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ABSTRACT 

Properties of spectral models used in algorithms of 
colour constancy (CC) are studied. It is shown that the 
closure of such a model under multiplication is an 
important property allowing one to generate CC clues. 
New CC clues are built using the Gaussian model as an 
example. For multiplication-closed models, the role of 
reflexes is investigated. 
 
INTRODUCTION 

At present, the colour can be seen as an important 
feature for image interpretation. One of the areas of 
special interest in colour analysis is searching for 
particular objects in videos or indexing image 
databases. However, the perceived colour does not 
directly match the reflection spectra of the objects. It is 
important in the case when a target object has to be 
successfully detected regardless of the illumination and 
observation conditions, which aren’t known a priori. 
This happens, in particular, when retrieving the same 
object captured under different illumination conditions 
or by different sensors. 
 
The problems of invariant recognition of colour objects 
were, from the very beginning, related to so-called 
colour constancy (CC). The ability of the vision system 
of man and animals to estimate the reflective properties 
of surfaces in the case when the illumination 
chromaticity changes, that is, the CC phenomenon, as 
well as CC algorithms suitable for machine vision 
systems have been discussed quite explicitly (Nyuberg et 
al. 1971; Brill 1978; Forsyth 1990; D’Zmura and 
Iverson 1993; Finlayson et al. 2001; Finlayson and 
Schaefer 2001; Barnard et al. 2002). 
 
Most CC algorithms suggested so far either explicitly or 
implicitly include the following stages: 
1) Advancing an a priori assumption on the properties 
of the whole scene or separate objects. 
2) Considering a certain logical consequence of this 
assumption, which allows estimating the parameters of 
scene illumination. 
3) Calculating the illumination parameter estimates. 
4) Estimating the colouration of the objects. 
 

For the example of the «white patch» algorithm, the 
assumption is the presence of a white object in the scene 
and the logical consequence is a perfect match of the 
chromaticity of the brightest stimulus contained in the 
scene and the illumination chromaticity. 
 
SPECTRAL MODELS OF CC 

In the scope of CC problems, the term “spectral model” 
means such a subspace of the spectral space that a 
unique response corresponds to each of the possible 
model spectral stimuli. For this purpose, various models 
with a limited number of parameters are introduced for 
approximating the spectral characteristics of the vision 
process: the curves of source emission, and objects 
reflectance. 
 
As demonstrated earlier (Nikolayev at al. 2006) the 
quality of colour estimation with the CC algorithms 
varies depending on the spectral model chosen. This is 
due to the fact that the fourth step of the algorithm 
actually solves the problem of estimating the ratio of 
two functions on the basis of their projections. 
Obviously, this problem becomes well posed only after 
the model is set. Furthermore, the introduction of the 
spectral model allows estimating the response of one 
sensor on the basis of that of another one, even in the 
case when their colour spaces are independent. Below 
we shall demonstrate the existence of CC clues (a priori 
assumptions on the properties of the scene), associated 
with the features of the colour model chosen. 
 
Most researchers dealing with the CC problem use so-
called linear spectral models (LSM) (Yilmaz 1962; Brill 
1978; Maloney 1986). In a LSM, the space of spectral 
functions is confined to a 3D linear subspace of the 
function space. Interesting particular cases of LSM are 
models in which the bases are step-wise functions (so-
called “banded spectral model” (Stiles and Wyszecki 
1962; Land and McCann 1971; Nyuberg et al. 1971) or 
the functions of spectral sensitivity of the sensor (Lee et 
al. 1995). However, all these models have the same 
drawback: they cannot adequately describe stimuli of a 
high saturation (Maloney, 1986). This fact is quite 
obvious if taking into account that highly saturated 
stimuli of different hue are almost linearly independent. 
It is not the case for the Gaussian analytical spectral 
model we suggested earlier (Nikolayev 1985; Nikolaev 
and Nikolayev 2005; Nikolaev et al. 2006). However, 
the Gaussian model also has some specific 

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)



 

 

shortcomings, which concern, for example, modelling 
purple hues. Let us now clarify what properties should a 
spectral model preferably possess and whether the 
“ideal” spectral model could be built. 
 
PROPERTIES OF SPECTRAL MODELS 

In the course of image formation, a spectral stimulus 
undergoes a number of transformations. Among these 
are: multiplication by a factor (propagation of non-
focused light), multiplication by a spectral curve 
(reflection off a surface), addition to a spectral curve 
(illumination mixing), projection to a spectral curve 
(sensor registration). The advantages of spectral models 
are, respectively, the closure under first three operations 
and the possibility of inverting the operator of 
projecting onto the 3D spectral basis. The latter implies 
the possibility of analytically restoring the spectral 
stimulus on the basis of the corresponding vector 
stimulus of a trichromatic sensor. This list of useful 
functionalities should be added with the possibility of 
modelling all the spectral curves accurate to the sensor 
metamerism and with the convenience of human 
interpretation of the model parameters. 

 
Figure 1: Spectral Sensitivity Curves of the Image 
Sensor Considered in Numeric Simulations 
 
Obviously, not all of the above-mentioned features are 
equally important. The most important are the closure 
under multiplication by a factor (Property I) and 
spectral multiplication (Property II). Relevant 
experiments (Nikolaev et al. 2006) demonstrate that 
those models showing no closure under these two 
operations provide less accurate results. Apparently, this 
is due to additional errors arising in the course of 
secondary modelling of the spectra, after dividing the 
spectral stimulus by the source spectrum. The closure 
under addition (Property III) is not so important, 
because the stimulus sum can be most likely split into 
components in the linear space of vector stimuli, yet 
before transition to the spectral space. The next item of 
the list is colour-rendering completeness (Property IV), 
while analytical integrability (Property V) and intuitive 
clearness for human interpretation (Property VI) are 
evidently least important. 
 

Consider now what spectral models can be obtained if 
requiring fulfilment of various subsets of the above 
properties. The spectral sensitivity curves of the sensor 
used for modelling are shown in Fig.1. Here, λ  is the 
radiation wavelength measured in nanometres. Figs. 2-5 
show the colour-rendering completeness for different 
models. These figures use the chromaticity coordinates 
( )βα ,  defined as follows:  

( ) ( )
( ) ( )⎩
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where b , g  and r  are the responses of the short-wave, 
medium-wave, and long-wave sensor channels, 
respectively. 
 
Classification of spectral models by their properties 

Obviously, fulfilment of Properties I and III signifies 
the linearity of the corresponding spectral model and 
causes Property V to be also fulfilled:  
( ) ( ) ( ) ( )λλλλ 332211, BpBpBppF ⋅+⋅+⋅=

r
, (2) 

where p
r

 is the vector of model parameters and ( )λiB  
are the basis functions. To make Property II be true as 
well, it is necessary and sufficient to meet the following 
conditions:  

( ) { }ii cB ,0∈λ , ( ) ( )λλ constBpp =⋅∀
rrr

:  (3) 
where ic  are arbitrary constants. In fact, Eqs. (2)-(3) 
define a banded spectral model showing good results 
when modelling CC mechanisms (Nikolaev et al. 2006). 
The only considerable drawback of the banded spectral 
model is unsatisfactory colour rendering (see Fig.2), 
which is typical for all linear models. 

 
Figure 2: Banded Spectral Model Chart 

 
Let us now try to reject Property III and to require 
meeting Properties II and IV. It follows from I and II 
that the logarithm of model spectra forms a linear 
subspace, such that one of the basis functions is 
constant. Choosing a second-order polynomial as the 
basis of this subspace, we obtain the Gaussian model:  

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ −⋅−⋅= 2
3

2
1 2

exp, ppppF λλ
r

. (4) 



 

 

 

 
Figure 3: Gaussian Spectral Model Chart 

 
As it can be seen from Fig.3, Property IV is well met for 
the Gaussian model. As mentioned earlier (Nikolaev et 
al. 2006), Properties V и VI are also true. However, this 
model approximates purple colours with spectra that 
exponentially increase at both boundaries of the visible 
wavelength range. This causes considerable instability 
of the model parameters in the course of modelling. 
Furthermore, the concept of a negative saturation 
implies no perfect intuitive clarity of the model 
parameters. 
 

 
Figure 4: Yilmaz’s Spectral Model Chart 

 
Consider now one of the first spectral models ever 
proposed, Yilmaz’s model:  
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where λ∆  is the sensitivity range of the sensor. This 
model is linear ( ( ) 11 =λB , ( ) ( )λλπλ ∆⋅⋅= 2sin2B , 

( ) ( )λλπλ ∆⋅⋅= 2cos3B ) and consequently meets 
Properties I, III, and V. Furthermore, its construction 
well satisfies Property VI: 1p  represents brightness, 2p  
– saturation, and 3p  – hue. At the same time, the colour 

rendering provided by this model is far from perfection 
(see Fig. 4). 
 
A similar construction performed for the signal 
logarithm provides a new model meeting Properties I, 
II, IV, and VI (let us refer to this model as Besselian):  
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As it can be seen from Fig.5, Besselian model shows 
best results in colour rendering. 
 

 
Figure 5: Besselian Spectral Model Chart 

 
Table 1: Properties of Different Spectral Models 

 
Model I II III IV V VI 
General linear + ? + – + ? 
Banded (linear) + + + – + – 
Yilmaz’s (linear) + – + – + + 
Gaussian + + – ± + ± 
Besselian + + – + – + 
 
Table I summarizes the fulfilment of the above-
mentioned Properties for all the spectral models 
discussed. Symbols “+”, “±” and “–” mean fulfilment, 
partial fulfilment and omission respectively. Symbol “?” 
means dependence on model parameters. 
 
CC CLUES FOR MUTIPLICATION-CLOSED 
MODELS 

Consider now an interesting consequence of Properties I 
and II, which allows constructing CC clues for those 
spectral models satisfying these two properties. As 
already mentioned above, Properties I and II imply the 
linearity of the space of the logarithms of model spectra. 
Each spectrum satisfying the model corresponds to a 
vector, p

r ′ , in this space:  
( )( ) ( ) ( )λλλ 33221,log BpBpppF ′⋅′+′⋅′+′=′r . (7) 

In particular, for the banded model ( ) ( )λλ 22
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( ) 2
3

~ λλ =B ; for the Besselian model 
( ) ( )λλπλ ∆⋅⋅= 2sin~

2B , ( ) ( )λλπλ ∆⋅⋅= 2cos~
3B . Let us 

call such spectral models multiplication-closed. 
 
For each pixel of an image, the vector p

r ′  can be 
calculated on the basis of three known projections of the 
spectrum ( )pF

r ′,λ . This can be done either analytically 
(when Property V is met) or numerically (in any case). 
Since multiplication of spectra corresponds to addition 
in the logarithmic space, the distribution of the p

r ′  
vectors differs from that of the vectors corresponding to 
the reflective spectra of the scene objects by only a 
linear shift. In turn, the shift vector corresponds to the 
illumination spectrum. 
 
For the models considered, any assumption on the kind 
of distribution of colours within the scene can serve as a 
CC clue. For instance, in the banded model the 
components of the p

r ′  vector cannot exceed zero for 
reflective surfaces, while the coordinate origin 
corresponds to a white object. Assume that the scene 
contains some objects with 0=′ip  («vividly coloured» 
ones). Then, ip′  will be maximal at the corresponding 
image pixels, which makes it possible to first find out 
these objects and then compute the illumination 
parameters. That’s how the well-known “applique” 
algorithm is formulated. 
 
Let us show now what a CC clue can be constructed for 
the Gaussian model. It is reasonable to suppose that the 
scene more often contains less saturated colours. For the 
Gaussian model, 3p  directly corresponds to the 

saturation, while 2p  corresponds to the saturation 
multiplied by the hue. Thus, we expect that the ( )32 , pp  
distribution reaches its maximum in the vicinity of the 
point ( )0,0 . As a result, we obtain the following CC 
algorithm. First, construct for the scene image its 
distribution ( )32 , pp  in the Gaussian model. Then, 
calculate the medians, [ ]2pmed  and [ ]3pmed . The 
point [ ] [ ]( )32 , pmedpmed  is then considered an estimate 
of the light source chromaticity. 
 
Similarly, different CC clues can be constructed for the 
multiplication-closed models. However, the accuracy of 
their operation always depends on the adequacy of the 
statistical model of colour distribution across the scene. 
Let us now demonstrate how taking into account scene 
reflexes may reduce this dependence and enhance the 
stability of the clues. 
 
ROLE OF FOLDS FOR MUTIPLICATION-
CLOSED MODELS 

The presence of folds on uniformly coloured surfaces 
causes reflexes to arise in the scene. The fold region 

becomes illuminated not only with the primary source 
but also with the opposite side of the fold. The stimulus 
produced by the fold can be expressed as:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) K

rrr
+Φ⋅⋅+Φ⋅⋅= λλλλλ 2

21, SrgSrgrF ,(8) 
where r

r
 is the radius vector of a point of the fold and 

( ) ( ) ...21 ≥> rgrg
rr

 are coefficients depending on the 
scattering properties of the surface and the scene 
geometry. At the fold boundary ( ) ( ) 032 === K

rr
rgrg . 

It can be assumed that no secondary illumination exists 
within the fold, while the colouration smoothly changes, 
according to the following expression:  
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Such a colouration remains in the framework of the 
spectral modal only in the case of the banded model. 
However, for some multiplication-closed models, Eq.(8) 
can be approximated as:  

( ) ( ) ( ) ( )λλ α rrgr
rrr

Φ⋅′≈Φ′ , , (10) 
where 1>α . An example of such an approximation for 
the Gaussian model is shown in Fig.6. Here, one can see 
the ( )λΦ′  spectrum for ( ) ( )( )23 55010exp −⋅−=Φ − λλ  

and i
ig −= 14 , its approximation with the parameters 
33.1=′g , 2.1=α , and the approximation error. As it 

can be seen from the figure, the approximation is 
accurate enough. 
 
Thus, for those multiplication-complete models making 
approximation (10) adequate, the magnitudes of the 
parameters 2p

r ′  and 3p
r ′  proportionally grow within 

folds. This fact allows detecting folds on objects with 
nonzero saturation (Funt and Drew 1993). 
 

 
Figure 6: Approximation of a Gaussian Stimulus Within 
a Fold 
 
An indication of a fold is a local increase in the rank of 
the object in the colour space (according to the 
terminology proposed in Ref. (Nikolaev and Nikolayev 
2004)). At the same time, unlike the case of a highlight, 
no discontinuity of the stimulus intensity is observed. 
Let us now show how the properties of folds can be 



 

 

used. Consider an object, on whose surface a fold is 
presumably detected. Let the parameters of the object 
stimuli beyond the fold are ( )32 , pp . The combination 
of the signs of the deviations ( )32 , pp ∆∆  of the stimulus 
parameters within the fold indicates the quadrant 
containing the colouration parameters, regardless of the 
illuminant-induced shift. So, each fold found 
superimposes two inequalities to the coordinates of an 
achromatic object, thereby narrowing the seek area and 
decreasing the maximum possible error. 
 
Suppose now that the deviation ( )32 , pp ∆∆  is large 
enough to distinguish it against a noise background. 
Then, two correctly detected folds are enough to 
estimate the chromaticity of the scene illumination 
source. Indeed, distribution (8) within approximation 
(10) depicts on the ( )32 , pp  plane a line segment 
crossing the point corresponding to 0=α , that is, the 
point portraying the illumination spectrum. Thus, two 
segments are enough to determine the illumination 
chromaticity. The corresponding plot is shown in Fig. 7. 
Solid gray circle corresponds to the chromaticity of the 
illuminant. Series of smaller circles correspond to 
colour distribution of the folds. Pigments in this 
numerical experiment were randomly chosen from 
database of natural pigments. One can see that colour 
distribution of the fold points on the ( )32 , pp  to the 
position of the light source even in the case of non-
gaussian reflectances. 
 

 
Figure 7: Illumination Estimation Using Two Folds 
 
CONCLUSION 

The results obtained make us once again return to the 
problem of adequacy of the spectral models used in 
colour machine vision. A properly chosen spectral 
model not only ensures a more accurate estimation of 
the colouration parameters of the scene objects but also 
allows constructing new features of the illumination 
chromaticity. The authors are going to continue 
studying the properties of multiplication-closed models, 
hoping for the discovery of new, more stable CC 
algorithms. 
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