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Abstract— Algorithms to join two mesh patches along an edge are
of immediate practical interest in the context of higher-level opera-
tions on models of objects formed by such mesh patches. Such models
are widely used in graphical visualization and simulation, shape in-
terrogation, and other areas. Thus, there are now available methods
to join two subdivision surfaces along a common edge curve, as well as
methods to join mesh patches that approximate given trimmed-surface
patches. The latter problem is studied in this paper.

The auxiliary information available to the algorithm, in the context
of surface joining, varies, depending upon circumstances. In partic-
ular, it may or may not be true that an explicit common edge curve,
representing the boundary between the two patches to be joined, is
available as part of the data. Even in the case, however, when max-
imal auxiliary information is available algorithms are not necessarily
reliable. For example, methods that do not use normal-vector error
criteria, to measure the discrepancy between the surface patch and the
associated mesh patch, can produce poor results, due to large changes
in the normal direction of a triangle near the mesh boundary. It is even
possible to give examples where the triangles near the joined bound-
ary are turned upside down by the joining process, so that computed
meshes self-intersect. In this paper an algorithm is presented that uses
a proxy for a normal-vector error criterion, and the Whitney extension
theorem, to produce reliable algorithms. Examples are given, and an
implementation is described.

I. INTRODUCTION

This paper is concerned with the problem of the reliable
joining of surface meshes used in combined mesh-surface
models. Such models are of interest for graphical visualiza-
tion of solid objects, shape interrogation, computer-aided
design, and vision [1], [2], [3], [4], [5], [6], [7]. The joining
process is sometimes referred to as sewing [1]. The main
novel aspect of the work is the use of normal-vector crite-
ria, described below, to prevent folding of edges during the
joining process.

A mesh patch is a surface made up of non-degenerate tri-
angles lying in R3. Algorithms to join two mesh patches
along a common edge are of immediate practical interest
in the context of higher-level operations on objects formed
by such mesh patches. For example, methods have been
given to join two subdivision patches along a common edge
curve, specified in R3. In particular, combined subdivi-
sion surfaces [8] were designed for this purpose, and dy-
namic subdivision surfaces [9] may be used to produce sub-
division surfaces with hard edges along a given curve in
space. Similarly, methods are available [1], [10, Sec.3.4] to
join together mesh patches that approximate given trimmed-
surface patches lying in R3. It is the latter problem (surface-
mesh joining) that is studied in this paper.

The auxiliary information available to the algorithm, in
the context of surface-mesh joining, may vary. Mesh solids
formed by a trimmed-surface model coupled with a trian-

gular mesh are used in solid modeling [1], [3], [5] and in
graphical simulation [1], [2], [4]. In the latter case, the mesh
model may be carried along with the surface model, or com-
puted adaptively during rendering, given the current camera
position. The trimmed-surface model is illustrated in Fig-
ure 1.
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Fig. 1. Two adjoining trimmed patches in surface model, with boundary
curve b(t), t ∈ [0,1].

The parametric domain D is delimited by a collection of
p-curves (a typical p-curve is denoted here by p), and the
restriction of the mapping F to D defines the trimmed patch
in R3. In addition, explicit boundary information may also
be present. Sometimes [3], [11], [12] this may take the form
of explicit curves b(t) taking values in R3, due to the con-
venience of having such explicit representations available.
This curve is analogous to the common edge curve specified
for combined subdivision surfaces. Alternatively, explicit
boundary information in R3 may be represented in other
ways; for example, it may be represented approximately by
scan conversion [1].

Even with an explicit boundary curve provided, joining
algorithms are not necessarily reliable, and it is this fact that
led to the development of the algorithms described below.

We present joining algorithms for both cases: when an
explicit curve b(t) is provided, and when it is not. The al-
gorithms described are based on the use (as a supplement to
absolute error criteria) of normal-vector error criteria [13],
[14], [15] for the discrepancy between the surface patch and
the mesh-patch. A difficulty, with algorithms that do not
use such criteria, is that they may cause large changes in
the normal direction of a triangle near the joined bound-
ary, which may in turn introduce undesired visual effects.
In fact, it could even happen that triangles near the bound-
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ary are turned upside down, so that computed meshes self-
intersect. The nature of the difficulty is illustrated in Fig-
ure 2, in the case where joining moves mesh vertices on the
basis of interpolation along a polygonal path that is not a
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Fig. 2. Sewing based on midpoints of pairs of points interpolated along
mesh edges.

straight line. In both illustrations, vertex l1 is paired with
vertex r1, and vertex l4 is paired with vertex r2. The in-
tervening joining vertices are obtained by joining the mid-
points of pairs of points obtained by linear interpolation
along the polylines l1-l2-l3-l4 and r1-r2. In the first illus-
tration, this leads to a well-behaved triangulation, but in the
second illustration, the position of the vertex l4 is different:
it is further towards the interior of the segment r1-r2, but
still within the joining tolerance, relative to r1-r2. This phe-
nomenon is called “folding” [1], and can result in a mesh
triangle that has flipped, as in the second illustration of Fig-
ure 2. Such phenomena can be avoided by using normal-
vector criteria, and in fact, if the normals of the triangles
in the mesh-patch can be bounded, they can be used to rig-
orously exclude the possibility of extraneous intersections
between neighboring mesh-patches [16], [17], [18]. In the
context of graphical simulation, it is clearly of interest to do
so.

The algorithms presented here use the Whitney extension
theorem [19] to ensure that a proxy for the normal-vector
error (defined below), and the absolute error, should not
be any larger than the corresponding errors already present
along the edges of the patch. Thus, in addition to avoid-
ing the difficulty described in the previous paragraph, the
procedure smooths the input mesh patches, in the sense just
described of error minimization. The algorithms apply to
the case of general trimmed patches, and we describe an
implementation.

Whitney extension can be viewed as a way to perform
transfinite interpolation between boundary curves. Amongst
many other applications, it has been suggested for use as a
meshing method in [5]. The algorithms below will adjust
the vertices of the input mesh patch in a way that constrains
them to lie in a transfinite interpolant defined by Whitney
extension.

Numerical properties of one of our algorithms were dis-
cussed, in the special case of planar patches with straight-
line boundaries, in [20].

Related areas of work include mesh simplification (find-
ing a “. . . concise, yet geometrically faithful . . . representation
of a surface . . . ” [14, Sec. 1]), remeshing [14, Sec. 1.1]
[15], [5], [21] and mesh fairing [22]. A good overview is

given in [14]. Yet other work deals with computation of
meshes over imperfect geometry [3], [23], and methods for
mesh repair [2], [4], [24], [25].

Other work on meshing can be related to ours in another
way, namely, by examining the metrics used to compare sur-
faces. The general concept of the absolute error in a mesh,
relative to a given surface, is ubiquitous (see for example
[26]). Again, the reference [14] gives a good overview. As
already mentioned, other authors [13], [15] have introduced
normal-vector criteria similar to ours. For example, in [15],
although priority is given to other mesh-smoothness crite-
ria, it is verified from time to time that a criterion, similar
to the mean-square criterion discussed in Section II, is not
above a certain threshold. Somewhat different criteria are
used in other applications. For example, in the context of
snakes on triangular meshes, [27] refers to bending-energy
and curvature-distribution criteria that are different from but
nonetheless similar to the height-field-slope criterion intro-
duced below.

II. ERROR CRITERIA TO MEASURE MESH-PATCH

QUALITY

One measure of the quality of a mesh patch M is the
absolute error. Let ν1, . . . ,νn ∈ R3 be the vertices of M,
and T1, . . . ,Tr its triangles, where Tj =< νi1 ,νi2 ,νi3 >, 1 ≤
i1, i2, i3 ≤ n. We assume that the Jacobian of the mapping F
is of full rank, i.e., the rank is equal to 2. Let

n(u,v) = (Fu(u,v)× Fv(u,v))/‖Fu(u,v)× Fv(u,v)‖

be the unit normal of the surface F at (u,v), and let the
height η(u,v) ∈ R be the scalar such that

M(u,v) = F(u,v)+ η(u,v)n(u,v)∈ |M|,

where |M| denotes the mesh viewed as a subset of R3, if a
unique such η exists. We suppose in fact that for all mesh
patches considered, the mapping

M−1 : |M| 7→ [0,1]2

is well-defined and injective. Thus, it is assumed that for
any m ∈ |M|,

|η | = dist(m, F)
.
= min

y∈F
‖m−y‖

is uniquely defined, and furthermore, that the corresponding
point (u,v) is well defined and lies in [0,1]2. (It follows that
the mapping F itself must be injective, at least on the part
of the domain of interest. Note also that the symbol F has
been used to denote both the mapping and the image of the
mapping, which is a pointset.)

A possible definition of the absolute error in M is the
supremum of |η | over I ⊆ [0,1]2, where I is the inverse im-
age of |M|. Meshes are in practice close enough to F[D]
that the assumption above, that |η | is well defined, does not
present a problem, provided I ⊆ [0,1]2. (The mesh must be
close relative to the local minimum normal curvature of F.)
On the other hand, there is a theoretical difficulty in simply
defining the absolute error to be

sup
(u,v)∈I

|η | (1)



because there is nothing in this criterion to force full cov-
erage of the surface patch by the mesh. For example, a de-
generate mesh M consisting of a single vertex lying in F[D]
would produce an error of zero. As observed in [14, Sec.
2.1], use of (1) amounts to using a one-sided version of the
Hausdorff metric. In spite of the difficulty we have just de-
scribed, this approach is often used in practice [14], and we
will do so here. The coverage of practical meshes is usually
quite good.

We also assume that D lies strictly inside [0,1]2, i.e., that
the patch is trimmed on all sides. There is no theoretical
problem in the opposite case, since normally [26] the map-
ping F is defined outside [0,1]2. If, however, the inverse
image of a point in |M| lies outside [0,1]2, there may be
numerical difficulties in the calculation of η .

A second measure of the quality of M is the normal-
vector error, defined here as the largest, over all triangles
Tj, of the maximum slope (in absolute value) of the height
field. Let I j be the inverse image of Tj under M, and let L j

be the smallest value of L for which η satisfies the Lipschitz
condition

|η(p1)−η(p2)| ≤ L · ‖p1− p2‖

for all points p1 = (u1,v1) and p2 = (u2,v2) in I j. Our
second criterion is then max j L j .

To relate this criterion to similar normal-vector measures
introduced elsewhere [13], [14], [15], we note that

sup
(u,v)

‖n(u,v)−n j‖

(where n j is the unit normal of the triangle Tj, and the supre-
mum is taken over I j) is analogous to the mean-square norm
[14, Sec. 2.3.1] [15] of n(u,v)−n j, normalized to allow for
the area of the region I j:

‖n−n j‖2
.
=

[

1
Area(I j)

∫

I j

‖n(u,v)−n j‖
2dudv

]1/2

.

It is, however, a more strict criterion, since

‖n−n j‖2 ≤ sup
(u,v)

‖n(u,v)−n j‖.

On the other hand, sup(u,v) ‖n(u,v)−n j‖ and the criterion
L j, defined above, are equivalent metrics, a fact which fol-
lows from our assumptions about the Jacobian of F, and the
Implicit Function Theorem. This justifies the terminology
“normal-vector error” for the maximum slope of the height
field.

It was stated in Section I that our algorithms control only
a proxy for the normal-vector error. This proxy is obtained
as follows. First of all, the slope of η on I j is replaced by the
slope measured only between the three corner points of I j.
This process can increase the error in the case of long thin
triangles, but the difficulty can be avoided by mesh-edge
splitting. (The error estimates given below, in Section III-D,
take account of the potential error introduced in this way,
i.e., it is not assumed that mesh-edge splitting has been used
to reduce the error.) Secondly, in order to reduce computa-
tional cost, we estimate max j L j by using the Whitney the-
orem with the ordinary Euclidean norm of p1 − p2, over all

of I =
⋃r

j=1 I j, which could in principle (see Section III-A)
lead to the minimization not of max j L j but, rather, the min-
imization of a certain upper bound for max j L j.

III. JOINING ALGORITHMS

As mentioned in the introduction, joining algorithms that
do not use normal-vector criteria may cause large changes
in the normal direction of a triangle near the boundary. The
nature of the difficulty was shown in the second illustration
in Figure 2. Thus, even though the input mesh patches sat-
isfy the assumptions of Section II, and have small height η
along the edges of the two patches, folding may occur within
(or approximately within) the curvilinear surface F. In this
section we present algorithms that avoid this problem, and
which, at the same time, smooth the mesh. Both of these
are of obvious importance in graphical simulation. An ex-
ample will be given below, in Section IV, which shows the
possible ill effects of folding.

We begin by giving a brief summary of Whitney exten-
sion, which is used in both of the algorithms presented. We
then give an algorithm in the case when the boundary curve
b(t) is provided as part of the input, and in a subsequent
subsection, we deal with the opposite case, by constructing
ourselves a boundary curve b(t) based on the input mesh
patches. The algorithms adjust the mesh vertices to ensure
that the proxy, mentioned above, for the normal-vector er-
ror, and the absolute error, should not be any larger than the
errors already present along the edges of the input patch. In
fact, they will not be any larger than those associated with
the boundary curves b(t) bordering the mesh patch. This
of course represents only part of the error present in the in-
put data: the error in the edge of the input mesh patch itself
could in principle be even larger (and this fact makes our
bound even more attractive).

A. Whitney extension

As mentioned at the end of Section I, our algorithms
adjust the vertices of mesh patches in a way that con-
strains them to lie in a transfinite interpolant defined by
Whitney extension. This process is referred to as repro-
jection in the algorithm outlines given below. The repro-
jected mesh interpolates the curves b(t), and the assump-
tion of injectivity of M−1, at the beginning of Section II,
includes in particular the assumption that we can compute
the height η(u0,v0) corresponding to a given b(t0) ∈ R3,
where (u0,v0) = M−1(b(t0)). This is done, as for vertices
in a given mesh patch, by computing dist(b(t0), F). (As
in Section II, the assumption requires that b(t0) be close to
F[D], relative to the local minimum normal curvature of F.)

Now, suppose given a mesh patch M with m edges, and
corresponding boundary curves bk(t),k = 0, . . . ,m− 1, t ∈
[0,1]. Let ε(p) be the height η(M−1(bk(t)) defined for a
point p ∈ ∂R, the inverse image of {bk(t) : k = 0, . . . ,m−
1, t ∈ [0,1]}. We suppose that ∂R is the boundary of a well-
defined region R ⊆ [0,1]2.

The optimality of the reprojection obtained by Whitney
extension can be described as follows. We view the height
associated with the curves bk(t) as a discrepancy between
the surface data F and the boundary data. Let ε(p) be
the discrepancy η(p) defined by M−1(bk(t)) = p, i.e.,



the discrepancy defined by the boundary curves bk(t) for
k = 0, . . . ,m−1 and t ∈ [0,1]. Then, if the reprojected mesh
(denoted M̄) is to interpolate the boundary curves, the max-
imum absolute discrepancy |ε(p)| of M̄, measured over all
of R, cannot be less than maxp∈∂ R |ε(p)|, and the maximum
slope of the reprojected mesh over all of R cannot be less
than the slope on ∂R, defined by

L = sup
p1,p2∈∂ R,p1 6=p2

|ε(p1)− ε(p2)|

‖p1 − p2‖
. (2)

This follows from the fact that ∂R ⊆ R.
Now, a continuous extension of ε(p) from ∂R to R will

be called Whitney if it satisfies the Lipschitz condition

|ε(p1)− ε(p2)| ≤ L · ‖p1− p2‖

everywhere on R (and not just on the boundary ∂R). There
exist [29] a bracketing pair of extensions l(p) and u(p) that
are Whitney, and such that for any extension ε(p) that is
Whitney, we have

l(p) ≤ ε(p) ≤ u(p), p ∈ R.

(The explicit definitions of l(p) and u(p) are given below,
in (3) and (4).) Furthermore, if we take the average

a(p) =
1
2
[l(p)+ u(p)],

then a(p) is Whitney, and

|a(p)| ≤ sup
q∈∂ R

|ε(q)|, p ∈ R.

Thus, using a(p) to reproject the mesh, as we do below,
provides an extension that has absolute error no greater than
that already present along the boundary ∂R, and which has
slope no greater than that already imposed by the slope of
η(p) on ∂R. It is therefore optimal (and the errors minimal)
in the sense that we cannot do better.

In [28, Sec. 3.5] an alternate but computationally more
expensive version of the Whitney theorem is given, appro-
priate for severely non-convex domains. There is a pos-
sibility in such cases, if the ordinary Whitney theorem is
used, of over-estimation of max j L j . The practical risk is
small. Also, there exist [19] extensions that are smoother
than the C0-continuous extension described above, when the
data along the boundary is smooth. These might be used to
permit specification of joining with a given level of continu-
ity. We have not explored this possibility.

B. Case 1: The bk(t) are provided as input

The outline of the joining algorithm, in the case when the
boundary curves bk(t) are provided as part of the input, is
as follows:
1. Project the vertices νi of the input mesh M into [0,1]2

in the u-v domain, to produce a projected mesh. (There is
of course an approximation involved here, since the inverse
images of triangles Tj are typically curvilinear sets in the
u-v domain.)
2. Project a piecewise-linear approximation of each bk(t)
into [0,1]2 in the u-v domain.

3. Remove a sufficient number of peripheral triangles from
the projected mesh (in the u-v domain) to guarantee that the
projected mesh does not extend beyond the projection of
the boundary curves bk(t), but with at least one layer of
triangles removed from the periphery of the projected mesh.
The remaining part of the projected mesh will be referred to
as the central mesh. See Figure 3.
4. Triangulate the region between the projection of the
boundary curves and the central mesh. (This will be referred
to as the triangulation of the external region. See Figure 3.)
5. Reproject the vertices of the combined mesh (the cen-
tral mesh and the triangulation of the external region) to R3

using Whitney extension, as described in Sec. III-A.
6. Merge the reprojected combined mesh, along the joint
boundary (in R3) between the two parts of the combined
mesh, to obtain M̄.

central mesh projection of
boundary curves

external region

u

v

Fig. 3. Meshing domain.

The projection of the input mesh (step 1), and of the
curves bk(t) (step 2), can be dealt with in several ways [6],
[30], [31], [32]; here we simply used the Fletcher-Reeves
gradient algorithm provided in the GNU Scientific Library
[33].

The reprojection (step 5) requires calculation of the func-
tions l(p) and u(p), mentioned in Sec. III-A. The functions
l(p) and u(p) are defined by

l(p) = sup
q∈∂ R

{ε(q)−L · ‖p−q‖}, p ∈ R, (3)

and

u(p) = inf
q∈∂ R

{ε(q)+ L · ‖p−q‖}, p ∈ R, (4)

[29]. Due to the use of the piecewise-linear approximation
(step 2), the calculation of the supremum in the definition
of l(p), and the infimum in the definition of u(p), together
require only 8 floating-point operations for each piecewise
linear segment.

The triangulation of the external region (step 4) is done
using a slightly modified version of Ruppert’s Delaunay
refinement algorithm [34], namely the variant [35]. Sup-
pose that the triangulation producing the projection mesh is
done using the same algorithm. Then, because we remove
at least one layer of triangles in step 3, it follows that the
minimum angle in the boundary of the external region is



at least θ = 26.45 degrees, provided that this condition is
also satisfied by the projections of the bk(t). Consequently,
it follows [35] under these hypotheses that the minimum
angle in the triangulated external region is no smaller than
arctan[(sinθ )/(2− cos(θ )], which is approximately 21.96
degrees.

The merging required in step 6 refers to triangle splitting
when there are extra vertices along the boundary, between
the two parts of the combined mesh, arising from the trian-
gulation of the external region.

C. Case 2: Certain of the bk(t) are not provided as input

The procedure in the case when certain of the bk(t) are
not provided is exactly the same as in Sec. III-B, except that
before projecting a piecewise-linear approximation of the
curves bk(t), it may be necessary to calculate surrogates for
the missing boundary curves. Note that we need bk(t) (or
a surrogate) for all k, even if no mesh patch is to be joined
along certain edges.

If a curve bk(t) is present, for a given k, it is used as in
Sec. III-B.

If bk(t) is not present, for a given k, then there are two
possibilities. If there is not an adjoining mesh along edge k,
then we simply use the boundary of the input mesh to com-
pute ∂R along that edge. If there is an adjoining mesh along
edge k, then we compute a piecewise linear median polyline,
deleting loops if necessary. Folding causes no problem here:
there is no requirement that the external region be convex in
order to triangulate it.

D. Error estimates

Use of the Whitney theorem (step 5) in Sec. III-B guaran-
tees that the slope of the reprojected mesh points, between
corners of the combined-mesh triangles, will be less than or
equal to the value of L along the boundary of the mesh. It
does not, however, guarantee that the minimum slope of the
actual triangles in the combined mesh will be less than or
equal to L, as can be seen by consideration of a long thin
triangle. On the other hand, if the triangulation in the u-v
domain has minimum angle equal to 21.96 degrees, then it
can be shown that the cosine of the angle of inclination, of
a triangle in the reprojected mesh, is greater than or equal

to {(1 + L2)[1 +
(

2L
sin21.96

)2
]}−1/2. This follows from a

straightforward trigonometric argument using spherical co-
ordinates. The value of sin21.96 is approximately 0.384.

The problem just mentioned, related to long thin trian-
gles, can be avoided if a long edge of such a triangle is split,
and the Whitney reprojection calculated at the inserted ver-
tex. Note however that the worst-case risk of neglecting to
do the mesh-edge split is that the slope of the triangle could
be unnecessarily large. There is no danger of a flipped tri-
angle (Figure 2).

IV. COMPUTATIONAL EXAMPLES

A. Examples illustrating the two algorithms

In the accompanying figures, examples of the use of the
joining algorithms are given. The examples involve joining
of trimmed patches: the trimmed patch illustrated in Fig-
ure 4 is exactly the input patch shown in the upper right

corner of each of Figure 5 and Figure 6. The second input
patch, in the upper left corner of Figure 5 and Figure 6, is,
similarly, a trimmed patch obtained from a larger untrimmed
surface (not shown). The joined patches are shown in the
lower part of Figure 5 and Figure 6, respectively.

Figure 7 shows two input patches with folding present.
The result of joining by means of linear interpolation along
polylines, as described in Section I, is shown in Figure 8.
The result of using the algorithm of this paper is shown in
Figure 9.

The triangulations of the input trimmed patches were ob-
tained using Maya [4]. The triangulations of the exterior
regions were obtained, as explained in Section III-B, using
a variant of the Ruppert algorithm.

Fig. 4. Trimmed patch together with its original surface.

Fig. 5. Example with b(t) not provided. Top: the input trimmed patches;
bottom: the result of joining.



Fig. 6. Example with b(t) provided. Top: the input trimmed patches;
bottom: the result of joining.

Fig. 7. Input patches with folding present.

Fig. 8. Result with flipped triangle.

Fig. 9. Sewing result with Whitney extension.

B. Computational cost

Let σ be the number of segments in the piecewise linear
approximation of the boundary curves bk(t) (step 2 in Sec-
tion III-B). The time required to do the joining, including
the projection and reprojection, varies directly with σ · n,
where n is defined (Section II) to be the number of vertices
in M. The constant of proportionality in our experiments
(run on a 2.2 GHz AMD Athlon 64 3500+ processor), was
approximately 0.5 · 10−4. Thus, for a pair of meshes com-
prising 2.1K nodes, with σ = 80, the total time required was
8.16 seconds. (The examples shown in Figures 5 - 9 had
fewer nodes, and required less time.) Whitney reprojection
accounts for 65-85% of the total time cost.

V. CONCLUSION

Our first conclusion, as suggested in Section I, is that
normal-vector criteria will be necessary if we wish to de-
vise reliable algorithms. Note that the purpose of presenting
examples like those of Figure 2 and Figure 8 is not to sug-
gest that such examples will occur frequently when using
any particular algorithm but, rather, to illustrate possibilities
that must be excluded if we want provably reliable methods.
One of the two main contributions of the paper is to set out
the minimal requirements for an eventual proof of reliabil-
ity.

Our second conclusion is that it is possible to devise al-
gorithms, operating at reasonable cost, that will join given
mesh patches together while maintaining a proxy for the
normal-vector error, as well as the absolute error, at a level
below that already present in the given mesh. Furthermore,
the mesh in the u-v domain is not disturbed by the reprojec-
tion process, and the triangulations of the central mesh and
the external region in the u-v domain can be done using the
best available method. In this paper the central mesh was tri-
angulated using Maya, while the external region was trian-
gulated using a variant of Ruppert’s algorithm, but if better
methods become available, they can be used directly. Sim-
ilarly, the u-v coordinates of any previously-applied mesh-
fairing or smoothing algorithm will not be disturbed—only
the height field is modified in order to ensure that its slope
over the whole patch will not be larger than the slope along
the edge of the patch.



The advantage of using normal-vector criteria for graph-
ical simulation is clearly evident from the example of Fig-
ure 8. Further research should focus on the estimation of
normal-vector error by using the mesh itself.
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[1] Kahlesz, F., Bal ázs, A. and Klein, R.; Multiresolution rendering by
sewing trimmed NURBS surfaces, 281-288, SM ’02, June 17-21,
2002, Saarbrücken, Germany.

[2] Borodin, P., Novotni, M. and Klein, R. Progressive gap closing for
mesh repairing. Manuscript, Computer Graphics Group, University
of Bonn, 2002.

[3] Steinbrenner, J. P., Wyman, J. and Chawner, J. R. Fast surface mesh-
ing on imperfect CAD models. Proceedings of the 9th International
Meshing Roundtable, 33-41, 2000.

[4] Maya Version 7, Help Manual, Autodesk, 2006.
[5] Haimes, R. and Aftosmis, M. J. Watertight anisotropic surface mesh-

ing using quadrilateral patches. Proceedings of the 13th International
Meshing Roundtable, 2004.

[6] Patrikalakis, N. M. and Maekawa, T. Shape Interrogation for Com-
puter Aided Design and Manufacturing, Springer, 2002.

[7] Campbell, R. J. and Flynn, P. J. A survey of free-form object rep-
resentation and recognition techniques. Computer Vision and Image
Understanding 81, 166-210, 2001.
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