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ABSTRACT 

In technical practice often occur higher order processes 
when a design of an optimal controller leads to 
complicated control algorithms. One of possibilities of 
control of such processes is their approximation by 
lower-order model with time-delay (dead time). One of 
the possible approaches to control of dead-time 
processes is application of predictive control methods. 
The paper deals with design of an algorithm for 
predictive control of high-order processes which are 
approximated by second-order model of the process 
with time-delay.  
 
INTRODUCTION 

Some technological processes in industry are 
characterized by high-order dynamic behaviour or 
large time constants and time-delays. Time-delay in a 
process increases the difficulty of controlling it. 
However using the approximation of higher-order 
process by lower-order model with time-delay provides  
simplification of the control algorithms.   
Let us consider a continuous-time dynamical linear 
SISO (single input ( )u t  – single output ( )y t ) system 
with time-delay dT . The transfer function of a pure 

transportation lag is dT se−  where s is a complex 
variable. Overall transfer function with time-delay is in 
the form 

( ) ( ) dT s
dG s G s e−=                            (1) 

where ( )G s is the transfer function without time-delay.    
Processes with time-delay are difficult to control using 
standard feedback controllers. One of the possible 
approaches to control processes with time delay is 
predictive control. The predictive control strategy 
includes a model of the process in the structure of the 
controller. The first time-delay compensation algorithm 
was proposed by (Smith 1957). This control algorithm 
known as the Smith Predictor (SP) contained a 
dynamic model of the time-delay process and it can be 
considered as the first model predictive algorithm. 

Model Based Predictive Control (MBPC) or only 
Predictive Control is one of the control methods which 
have developed considerably over a few past years. 
Predictive control is essentially based on discrete or 
sampled models of processes. Computation of 
appropriate control algorithms is then realized namely 
in the discrete domain. 
The term Model Predictive Control designates a class 
of control methods which have common particular 
attributes (Camacho and Bordons 2004, Mikleš and 
Fikar 2008).  
• Mathematical model of a systems control is used 

for prediction of future control of a systems output.  
• The input reference trajectory in the future is 

known. 
• A computation of the future control sequence 

includes minimization of an appropriate objective 
function (usually quadratic one) with the future 
trajectories of control increments and control 
errors. 

• Only the first element of the control sequence is 
applied and the whole procedure of the objective 
function minimization is repeated in the next 
sampling period.  

The principle of MBPC is shown in Fig. 1, where ( )tu  
is the manipulated variable, ( )ty is the process output 
and ( )tw  is the reference signal, N1, N2 and Nu are 
called minimum, maximum and control horizon. This 
principle is possible to define as follows: 
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Figure 1: Principle of MBPC  
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1. The process model is used to predict the future 
outputs ( )tŷ  over some horizon N. The predictions 
are calculated based on information up to time k 
and on the future control actions that are to be 
determined. 

2. The future control trajectory is calculated as a 
solution of an optimisation problem consisting of a 
objective function and possibility some constraints. 
The cist function comprises future output 
predictions, future reference trajectory, and future 
actions. 

3. Although the whole future control trajectory was 
calculated in the previous step, only first element 
( )ku  is actually applied to the process. At the next 

sampling time the procedure is repeated. This is 
known as the Receding Horizon concept.   

Theoretical research in the area of predictive control 
has a great impact on the industrial world and there are 
many applications of predictive control in industry. Its 
development has been significantly influenced by 
industrial practice. At present, predictive control with a 
number of real industrial applications belongs among 
the most often implemented modern industrial process 
control approaches. First predictive control algorithms 
were implemented in industry as an effective tool for 
control of multivariable industrial processes with 
constraints more than twenty five years ago. The use of 
predictive control was limited on control of namely 
rather slow processes due to the amount of 
computation required. At present, with the computing 
power available today, this is not an essential problem. 
A fairly actual and extensive surveys of industrial 
applications of predictive control are presented in 
(Morari and Lee 2004, Quin and Bandgwell 1996, 
2000, 2003). 
The aim of the paper is to design and verify by 
simulation an algorithm for predictive control of 
second order linear systems with time delay of two 
steps. A number of higher order industrial processes 
can be approximated by this model.     
  
IMPLEMENTATION OF PREDICTIVE 
CONTROL  

In this Section, GPC will be briefly described. The 
GPC method is in principle applicable to both SISO 
and MIMO processes and is based on input-output 
models. The standard cost function used in GPC 
contains quadratic terms of (possible filtered) control 
error and control increments on a finite horizon into the 
future 
 

( ) ( ) ( ) ( ) ( )
uNN

i N i

ˆJ i y k i w k i i u k iδ λ Δ
= =

= ⎡ + − + ⎤ + ⎡ + − ⎤⎣ ⎦ ⎣ ⎦∑ ∑
2

1

2 2

1
1   (2) 

where ( )iky +ˆ   is the process output of i steps in the 
future predicted on the base of information available 
upon the time k, ( )1+kw   is the sequence of the 

reference signal and ( )1u k iΔ + −  is the sequence of 
the future control increments that have to be calculated. 
Implicit constraints on uΔ  are placed between Nu and 
N2 as  

( ) 21 0 uu k i , N i NΔ + − = < ≤               (3) 
The parameters ( )iδ  and ( )iλ  are sequences which 
affect future behaviour of the controlled process. 
Generally, they are chosen in the form of constants or 
exponential weights. 
 
Calculation of the Optimal Control 

The objective of predictive control is a computation of 
a sequence of future increments of the manipulated 
variable [ ]( ), ( 1),u k u kΔ Δ + K  so that the criterion (2) 
was minimized. For further computation, it is 
necessary to transform the criterion (2) to a matrix 
form.  
The output of the model (predictor) is computed as the 
sum of the free response 0y  and the forced response of 
the model ny  

0ˆ n= +y y y                            (4) 

It is possible to compute the forced response as the 
multiplication of the matrix G (Jacobian of the model) 
and the vector of future control increments Δu , which 
is generally a priori unknown  

n Δ=y G u                                (5)
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is matrix containing values of the step sequence. 
It follows from equations (4) and (5) that the predictor 
in a vector form is given by  

0ˆ Δ= +y G u y                               (7) 

and the cost function (2) can be modified to the form 
below 

( ) ( )
( ) ( )0 0

T T

T T

ˆ ˆJ λΔ Δ

Δ Δ λΔ Δ

= − − + =

= + − + − +

y w y w u u

G u y w G u y w u u       
(8)

 

where w  is the vector of future reference trajectory.                            
Minimisation of the cost function (8) now becomes a 
direct problem of linear algebra. The solution in an 
unconstrained case can be found by setting partial 
derivative of J with respect to Δu  to zero and yields   



 

 

 ( ) ( )
1

0
T TΔ λ

−
= − + −u G G I G y w

             (9) 

where the gradient g  and Hessian H  are defined as 

 ( )0
T T= −g G y w            (10) 

 
T λ= +H G G I                          (11) 

Equation (9) gives the whole trajectory of the future 
control increments and such is an open-loop strategy. 
To close the loop, only the first element u , e. g. 

( )Δu k  is applied to the system and the whole 
algorithm is recomputed at time k+1. This strategy is 
called the Receding Horizon Principle and is one of the 
key issues in the MBPC concept.  
If we denote the first row of the matrix 

( ) 1T Tλ
−

+G G I G  by K then the actual control 
increment can be calculated as 

 ( ) ( )0u kΔ = −K w y            (12) 
 
COMPUTATION OF PREDICTOR  

An important task is computation of predictions for 
arbitrary prediction and control horizons. Dynamics of 
most of processes requires horizons of length where it 
is not possible to compute predictions in a simple 
straightforward way. Recursive expressions for 
computation of the free response and the matrix G in 
each sampling period had to be derived. There are 
several different ways of deriving the prediction 
equations for transfer function models. Some papers 
make use of Diophantine equations to form the 
prediction equations (e.g. (Kwon et. al. 1992)). In 
(Rossiter, 2003) matrix methods are used to compute 
predictions. We derived a method for recursive 
computation of both the free response and the matrix of 
the dynamics. 
Computation of the predictor for the time-delay system 
can be obtained by modification of the predictor for the 
corresponding system without a time-delay. At first we 
will consider the second order system without time-
delay and then we will modify the computation of 
predictions for the time-delay system. 

Second Order System without Time-Delay  

The model is described by the transfer function 

( ) ( )
( )1
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( ) ( )1 1 2 1 1 2

1 2 1 21 ;A z a z a z B z b z b z− − − − − −= + + = +    (14) 

The model can be also written in the form 

( ) ( ) ( ) ( )kuzBkyzA 11 −− =                     (15) 

A widely used model in general model predictive 
control is the CARIMA model which we can obtain 
from the nominal model (15) by adding a disturbance 
model 

( ) ( ) ( ) ( ) ( ) ( )knzCkuzBkyzA cΔ
+=

−
−−

1
11        (16) 

where ( )knc   is a non-measurable random disturbance 
that is assumed to have zero mean value and constant 
covariance and the operator delta is 11 −− z . Inverted 
delta is then an integrator. 

The polynomial ( )1−zC  will be further considered as 

( ) 11 =−zC . The CARIMA description of the system is 
then in the form 

( ) ( ) ( ) ( ) ( )1 1 1 cA z y k B z u k n kΔ Δ− −= − +
      (17) 

The difference equation of the CARIMA model 
without the unknown term ( )knc  can be expressed as: 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
1 1` 2 2

1 2

1 1 2 3

1 2

y k a y k a a y k a y k

b u k b u kΔ Δ

= − − + − − + − +

+ − + −
                                          (18) 

It was necessary to compute three step ahead 
predictions in straightforward way by establishing of 
lower predictions to higher predictions. The model 
order defines that computation of one step ahead 
prediction is based on three past values of the system 
output. The three step ahead predictions are as follows  
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                                          (19) 

The predictions after modification can be written in a 
matrix form 
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It is possible to divide computation of the predictions 
to recursion of the free response and recursion of the 
matrix of the dynamics. Based on the three previous 
predictions it is repeatedly computed the next row of 
the free response matrix in the following way: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) 142242134144

132232133143

122222132142

112212131141

1
1
1
1
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+−+−=
+−+−=
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+−+−=

 (21) 

The first row of the matrix is omitted in the next step 
and further prediction is computed based on the three 
last rows including the one computed in the previous 
step. This procedure is cyclically repeated. It is 
possible to compute an arbitrary number of rows of the 
matrix. 
The recursion of the dynamics matrix is similar. The 
next element of the first column is repeatedly 
computed in the same way as in the previous case and 
the remaining columns are shifted to form a lower 
triangular matrix in the way which is obvious from the 
equation (16). This procedure is performed repeatedly 
until the prediction horizon is achieved. If the control 
horizon is lower than the prediction horizon a number 
of columns in the matrix is reduced. Computation of 
the new element is performed as follows: 

 ( ) ( )4 1 3 1 2 2 2 11g a g a a g a g= − + − +            (22)          
 
Second Order System with Time-Delay  

The nominal model with two steps time-delay is 
considered as 
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The CARIMA model for time-delay system takes the 
form 

( ) ( ) ( ) ( ) ( )knkuzBzkyzA c
d +−Δ=Δ −−− 111       (24) 

where d is the dead time. In our case d is equal to 2. In 
order to compute the control action it is necessary to 
determine the predictions from d+1 (2+1 in our case) 
to d+N2 (2+N2). 
The predictor (20) is then modified to 
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Recursive computation of the matrices is analogical to 
the recursive computation described in the previous 
section. 
 
SIMULATION EXAMPLES  

As simulation examples were chosen a fifth order 
linear system described by following transfer function 

( )5 5 4 3 2

2 2( )
5 10 10 5 11

AG s
s s s s ss

= =
+ + + + ++

    (26) 

and a fifth-order linear system with non-minimum 
phase 

( )
5 4 3 2

2 1 5
( )

5 10 10 5 1B

s
G s

s s s s s
−

=
+ + + + +

      (27) 

The systems were identified by the model (23) using 
off-line LSM (Bobál et. al., 2012). The system (26) 
was approximated by  

( ) 2
21

21
1
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and the system (27) was approximated by 
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Both for sampling period 0 0 5 sT .= . The step 
responses of the models are in the following figures 

 
Figure 2: Step response of the model (28)  
 



 

 

 
Figure 3: Step response of the model (29) 
 
Control responses are in the figures 4, 5, 6 and 7. 
 The tuning parameters that are lengths of the 
prediction and control horizons and the weighting 
coefficient λ were tuned experimentally. There is a lack 
of clear theory relating to the closed loop behavior to 
design parameters. The length of the prediction 
horizon, which should cover the important part of the 
step response, was in both cases set to N = 40. The 
length of the control horizon was also set to Nu = 40. 
The coefficient λ was taken as equal to 0,5. 
 

 
Figure 4: Control of the model (29) 

 
Figure 5: Control of the model (29) –manipulated 
variable 

 
Figure 6: Control of the model (28) 

 
Figure 5: Control of the model (28) –manipulated 
variable  

 



 

 

CONCLUSION 

The algorithm for control of the higher-order processes 
based on model predictive control was designed. The 
higher-order process was approximated  by the second-
order model with time delay. The predictive controller 
is based on the recursive computation of predictions 
by direct use of the CARIMA model. The 
computation of predictions was extended for the time-
delay system. The control of two modifications of the 
higher-order processes (stable and non-minimum phase) 
were verified by simulation. The simulation verification 
provided good control results. Asymptotic tracking of 
the reference signal was achieved in both cases. The 
control of non-minimum phase system was rather 
sensitive to tuning parameters. Experimental tuning of 
the controller was more complicated in this case. The 
algorithm will be tested and verified by real-time control 
of a heat-exchanger.   
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