the
application of function 〈X1, S−!X2〉[X1 6= X2] to the
tuples 〈Z2, Z1〉 and 〈Z2, Z2〉 result in 〈Z2, S−Z2〉 and ∅,
respectively (assuming !Z1 = Z2). The symbol S−Z2 is
a compact notation for ”sum of all dynamic subclasses
but Z2”, thereby 〈Z2, S−Z2〉 stands for

∑
j 6=2〈Z2, Zj〉.

Examples of symbolic color instances of t respective
to the split SM above are 〈Z1, Z1〉, 〈Z2, Z1〉, 〈Z2, Z3,1〉.
Note that some symbolic instances may be equivalent
(i.e., they lead to the same SM), e.g. 〈Z2, Z3,1〉 ≡
〈Z2, Z3,2〉.

The notion of enabling of a color instance on a given
marking (Section II) is thus straightforwardly extended
to SM and symbolic transition instances. Considering
the example above we can simply check that 〈Z2, Z3,1〉
is enabled. Testing the enabling of symbolic instances
is an expensive operation for two main reasons: it
forces the splitting of the source SM and does not take
into account possible equivalences between symbolic in-
stances.

.0.c Testing symbolic color instances. The basic for-
mula (1), that the whole approach to symbolic enabling
test relies upon (section VI), can be used to efficiently
compute the set of enabled symbolic color instances of
a transition in a given SM. The only difference is that
it applies to (tuples of) dynamic subclasses instead of
(tuples of) basic colors. Two conditions have to be
meet in order for the optimization described in Section
IV-A to be efficiently applied: 1) only (symbolic) col-
ors occurring on a given SM representation should be
considered, 2) the function-tuples composing the local
enabling function should be evaluated as if they were
mapping on multi-sets rather than on power-sets. That
may be done without any difficulty as long as we con-
sider a split representation of SM. The calculus manip-
ulates such compact symbols as S,S−Zi

j ,.. that should
be expanded at the end in order to obtain the enabled
symbolic color instances.

Let us consider once again the running example. Ap-
plying the local enabling function to split(m̂) (as ex-
plained in Section IV-A) results in the multiset

2〈S − Z1,1, Z1,1〉 + 2〈S − Z1,2, Z1,2〉︸ ︷︷ ︸
Z1

+

1〈Z2, S − Z2〉+ 2〈S − Z2, Z2〉︸ ︷︷ ︸
Z2

+

1〈Z3, S〉︸ ︷︷ ︸
Z3

The expression above denotes a multiset on Ĉ1 × Ĉ1,
the symbolic color domain of transition t. Terms are on
the form of tuples, each representing a set of symbolic
color instances. Terms referring to the same color (of
the symbolic color domain Ĉ1 of place p) are pairwise-
disjoint by construction. Locally enabled symbolic
color instances of t correspond to multiset elements of
multiplicity 3, that are obtained by intersecting (non
disjoint) terms whose coefficient sum is 3.
〈S − Z1,1, Z1,1〉 ∩ 〈Z2, S − Z2〉,
〈S − Z1,2, Z1,2〉 ∩ 〈Z2, S − Z2〉,
〈S − Z1,1, Z1,1〉 ∩ 〈Z3, S〉,
〈S − Z1,2, Z1,2〉 ∩ 〈Z3, S〉,
〈S − Z2, Z2〉 ∩ 〈Z3, S〉

Using the intersection rules we obtain (no expansion is
required in this case):

{〈Z2, Z1,1〉, 〈Z2, Z1,2〉︸ ︷︷ ︸
≡

, 〈Z3, Z1,1〉 , 〈Z3, Z1,2〉︸ ︷︷ ︸
≡

, 〈Z3, Z2〉

The 1st and 2nd, and the 3rd and 4th instances are
syntactically recognizable as equivalent to one another,
so only one instance of each pair has to be processed
for firing.

The split SM representation allows the evaluation of
local enabling functions (expressed in terms of language
K) on symbolic color domains to be accomplished as in
the ordinary case. In the example above splitting dy-
namic subclass Z1 has been required to correctly eval-
uates function-tuples on which projection symbol X1

is repeated. The other possible splitting causes are 2)
repetition of a dynamic subclass on a tuple argument of
a function-tuple, 3) occurrence of projection successor
symbol on a function-tuple.

Very often however only a partial (possibly null)
splitting of a SM m̂, assumed in canonical form, is nec-
essary. Avoiding splitting as long as possible makes
faster computation of enabled symbolic instances as
well as recognition of equivalent instances. How that
can be achieved is informally described through an ap-
plication example.

VI. An Application Example

In this section we present an example of application
of the symbolic enabling test using as case-study the
workflow SWN model of document reviewing process
depicted in Figure 1. A number of documents are be-
ing reviewed by a team of reviewers at a given organi-
zation. The number of documents simultaneously re-
viewed and the size of the reviewer team are the model’s
parameters. After sending a copy of each document to
be reviewed to the team the revision process begins.
Each reviewer can simultaneously work on many dif-
ferent documents, and (for simplicity) that only two
judgments are possible, accept or not accept. It the
reviewing process by a single reviewer takes too much
time that particular revision should not be considered
for the final decision. The decision process about a
given document starts only once all the reviewers have
completed their single revision on that document in the
due time, or they have exceeded the timeout fixed for

revision. The decision algorithm is quite simple: the de-
cision about a given document may be considered valid
if and only if at most two reviewers did not complete
their revisions in the due time. In case of valid decision,
a document is approved (accepted) if the ”accept” are
more than the ”not-accept”.

The main activities of the reviewers and the timeout
are represented by timed transitions, while the decision
algorithm is modeled by a subnet of immediate transi-
tions. Examples of performance figures that could be
computed with steady-state analysis/simulation are the
percentage of acceptance/rejection per document, the
percentage of valid decisions, the throughput of the re-
vision process (i.e. the number of documents on which
a valid judgment is expressed per time unit), and so on.

The focus here is on the complexity of both exact
solution and (discrete/event) simulation, and the po-
tential computational gain provided by the technique
described in Section IV to simulation efficiency. De-
spite the relative complexity of model’s color annota-
tions we were able to analyze/simulate a reduced num-
ber of configurations using the algorithms implemented
in the GreatSPN package. Table I shows the state-
space growing for increasingly complex configurations
(all documents are initially on place P1). Looking at the
data on the table we can argue that despite the signif-
icant reduction due to symmetries only configurations
with a small number of documents (nd ≤ 3, nd·nr ≤ 12,
nd = |DOC|, nr = |REV IEWER|) can be analytically
solved. The 3 × 4 configuration represents a threshold
for the (symbolic) discrete-event simulation engine of
GreatSPN (running on a Pentium 4 630 with 2 GByte
of RAM), what makes highly unreliable trying to infer
tendency curves on realistic working scenarios.

TABLE I: State-space growing

(nd,nr) |SRG| |RG|
(2,2) 465 1664
(2,3) 3430 34515
(3,2) 5177 56099
(2,4) 20425 731120
(2,5) 103457 15823647
(3,3) 162892 5524164
(2,6) 463513 254974732
(3,4) > 5000000 -

Unfortunately, the form of model’s arc functions is
such that neither the technique defined in [6] nor that
one defined in [8] can be used to improve simulation
efficiency: more precisely the presence of complemen-
tary functions, constant functions and guards avoids
exploiting any known optimization. On the other side,
the structural approach for symbolic enabling test de-
fined in section IV, whose complexity does not depend
on color class cardinality and that applies to any kind
of SWN functions, might be conveniently used to study
even more complex model’s configurations than that
ones considered on table I. That approach allows most
of complexity of enabling test task to be moved from
run-time to syntactical manipulation of arc functions
(performed only once for a given model). This tech-
nique can be naturally integrated to the symbolic SWN
transition firing rule in order to operate an optimized

symbolic (discrete/event) simulation of SWN models.

.0.d Symbolic Enabling Test. Let us apply the
symbolic enabling test to a selection of transitions
(get review,decision invalid,no accept), on a given
symbolic marking. Both color classes C1: DOC, and
C2: REV IEWER are not split (Ci will be used instead
of Ĉi hereafter).

Assuming nd = nr = 3, let us first consider the en-
abling of transition get review (C(get review): C1 ×
C2 × C3) on the SM m̂ below, respective to place P3

(C(P3): C1 × C2):

m̂(P3) : 〈Z1
1 , Z2

1 〉 |Z1
1 | = 1, |Z2

1 | = 2

An ordinary marking belonging to m̂ is

m(P3) : 〈d1, r1〉+ 〈d1, r2〉

According to the transposing rules we obtain (C3,3:
timeout; only the bag support is hereafter indicated
in the co-domain of functions):

W−(get review, P3)t : C1 × C2 → C1 × C2 × C3

= [d(X3) <> C3,3]〈X1, X2, S〉

The formal expression of the local enabling function
turns out to be, after some rewriting (C3,1: accept,
C3,2: noaccept):

b1,∞c [d(X3) <> C3,3]〈X1, X2, S〉 ≡
b1,∞c 〈X1, X2, S3,1 + S3,2〉

Applying directly the procedure described in section
IV-A without any preliminary splitting we obtain the
formal multiset:

〈Z1
1 , Z2

1 , S3,1〉+ 〈Z1
1 , Z2

1 , S3,2〉

Both terms occur with multiplicity 1 (which is the car-
dinality of the input function application), moreover
they are disjoint, so they represent the locally enabled
symbolic color instances of transition get review. Due
to the cardinality of dynamic subclass Z2

1 each of them
represents two ordinary color instances.

Let us consider now transition decision invalid
(C(decision invalid): C1 × C2 × C3), focusing on its
local enabling respective to place P5 (C(P5): C1×C2×
C3):

W−(decision invalid, P5)t :
C1 × C2 × C3 → C1 × C2 × C3 =
〈X1, S −X2, S3,3〉t + 〈X1, X2, X3〉t ≡
〈X1, S −X2, S〉[d(X3) = C3,3] + 〈X1, X2, X3〉

The formal expression 1 turns out to be in this case:

b1,∞c 〈X1, S −X2, S〉[d(X3) = C3,3] ⊕
b1,∞c 〈X1, X2, X3〉

Consider now symbolic marking m̂′, that describes a
situation where the revision process of a document (Z1

1)
has finished but cannot be considered valid because two
(out of three) reviewers did not complete their work in

the due time (while the third one approved the docu-
ment), and the revision of document Z1

2 is still incom-
plete (there is only an approval by one reviewer):

m̂′(P5) : 〈Z1
1 , Z2

1 , S3,1〉+ 〈Z1
1 , Z2

2 , S3,3〉+
+〈Z1

2 , Z2
1 , S3,1〉

m̂′(P6) : 〈Z1
1 〉+ 〈Z1

2 〉
|Z1

1 | = |Z1
2 | = |Z2

1 | = 1 |Z2
2 | = 2

Applying the local enabling function directly to m̂′, as
described in section IV-A, results in the formal multi-
set:

2 · 〈Z1
1 , Z2

1 , S〉+ 〈Z1
1 , Z2

2 , S〉+
〈Z1

1 , Z2
1 , S3,1〉+ 〈Z1

1 , Z2
2 , S3,3〉+ 〈Z1

2 , Z2
1 , S3,1〉

The first row of the formal sum results from apply-
ing the first tuple of the local enabling function to
the marking. According to the function linear exten-
sion, (S − X2)(Z2

2) results in (S − Z2
2,1) + (S − Z2

2,2),
|Z2

2,i| = 1, that is, 2 · Z2
1 + Z2

2 . Searching for lo-
cally enabled symbolic instances corresponds to finding
multiset terms having cardinality 3 (the cardinality of
W−(decision invalid, P5) application): it straightfor-
wardly comes out, by intersecting non disjoint multiset
terms whose multiplicity sum is equal to 3:

〈Z1
1 , Z2

1 , S〉 ∩ 〈Z1
1 , Z2

1 , S3,1〉 ≡ 〈Z1
1 , Z2

1 , S3,1〉

With very simple arguments we might convince our-
selves that locally enabled symbolic instances of
decision invalid respective to place P6 are expressed
by the (formal) set 〈Z1

1 , S, S〉 + 〈Z1
2 , S, S〉, so the only

enabled symbolic instance in m̂′ (obtained by intersect-
ing the locally enabled sets) is 〈Z1

1 , Z2
1 , S3,1〉.

The last case we consider is the local enabling of tran-
sition no accept (C(no accept): C1) respective to place
P5 on marking m̂′′ (this marking is reached after sym-
bolic color instance 〈Z1

1 , Z2
1 , S3,1〉 of decision invalid

on m̂′ has fired)

m̂′′(P5) : 〈Z1
1 , Z2

1 , S3,1〉
m̂′′(P6) : 〈Z1

1 〉
|Z1

1 | = |Z2
1 | = 1

The local enabling of transition no accept only de-
pends on the function labeling the inhibitor arc between
no accept and place P5. Transposing that function re-
sults in:

H(no accept, P5)t : C1 × C2 × C3 → C1

= 〈X1〉[d(X3) = C3,1]

The local enabling function takes the form below:

b0, 0c 〈X1〉[d(X3) = C3,1]

For the absence of the input arc between no accept and
place P5, we only need to apply step 2 of the procedure
described in section IV-A in order to obtain the locally
enabled color instances of transition no accept, i.e., we
have to consider the complementary of the of the local
enabling function application to colors occurring on the
marking:

〈S − Z1
1 〉 ≡ 〈Z1

2 〉 |Z1
2 | = 2

Since the locally enabled set of transition no accept
with respect to its input place P6 on SM m̂′′ is trivially
equal to 〈Z1

1 〉, the set of enabled symbolic instances of
no accept on m̂′′ shows to be (dynamic subclasses are
pairwise disjoint):

〈Z1
1 〉 ∩ 〈Z1

2 〉 ≡ ∅

VII. Conclusion

This paper illustrates how the recently developed al-
gebraic approach to SWN enabling test may be eas-
ily integrated to the SWN symbolic firing rule (that
exploits behavioral symmetries) to give rise to a fully
algebraic discrete-event simulation engine. An applica-
tion example to a SWN workflow model has been pre-
sented showing the benefits of the new algebraic simu-
lation engine in terms of efficiency. The outcome make
us confident in a consistent reduction of the compu-
tational overhead due to enabling test, that affects all
techniques based on state-space exploration. Current
and future works are in two directions: (1) producing
a full implementation of the algorithm (2) using SWN
structural relations such as conflict and mutual exclu-
sion to further improve the enabling-test task.

References

[1] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use. Volume 1, Basic Concepts.
Monographs in Theoretical Computer Science, Springer-
Verlag. ISBN: 3-540-60943-1., 1997.

[2] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad,
“Stochastic well-formed coloured nets for symmetric mod-
elling applications,” IEEE TC, vol. 42(11), no. 11, pp. 1343–
1360, 1993.

[3] ——, “A symbolic reachability graph for coloured petri nets,”
Theoretical Computer Science B (Logic, semantics and the-
ory of programming), vol. 176, no. 1&2, pp. 39–65, 1997.

[4] L. Capra, M. De Pierro, and G. Franceschinis, “A High Level
Language for Structural Relations in Well-Formed Nets,” in
Proceeding of the 26th International Conference on Applica-
tion and Theory of Petri Nets, ser. LNCS 3536, G. Ciardo
and P. Darondeau, Eds., Miami, USA, June 2005, pp. 168–
187.

[5] L. Capra and M. De Pierro, “Efficient enabling Test in
Simulation of SWN,” in Proceeding of the 20th annual Eu-
ropean Simulation and Modelling Conference (ESM’2006).
Toulouse, Fra: EUROSIS-ETI, Oct. 2006.

[6] R. Gaeta, “Efficient discrete-event simulation of colored petri
nets,” IEEE TSE, vol. 22(9), no. 9, pp. 629–639, September
1996.

[7] K. Jensen and G. Rozenberg, Eds., High-Level Petri Nets.
Theory and Application. Springer Verlag, 1991.

[8] Jean-Michel Ilie and Omar Rojas, “On well-formed nets and
optimizations in enabling test,” in Application and Theory
of Petri Nets 1993, LNCS, vol. 691. Springer-Verlag, 1993,
pp. 300–318.

