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ABSTRACT 
Reduction of the object dose by reducing X-ray 
exposure has the inevitable consequence of increasing 
statistical noise in the projections. A set of projections 
with a 10% noise, collected during the test experiment at 
the Institute of Crystallography RAS, were used to 
reconstruct a water phantom. Two different 
reconstruction approaches (Algebraic Reconstruction 
Technique (ART) and Filtered Back Projections (FBP)) 
were implemented. The reconstructed images also had 
about 10 % noise in both cases. Median filtering within 
each ART iterative step and averaging over images, 
updated and preserved during the final iteration made it 
possible to lower the image noise to 3%. For ART 
calculations, the RegART software package developed 
by the authors was used. 
INTRODUCTION 
CT is used in medicine as a diagnostic tool and as a 
guide for interventional procedures. X-ray slice data is 
generated using an X-ray source that rotates around the 
object; X-ray sensors are positioned on the opposite side 
of the circle from the X-ray source. The data stream 
representing the varying radiographic intensity 
transmitted to the detectors on the opposite side of the 
circle during each sweep is then computer processed to 
calculate cross-sectional estimates of the radiographic 
density. Sweeps cover 360 or just over 180 degrees in 
conventional machines (wikipedia).  
Mathematically, there are two major classes of 
tomographic reconstruction techniques (Naterrer 1981, 
Kak and Slaney 1988). One class, the transform based 
methods, uses the Fourier-slice theorem. The other type 
of methods employs iterative procedures to reconstruct 
an image. The most widely used of them is the algebraic 
reconstruction technique (Gordon 1974). This technique 
is less efficient than the transform based methods but 
they have several advantages. They can be used with 

irregular sampling geometries, incomplete noisy data 
sets and may incorporate curved ray paths (Wan et 
al.2003, Schubert 2004). 
When measured projections have a low signal/noise 
ratio, a high quality of the reconstructed images is very 
difficult to obtain. Using additional sub-iteration of 
filtering in the ART and averaging over images, updated 
and preserved during the final iteration, we improved 
image quality.  
In the next section, the experimental setup and 
projections acquisition are described. The algebraic 
reconstruction technique details follow them. Our 
RegART software description and comparison of the 
images reconstructed with the RegART and with the 
filtered back-projection technique completes this paper. 
EXPERIMENTAL SETUP 
The scheme of the experiment carried out at the Institute 
of Crystallography RAS is typical. The x-ray beam 
generated by the laboratory source passed through the Si 
220 monochromator (to cut the 0.7A line), and the beam 
collimator. At a distance of 1 m from the 1 mm-wide 
and 1 mm-high laboratory source, a sample was 
mounted on a tomography stage with the horizontal 
rotation axis (Asadchkov 2005). The sample was a 10.5 
mm polypropylene capillary of 1.6 mm wall thickness, 
filled with water. The object-to detector distance was 
0.1m. The image was detected with a linear (1024 pixel 
with 14 bits dynamic range) system. The effective pixel 
size was 0.1 mm. After flat field normalization of the 
projections, the tomograms were reconstructed. 84 
projections were collected in the parallel mode (Fig.1). 

 Fig.1. A set of collected tomography projections. 
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ALGEBRAIC RECONSTRUCTION TECHNIQUE 
Mathematical description of the projection 
formation 
We use the Cartesian coordinate system to describe the 
projection formation. The equation for the line AB in 
Fig.2 is 

ξϕϕ =+ sincos yx  (1) 
Let ( )yxf ,  describe the linear attenuation coefficient. 
Then the transmission function of the pencil beam AB is ( ) ( )
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where 0I is the intensity of the initial pencil beam and 
δ is the Dirac delta-function. Now let introduce a new 
function ( ) ( )

( ) 



= ξϕ

ξϕξϕ ,
,ln, 0

I
Ip  and rewrite the 

expression (2): 
( ) ( ) ( )∫∫ −+= ξϕϕδξϕ sincos,, yxyxdxdyfp  (3). 

The function ( )ξϕ ,p  is known as the Radon transform 
of the function ( )yxf , . When combined a set of 
integrals forms a projection. We used a parallel scheme. 
The parallel projection is a collection of pencil beam 
integrals (3) for a constant ϕ .  

 Fig.2. Parallel tomography scheme. 
 
The aim of the next section is to introduce the algebraic 
approach for image reconstruction. 
Image and projections representation. 
In Fig.3 we have imposed a square grid on the image ( )yxf , . Let assume that in each pixel the function 
( )yxf ,  is constant. Consequently, we will search the 

solution in the space of the piecewise constant functions. 
Let if denote a constant value in the ith pixel and N be 
the total number of pixels. For the algebraic 
reconstruction technique the X-ray is a bar running 
through the image plane. In our case the ray width is 
approximately equal to the pixel size (Fig.3). 

 Fig.3. Parallel tomography scheme. Discreet 
representation. 
 
The intensity jp will now be called a ray sum. The 
relation between jp and fr may be expressed as 
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where M is the total number of rays (in all projections) 
and ijw is the weighting factor that represents the 
contribution of the ith pixel to the jth ray sum. 
Iteration scheme 

For large N and M there exist iterative methods to solve 
the system (4). They are based on the “method of 
projections” first proposed by Kaczmarz (Kaczmarz 
1937). An image, presented by fr , may be considered to 
be a single point in an N-dimensional space. Each of the 
above linear equations (1) defines a hyperplane. The 
unique solution to these equations is the intersection of 
all hyperplanes. 
Let kfr be the estimated solution at the k-th iteration. 
The iteration scheme is ( )
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Here γ is the so-called relaxation parameter (Ros et al. 
1996). It shows (Censor et al. 1983) that the limits of 
cyclic subsequences generated by the method approach 
a weighted least squares solution of the system when the 
relaxation parameter goes to zero. This point minimizes 
the sum of squares of Euclidean distances to the 
hyperplanes of the system. 
RegART algorithm description 
Weight matrix 
For computer implementation of the algorithm we first 
calculate a set of weight sparse matrices 

Mjw j ,...1, = for all rotation angles ϕ  (Fig. 3). In many 
ART implementations the weights are simply replaced 
by 1’s and 0’s depending upon whether the center of 
pixel is within the fine ray. This makes the 



 

 

implementation easier. This approximation although 
easy to implement often leads to artifacts in the 
reconstructed images (Chukalina et al 2005). The value 
of the weight depends on the point-spread function 
(PSF) which describes the response of an imaging 
system to the point object. In our package, there are 
three regimes of calculations: ‘0-1’ regime; regime 
illustrated in Fig.3 ( ijs is the square of the i-th pixel part 
covered by the j-th fine beam); regime with the 2D 
Gaussian PSF).  
Initial guess 
The initial guess denoted by 0fr  is assigned a value of 
zero. It was shown (Ming and Ge 2003) that from any 
initial guess the sequence generated by the ART 
converges to a weighted least square solution. This 
initial guess is projected on the hyperplane represented 
by the first equation in (5) to yield 0

1f
r . The subscript 

indicates how many hyperplanes are included in the 
0fr correction process. After each projection to a 

hyperplane, the estimated image 0fr  is updated. The 
first sub-iteration is finished if the correction over all 
hyperplanes is finished.  
Projection access scheme 
A lot of projection access schemes are discussed in the 
literature (Guan and Gordon 1996). To minimize the 
influence of two neighbor hyperplanes on each other we 
used the following scheme: 
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Two sub-iterations 
Because the projections are noisy, the intersection of the 
hyperplanes is not a point in the N-dimensional space 
but a polygon. Each iteration projects the estimated 
solution to a polygon wall area. On the other hand, the 
solution sought for belongs to the image class sub-space. 
The size, shape and position of the sub-space depend on 
the accuracy of the image description (accuracy of the 
image model). The image sub-space and the polygon can 
intersect or be close to each other. The regularization 
operator brings the estimated solution from the polygon 
wall area to the image sub-space (Cheremuhin and 
Chulichkov 2005). The space of the piecewise constant 
functions is well suited for the description of the 
tomography images. However, it is very difficult to 
construct the projector which brings an estimated 
solution to this image sub-space. We have taken the 
space of piecewise smooth functions as the image space, 
i.e. if the function belongs to this space it will belong to 
the same space after the median operator was 
implemented. Then the median filtering operator can be 
used as the projector from the polygon wall area to the 
image sub-space. Following Davidson (Davidson et al. 
2006), we have implemented the median filtering as the 

second sub-iteration. It is known that the median 
filtering reduces speckle noise and salt and pepper 
noise. Its edge-preserving nature makes it useful in the 
cases where edge blurring is undesirable. It should be 
mentioned that the type of projector depends on the 
chosen image sub-space and in the general case it could 
be of any kind. 
Nonnegativity constraint 
The nonnegativity constraint is reinforced, when instead 
of f<0 we set f=0.  
One iteration is completed after the full set of 
measurements has been processed. 
In the next iteration, kfr is projected onto the 
hyperplane represented by the first equation in (5), and 
successively onto the rest of the hyperplanes in (5), then 
the filtering is implemented and so on until the last 
iteration. 

 Fig.4. Two crossections of the reconstructed water 
phantom. The black line is the reconstruction with 
median filtering; the gray line is the reconstruction 
without filtering. 
Final step 
In the last iteration, all images last

MN
last ff *1 ,...

rr are saved. 
The final step of the algorithm is the averaging over 
these images to exclude the specific influence of the last 
hyperlane projection. The result of the reconstruction 
with the RegART algorithm is presented in Fig.5. 

 Fig.5. Water phantom reconstructed with the RegART. 
 
The average value of the water coefficient is 

003.0098.0 ±  mm-1, reference value is 0.099 mm-1 
(Henke et al. 1993). In Fig 6, the results of the filtered 
back-projection algorithm implementation (Buzmakov 
2005) is shown. With noisy data and few projection 



 

 

angles, the RegART algorithm shows better 
reconstruction results as compared with FBP. 
SUMMARY AND OUTLOOK 
We proposed to include new additional steps in the 
classical algebraic reconstruction algorithm They yield 
an estimated image by means of the median filtering. 
The final step of the algorithm is the averaging over 
these images to exclude the specific influence of the last 
hyperlane projection. 

 Fig.6. Water phantom reconstructed with FBP. 
 
We plan to optimize the speed of this procedure by 
including the algorithm developed for the Haugh 
transform fast calculations (Karpenko et al. 2005) 
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