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ABSTRACT 

This paper presents an interpretation in the Bond Graph 
domain of the Energy Shaping and Interconnection and 
Damping Assignment control methods, developed for 
the well-known Port-Controlled Hamiltonian Systems 
with Dissipation. In order to have a stable equilibrium at 
a prespecified state, the energy function is modified by 
adding storage elements to the BG such that the closed-
loop system energy has a minimum at that state. A new 
dissipation function is assigned changing the R-field and 
its interconnection with the rest of the Bond Graph. A 
desired power conserving interconnection structure is 
reached through the suitable insertion of power bonds 
among junctions. Energy shaping, interconnection and 
damping assignment are performed in a so called Target 
Bond Graph. The control law is determined by a set of 
partial differential equations derived from the plant and 
the Target Bond Graph. 
 
INTRODUCTION 

Energy Shaping (ES) and Interconnection and Damping 
Assignment (IDA) are known control theoretical 
methods developed especially (but not exclusively) for 
physical systems represented as Port-Controlled 
Hamiltonian System with Dissipation (PCHD) (van der 
Schaft 2000; Ortega et al. 2002). This class of models 
has shown to be suitable for control system synthesis 
based in passivity theory, like ES and IDA methods, 
because they express explicitly the energy storage and 
dissipation phenomena, as well as the power conserving 
exchange between the components of the system. 
The Bond Graph (BG) formalism is very successful for 
system modeling and simulation (Karnopp et al. 2000). 
The graphical description of BGs exhibits the power 
conserving interconnection structure between the energy 
storages, the contribution of each storage to the energy 
function via its potential or kinetic energy, the energy 
dissipation structure, and the power exchange with the 
environment. Moreover, the assignment of causality to a 
BG provides mathematical tools for system level 
analysis (Dauphin-Tanguy et al. 1999; Bertrand et al. 
2001).  

These properties of BG models motivated this research, 
which focuses in the translation into the BG language of 
control methods originally formulated in a generic 
mathematical setup for PCHD systems. Previous results 
used in this paper are the derivation of PCHD models 
from BGs (Donaire and Junco 2005) and the idea of 
Target Bond Graphs (Junco 2004). Yielding closely 
related results, an independent approach to the same 
problem has been reported in (Vink 2005). 
The remaining of the paper is organized as follows: 
first, an account of ES and IDA on PCHD is given, and 
the equivalences between both formalisms is given. 
Next, the main result is addressed, i.e., performing ES 
and IDA control methods on the BG domain. Two 
realistic examples illustrating the methodology are 
exposed subsequently. Next, the theoretical results are 
confirmed by simulation. Finally, some conclusions are 
drawn and the future research is discussed. 
 
BACKGROUND 

PCHD Systems 

A system whose dynamics can be represented in form 
(1) is called a PCHD (van der Schaft 2000). 
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The state variables x œ ℜ 
n are the energy variables (n is 

the system order), the smooth function H(x): ℜ 

n→ ℜ 
represents the total energy stored in the system, and u, y 
œ  ℜ 

n are the input- and output-port power variables, 
respectively. Inputs and outputs are conjugate variables 
so that their product represents the power exchanged 
between the system and the environment. The input 
vector u is modulated by the nxm matrix ( )g x  which 
also defines the output vector y. The nxn skew-
symmetric matrix J(x) = –JT(x) reveals the power-
conserving interconnection structure in the model, while 
the dissipation structure is captured by the symmetric 
matrix R=RT≥0. Both matrices depend smoothly on x. 
There are systems where the control acts through the 
interconnection structure (e.g., power electronic devices 
when the switched system behavior can be 
approximated by a smooth system). For this kind of 



 

 

systems, the model (1) can be further generalized by (2) 
(Ortega et al 2002), where J(x,u)= – JT(x,u). 
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A most important property of PCHD systems is its I-O 
passivity, with the energy H of the system being the 
storage function and s=yTu the supply rate (van der 
Schaft 2000). The power continuity equation (3), due to 
the properties of the matrix J, shows that the excess of 
supplied over stored energy is dissipated by the action 
of R(x) because of its symmetry and positive 
definiteness. 
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Integrating (3) over an arbitrary time-interval [t0 , t1] 
results in the well-known dissipative inequality below, 
which ascertains the passive properties of PCHD 
systems (Willems 1972). 
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Control of PCHD Systems  

Control design techniques such as Energy Shaping (ES) 
and Interconnection and Damping Assignment (IDA) 
have been developed with the help of the explicit 
information of the energy function, and the properties of 
interconnection and dissipation of PCHD systems.  
The idea of ES consists in shaping the energy function 
of the plant in order to obtain a new closed loop energy 
function that has a minimum point at the desired state, 
preserving the interconnection structure and the 
dissipative function of the plant. Then, the closed-loop 
system will preserve the PCHD form with a stable 
equilibrium point in the energy minimum. Proposition 1 
presents formally the ES method. 

Proposition 1 (van der Schaft 2000). Consider that for 
the PCHD (1) it is possible to find a feedback control 
law u=α(x) and a vector function K(x) satisfying 
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with the i-th column of the nxn matrix ∂K/∂x given by 
∂Ki/∂x; and ∂2H/∂x2(x*) denoting the Hessian matrix of 
H at x*. 

Then the closed-loop system (5) is a PCHD having x* as 
a stable equilibrium. 
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Here, Hd = H+Ha is the desired Hamiltonian, and Ha is 
such that K(x)  = ∂Ha/∂x(x).   � 
 
If it were necessary to shape not only the energy 
function but also to assign a new dissipative function 
and/or a new interconnection structure, ES results 
insufficient. Then, the IDA method (Proposition 2) has 
to be applied. 

Proposition 2 (Ortega et al., 2002). Let the PCHD (2) be 
characterized by J(x,u), R(x), H(x), g(x,u), and a desired 
equilibrium x* ∈ ℜ 

n to be stabilized. Assume it can be 
found functions β(x), Ja(x), Ra(x) and a vector function 
K(x) satisfying 
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and such that 

i) (Structure Preservation) The closed-loop is a PCHD 
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ii) (Integrability) K(x) is the gradient of a scalar 
function. That is, 
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iii) (Equilibrium Assignment) K(x), at x*, verifies 
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iv) (Lyapunov Stability) The Jacobian of K(x), at x*, 
satisfies the bound 
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Under these conditions, the closed-loop system defined 
by u = β(x) will be the PCHD (11) 
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where Hd(x)=H(x)+Ha(x) and ∂Ha/∂x(x)=K(x). 
Furthermore, x* will be a (locally) stable equilibrium of 
the closed-loop. In addition, it will be asymptotically 
stable if the largest invariant set under the closed-loop 
dynamics contained in {x ∈ ℜ 

n | [(∂Hd/∂x)(x)]T Rd(x) 
(∂Hd/∂x)(x) = 0} = {x*}.    � 
 



 

 

Obtaining PCHD Models from BG 

The Junction Structure (JS) equations (12), that provide 
the BG interconnection structure, constitute, along with 
the component constitutive laws (Table 1), the BG-
Standard Implicit Form (BG-SIF). Using the BG energy 
properties and the BG-SIF, it is possible to find an 
equivalence between BG and PCHD variables, as well 
as some properties that link both representations 
(Donaire and Junco 2005). 
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Table 1. Constitutive Laws 
NON LINEAR  LINEAR 

( )i iZ f X=  i iZ FX=  

( )o i iD l X D=  

multiplicative modulated 
Resistors 

o iD LD=  

( )d dX g Z=  d dX GZ=  

The equivalence of PCHD and BG variables is shown in 
Table 2, assuming BGs with all the storages in integral 
causality assignment (ICA). For the case of storages in 
derivative causality see (Donaire and Junco 2005). 

Table 2. Equivalence of variables 
PCHD MODEL   BG MODEL 

State vector x  ⇔
 

Xi 
Vector of energy 
variables ≡ state 
vector 

Energy gradient 
respect to the 
state vector 

H
x

∂
∂

 
 
⇔

 
iZ  Output vector of the 

storage field in ICA 

Derivative of 
the state vector  x  ⇔

 
iX

 

Input vector of the 
storage field in ICA 

 
The PCHD (2) can be expressed in the BG domain as 
(13), with the PCHD structure matrices given by (14) 
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In models without coupled resistors, J is solely 
determined by S11, and R by S13, l(Xi) and S31. 
 
ES AND IDA METHODS IN THE BG DOMAIN 

This section interprets the ES and IDA methods in the 
BG domain. The technique of BG-prototyping (Junco 

2004) yields a so-called Target BG (TBG), which here -
somewhat differently as in the above reference- is 
defined as the inputless BG of the plant, to which 
elements have been suitably added in order to meet the 
closed-loop requirements, i.e., to shape the energy 
function and assign the interconnection structure and the 
dissipation function. As the TBG represents the desired 
closed-loop dynamics, the control law is to be 
determined as to emulate the effect of the added 
components, i.e., the action of the controlled modulated 
sources, MTFs and MGYs in the BG of the plant has to 
match the action of the elements added in the TBG. 
 
Energy Shaping on BG 

Assuming all storages in ICA, the TBG is obtained as 
suggested in Fig. 1 via adding new storages -with 
constitutive laws to be determined- as follows: each new 
I-element shares its effort with each original I-element 
on an added common 0-junction-, and each new C-
elements shares its flow with each original C-element 
on an added common 1-junction. The co-energy 
variables of the storages (their outputs, see Table 2) are 
Zi=∂H/∂Xi and Zi

a =∂Ha/∂Xi
a = ∂Ha/∂Xi, with H and Ha 

the stored energy in the original and the added elements, 
respectively, and their sum Hs the total desired energy. 
The JS and the R-Field do not change. Thus, the energy 
function is shaped and both the interconnection 
structure and the dissipative function are conserved. The 
inputs of the new and the original storages are the same, 
dXi

a/dt = dXi/dt, (subindex “i” stands for integral 
(causality), superindex “a” for added) and their energy 
variables are constrained to be identical, i.e., Xi=Xi

a. 
Thus, the dynamics of the TBG is fully described by 
that of Xi , as given in (15) (cf. (13), and recall the 
inputless feature of the TBG and that the inputs from the 
storages to the JS are Zi and Zi

a). 

 
Figure 1. Adding Energy to BG model 
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The control inputs must replicate the action of the added 
elements to achieve the dynamics of the TBG, which is 
expressed mathematically by the matching equation  
(16), obtained equating (13) and (15). 
Summarizing this BG-ES technique: given a BG model 
(the plant), a TBG with the desired energy function 
satisfying (4) at the desired equilibrium point has to be 



 

 

built. Then, the feedback control law determined by (16) 
forces a closed-loop PCHD system with the energy 
function (17), with a stable equilibrium at Xi*, and the 
same interconnection structure and dissipative function 
as the original plant. 

1
14 13 33 34 11 13

1
33 31

( )( ( )) ( )

( ( ))

i i i

a
i

i

S S l X I S l X S U S S l X

H
I S l X S

X

−

−

  + − = +  
∂−  ∂

(16) 

 ( ) ( ) ( )s i i a iH X H X H X= +  (17) 

Remark 1. In general the constitutive law of the added 
elements are unknown, i.e. the added energy function is 
undetermined. Thus, (16) results in a set of Partial 
Differential Equations (PDEs) that gives a family of 
solutions for Ha. Then, the requirement of a minimum at 
the desired stable equilibrium determines the energy 
function to be added. The constitutive laws of each 
added elements can be calculated as the partial 
derivative of Ha with respect to the associated energy 
variable. 
 
Interconnection and Damping Assignment on BG 

The IDA method is indicated when it is desirable to 
change the interconnection structure or the dissipative 
function (or both) as well as the energy function. This 
subsection shows how to assign the interconnection 
structure and the dissipative function in the BG, the 
energy function in BG-IDA being shaped as in BG-ES. 
The technique is based on the construction of a TBG as 
follows: the first step consist in adding storages to the 
original BG without inputs to shape the energy function. 
After that, the power conserving interconnection 
structure is modified by adding power bonds that 
change the gain of the causal paths between the 
storages, such that the desired interconnection structure 
is obtained. Finally, the desirable damping is attained by 
adding the necessary resistors and their interconnection 
with the rest of the BG. 

This technique is illustrated on the Permanent Magnet 
Synchronous Motor of Fig. 2, as example. Adding the 
storages (dashed-line boxes) in the TBG of Fig. 3 
modifies the energy function of the system. The 
interconnection structure is changed by adding the 
modulated gyrator connected by dashed bonds. With 
this new interconnection structure, the rotor speed is 
driven by the quadrature-axis modulated by the direct-
axis flux. In this way the mechanical dynamics and the 
electrical dynamics in quadrature have no influence on 
the electrical direct-axis, thereby making simpler the 
direct flux control. Damping is assigned via the new 
resistor Ra and the added power bond that connect Ra 
with the rest of the BG. 

 
Figure 2. BG of the PMSM 

 
Figure 3. Target BG for the PMSM 

 
The TBG dynamics is represented by (18). The Sij

a 
matrices have been introduced in the model with the 
purpose of assigning the new interconnection structure 
and the desired dissipative function . 
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The matrix S a
11 has the gains of the zero order causal 

paths from the outputs to the inputs of the storages that 
pass at least through one APB (Added Power Bonds, 
excluding that of the added storages). This matrix 
makes possible to assign new interconnections between 
the storages and contributes to the power conserving 
interconnection structure. 
The following matrices allow to assign new dissipation 
to the system: S a

13 has the gains of the zero order causal 
paths from the outputs of the original resistors to the 
inputs of the storages. S a

33 has the gains of the zero 
order causal paths from the outputs to the inputs of the 
original resistors. S a

31 has the gains of the zero order 
causal paths from the outputs of the storages to the 
inputs of the original resistors. S aa

13 has the gains of the 
zero order causal paths from the outputs of the added 
resistors to the inputs of the storages. S aa

31 has the gains 
of the zero order causal paths from the outputs of the 
storages to the inputs of the added resistors.  
All the causal paths considered have to pass at least 
through one APB in the TBG. 



 

 

The function la(Xi)denotes the constitutive laws of the 
added resistors.  
 
The desired closed loop dynamics (18) is obtained with 
a control law satisfying (19), the matching equation. 
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Again as in ES, to stabilize a given state Xi*, the shaped 
energy function has to be chosen such that it has a 
minimum at Xi*. 
 
Remark 2. The presence of coupled resistors can 
contribute to the power conservative interconnection 
structure (Donaire and Junco 2005) making unclear in 
the graph how to assign the desired interconnection or 
the dissipation function. In order to avoid this difficulty 
it can be useful to set S a

33= – S33. Then, the closed loop 
dynamics has not coupled resistors, its conservative 
interconnection structure is fully defined by the 
interconnection among the storages, and the dissipation 
is characterized by the resistors and their 
interconnection with the system. In this manner, it is 
clear that Sa

11 is the added interconnection and Sa
13, Sa

31, 
Saa

13, Saa
31 and la(Xi) the added damping. 

 
EXAMPLES AND APPPLICATIONS 

Two practical cases are presented to illustrate the ES 
and IDA techniques in the BG domain. The first is the 
Boost Converter which has the particularity that the 
control acts through the structure (modulated control 
system). The output voltage regulation problem has 
been solved in (Ortega et al. 2002) using the ES theory 
on a PCHD-model. Here, the problem is revisited in the 
BG-domain with the only purpose of validation, 
showing that the method yields the same result. The 
second case is an application of the IDA method to the 
rotor speed regulation of the Excitation Controlled DC-
Motor. New energy and dissipation functions are 
assigned to this port controlled system. 
 
Boost Converter 

The BG of the averaged Boost Converter presented in 
Fig. 4 (Delgado et al. 1998) clearly shows that the 
control input, the duty cycle modulating the MTF, acts 
trough the interconnection structure. The control 
objective is to regulate the capacitor voltage (the effort, 
in BG language) at a desired value VC

*=qC
*/C1 by a state 

feedback control law, maintaining internal stability. 

 
Figure 4. a) Boost Converter  b) Averaged BG Model 

The Xi, Zi and U vectors, and the matrices L and F are 
defined in (22), and the structure matrices of the JS in 
(23). 
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According with (13), the PCHD dynamics results in 
(24) 
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In this example only the energy function will be 
changed to illustrate the BG-ES method. The TBG is 
built adding the storages (dashed-line box in Fig. 5) 
which contribute the energy necessary to obtain the 
desired energy function. 

 
Figure 5. Target BG for the Boost Converter 

The dynamics (25) of the TBG is the desired dynamics 
of the closed-loop system. It is a PCHD with the 
Hamiltonian (26). In this example, the relation (16) 
takes the form (27), which determines the control law. 
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where Zi
a=∂Ha/∂Xi is the gradient of the added energy 

function respect to the state variables. The control law 
(28) is obtained after solving the set of PDEs (27) 
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C1,2,3 are constants to be determined such that Ha(Xi) 
satisfies (4), resulting in (29) and (30), or (29) and (31). 
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The added energy (32) is the energy stored in Ia and Ca; 
the constant C gives the possibility to force 
Hd(Xi*)=H(Xi*)+Ha(Xi*)=0, thus qualifying Hd(Xi) as a 
Lyapunov function. The constitutive laws of the added 
elements are defined by (33) and (34) for the added 
inertia and capacitor, respectively. These equations 
show that Ia and Ca are nonlinear modulated storage 
elements. 
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Separately Excited DC – Motor 

The DC-Motor is a port-controlled system as shows the 
BG in Fig. 6. The control input considered here is the 
excitation voltage that modulates the power exchange 
between the electrical and mechanical subsystems 
through the excitation circuit. The control objective is to 
drive de rotor speed to a constant value ω*, changing its 
natural damping and assuring internal stability. The load 
torque is considered constant and known. 
The state vector Xi, the input vector U, as well as the 
constitutive laws of the resistors and the storages, L and 
F respectively, are given in (35). The matrices that 
define the JS are read from the BG and written in (36). 
The BG-IDA method will be applied to achieve the 
control objective. At first, the TBG is created. The 
energy is shaped by the storages in the dashed-line 
boxes and the damping is increased by the added 
resistor (Figure 7). The added structure matrices read 
from the TBG and the constitutive law of the added 
resistor are in (37). 

 
Figure 6. BG of the DC-Motor 
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Figure 7. Target BG for the DC-Motor 
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The matching equation (19) results in the set of PDEs 
(38), that defines the control law. 
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The first PDE of (38) is a first-order quasi linear partial 
differential equation. It can be solved with the method 
of characteristics (Elsgoltz 1969) resulting that the 
added energy has the form (39) 
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Where ϕ and γ are functions to be selected, and C is an 
arbitrary constant. 
The second PDE of (38) gives the restriction (40) over 
the choice of ϕ. 
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with α=(Kpepa/Ra)-pω being the argument of ϕ. 



 

 

The third PDE of (38) defines the control law (41), the 
excitation voltage. 
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The choice of γ is in agreement with the requirements of 
equilibrium and the minimum energy given in (9) and 
(10), respectively. For the DC-Motor given in Table 3, 
considering the desired equilibrium p*ω=981.747 
Kgm2/s (corresponding to the rated speed) and the 
added damping ba=2 Nms; γ has to satisfy (42) 
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Accordingly, the law (43) is proposed 

 2
1 2( )e e ep a p a pγ = +  (43) 

with a1 = 5 and a2 = – 4097.2. 

Thus, the control law is completely specified. The 
closed-loop is a PCHD system with the Hamiltonian 
Hd(Xi)=H(Xi)+Ha(Xi), Hd has a minimum at the desired 
state which is asymptotically stable. Consequently, the 
control objective has been satisfied. 
The TBG representing the closed-loop system is shown 
in Figure 7. The constitutive laws of the added elements 
are given in (44)-(46), corresponding to Ia

a, Iωa and Ie
a, 

respectively. 
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SIMULATION RESULTS 

Simulation results are presented to verify the stability of 
the Excitation Controlled DC-Motor given in Table 3 
(Pfaff 1990) with the control law (41). 

Table 3. DC-Motor Data 
Rated Power 147.2 Kw 
Rated Speed 65.4498 s-1 
Rated Armature Voltage Uan 460 v 
Rated Armature Current Ian 320 A 
Armature Resistance Ra 0.05 Ω 
Armature Inductance La 0.003 Hy 
Excitation Resistance Re 25.2 Ω 
Excitation Inductance Le 63.5 Hy 
Conversion Constant K 0.0166 Nm/WbA 
Rotor Inertia J 15 Kgm2 
Viscosity Coefficient b 3 Nms 

It is well known that the DC-Motor variables could have 
dangerous overvalues if the machine is started up 
without necessary cautions. An usual strategy feeds the 
excitation first, and once the excitation flux established, 
supplies an armature ramp that saturates at rated 
voltage. In this simulation, once the armature voltage 
ramp reaches its rated value (Fig. 10.a), the load torque 
is connected to the motor (Fig. 9.b). The excitation 
voltage is injected from the very beginning according 
with the control law (41), but is limited to the rated 
value in order to protect the motor. Fig. 8.a shows that 
the evolution of the rotor speed has two parts. In the 
start-up period (0-5 sec.), the excitation voltage is at its 
limit value; thereafter (5-10 sec.), the action of the 
control law assures the regulation of the speed as well as 
the other states variables to the desired value (Figs. 8.b 
and 9.a). 
These simulation results confirm the asymptotic 
stability of the Excitation Controlled DC-Motor in 
closed-loop under the control law (41), as it was 
predicted with the control theory of PCHD system in the 
BG domain. 
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Figure 10. a) Armature Voltage b) Excitation Voltage 

 
CONCLUSIONS 

The ES and IDA control techniques for PCHD have 
been interpreted in the BG domain for models with all 
the storages in ICA. The methodology is based on the 
representation of the desired closed-loop dynamics by a 
Target BG, which is built by adding components to the 
BG of the plant without control inputs. A set of PDE 
defining the control law is obtained by way of matching 



 

 

the effect of the added components in the target BG 
with the action of the control inputs in the BG of the 
plant. The stabilization of a desired equilibrium is 
achieved solving the set of PDEs under the constraint of 
forcing a minimum of the closed-loop energy function 
at the desired equilibrium state. 
Future research will focus on the transcription of ES and 
IDA techniques for BG models with storages in 
derivative causality assignment. It will be also looked 
for graphical strategies to add elements in the TBG with 
the purpose of solving the set of PDEs in a 
straightforward manner. 
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