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ABSTRACT

Exponential growth in number of possible strategies
with the increase in number of relations in a query has
been identified as a major problem in the field of query
optimization of relational databases. Present database
systems use exhaustive search to find the best possible
strategy. But as the size of a query grows, exhaustive
search method itself becomes quite expensive. Other
algorithms like A* algorithm, Simulated Annealing etc.
have been suggested as a solution. However, all these
algorithms fail to produce the best results; necessarily
required for query execution. We did some
modifications to the A* algorithm to produce a
randomized form of the algorithm and compared it with
the original A* algorithm and exhaustive search. The
comparison results have shown improved A* algorithm
to be almost equivalent in output quality along with a
colossal decrease in search space in comparison to
exhaustive search method.

I. INTRODUCTION

The process of query optimization in relational
databases is considered to be an expensive job when it
comes to queries involving large number of relations.
The number of possible ways to execute a query
increases exponentially as the number of relations
increases in the query. Finding the best way in
reasonable time is absolutely compulsory in a database
system since an improper strategy could lead to increase
in actual execution time of the query. As the complexity
of databases increase, it becomes necessary for the
future query optimizers to adopt a low cost (in terms of
time) algorithm instead of the traditional exhaustive
search methods.

Previous attempts to solve the problem revolve
around various search strategies like deterministic,
randomized and heuristic. Many algorithms have been
proposed in the literature which takes advantage of one
or other of the search strategies. Simulated Annealing
(SA), [Iterative Improvement (II), Two Phase
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Optimization (2PO) and Genetic Algorithms [D.E.
Goldberg 1989] form a class of generic randomized
optimization algorithms that have been applied to query
optimization. Genetic randomized algorithms simulate a
biological phenomenon. Simulated Annealing (SA)
performs a continuous random walk accepting downhill
moves always and uphill moves with some probability,
trying to avoid being caught in a high cost local
minimum [Y. Ionnidis E. Wong 1987; S. kikpatrick,
Gelatt and Vecchi]. Iterative Improvement (II) [A.
Swami 1989] performs a large number of local
optimizations. Each one starts at a random node and
repeatedly accepts random downhill moves until it
reaches a local minimum. The Two Phase Optimization
(2PO) [Y. Ionnidis and Y. Kang 1987] algorithm is a
combination of II and SA.

One major heuristic algorithm proposed for
query optimization is A star (A*) algorithm. This
algorithm is useful for queries with few relations [4]. It
normally gets stuck with some local minima if the
numbers of relations are substantially increased,
producing an output sub standard to the exhaustive
search. Heuristic algorithms have helped in reducing the
time of optimization process at the cost of quality of
output.

In this paper, we make certain improvements to
the original A* algorithm by taking advantage of the
fact that execution of original A* algorithm creates a
linked list of promising nodes i.e., the nodes that are
most probably leading to the best path. The improved
A* algorithm, when used for query optimization, gives
output comparable to exhaustive search in minimal
amount of search space. Since execution time of a
particular algorithm will depend on the search space it
requires during execution. Furthermore, query
optimization results in the formation of Join processing
tree, we have to apply all the possible operators to a
node in the tree to create its successors. Node creation in
itself is a time consuming process. Thus, we also give a
comparative study of the total number of nodes required
by exhaustive search, original A* algorithm and our
modified A* algorithm for a particular query
optimization problem.

This paper is organized as follows: In Section
2, we discuss the basic features of randomized
algorithms and the working of original A* algorithm.
Our modified version of A* algorithm is introduced in
Section 3. Section 4 defines the problem specific



parameters to be used while applying our improved A*
algorithm. The experimental results, definition of
parameters and analysis of results are dealt in Section 5.
Section 6 concludes the paper.

II. ORIGINAL A* ALGORITHM

For optimizing a query, various possible paths to
execute the query are considered and each path can be
thought of as a strategy to get the final result. Each
strategy forms a Join processing tree. The various Join
processing trees can be grouped and represented in the
form of a tree which we have named as - strategy tree.
The units constituting a strategy are known as states i.e.,

TABLE 1
List of Data Structure, Variables and Functions

open, Nodes that have been generated
opentemp and the heuristic function applied
to them but which have yet not
been examined (i.e. had their
successors generated). It is actually
a priority queue in which the
elements with the highest priority
are those whose cost is lowest.

node0 Root node of the strategy tree.

node(x).cost The cost involved in reaching the

node(x) from its parent node.

goal node Leaf nodes of the strategy tree.

length(open) Total number of nodes present in
linked list open.

min(open) Returns the node with lowest cost

from all the nodes present in open.

totalcost(node( | The cost involved in reaching from
x),node(y)) node(x) to node(y).

generateallthes | Applies all the possible

uccesor(node( | transformation rules and generates

X)) the successors of node(x),
information about each child is
also added to node(x).

add(x,y) Concatenates the nodes present in

linked list x to y i.e. finally x
contains nodes of x as well as y
while y gets empty.

remove(X,y) Deletes the node(x) from the

linked list y.

nodes of the strategy tree. One can estimate the total
cost of each strategy or a path in the strategy tree. Less
is the cost of a particular path; less will be the execution
time of a query — the ultimate aim of query optimization.
Randomized algorithms move in random directions
among the possible paths in search of a better path.

Simulated Annealing, 2PO are examples of few
randomized algorithms.

The original A* algorithm can be explained as
follows. Each state in the query optimization can be
considered to be a node in the strategy tree. Each node
contains, in addition to a description of the problem
state it represents, an indication of the cost it takes to
reach from its parent to the node.

The list of data structures, variables and
functions used in original A* algorithm and improved
A* algorithm are given in Table 1.The original A*
algorithm is shown in Figure 1. The basic steps involved
in original A* algorithm are [Rich and Knight et al.
1983]:-

1. Start with open containing just the initial state.
2. Until a goal is reached or there are no nodes left in
open do:

(a)  Pick the best node in open.

(b)  Generate its successors.

(¢)  For each successor do:

(1) Evaluate it and add it to open.

Procedure A*(node0,open) { /luses linked list
open
//and node0 as root
open «— node0

prnode «— node0

//starting node of the graph is node0

costinit «— node0.cost

While((prnode!= goal node)or(length (open)!=

0))
{
X «— min(open)
/I x is assigned the lowest cost node available in

open
remove(X, open)
prnode «— x
costinit «— totalcost(node0,prnode)
generateallthesuccessors(prnode)
for each successor {
Evaluate it, add it to open and record
its
parent
H
} .
return costinit
H

Figurel. Original A* Algorithm

This algorithm proves good for low depth trees but
when the depth increases it gets stuck with some local
minima giving a poor result.

I1II. IMPROVED A* ALGORITHM

Original A* algorithm is considered to be successful
with smaller queries. It gets stuck in some local minima
when the number of relations in the query is large or the
depth of a strategy tree becomes more than the normal



depth. The presence of local minima deviates original
A* from the best path. The algorithm generates a linked
list during its execution. The linked list contains those
nodes that have been considered for the best paths but
their children were not generated. A particular node in
the linked list is not considered because it may be a
costly node but it is quite possible that the subsequent
nodes generated from this particular node may be of
cheaper cost.

Since original A* algorithm considers only the
local costs rather than the global costs and results in
some substandard results, we may assume that it has
erroneously moved in the wrong direction. Further
examination of nodes, existing in the linked list, by
generating their children or the subsequent nodes could
provide greater information regarding the cost and may
lead to the best strategy for query optimization.

Our improved A* algorithm utilizes this
additional information to find out the best strategy for
query optimization. Improved A* algorithm uses two
linked lists instead of one used in original A* algorithm.
The use of variables, functions and data structures can
be referred from Tablel. The pseudo code for algorithm
is given in Figure 2. The algorithm can be explained as
follows:

1. Firstly, original A* algorithm is executed and the cost
of the best path calculated by it is stored as Total Cost.
The algorithm also generates the linked list open.
2. A random number in the range 0 and 1 is generated
and a probability function is decided upon. The chances
of the algorithm to execute the following code is
decided by the initial function value We continuously
decrement the initial value according to the decided
function to make the algorithm reach to a definite end. If
the random number is within the range of probabilities,
we continue executing the following code otherwise the
algorithm quits.
(a) The node with the lowest cost is selected from
the linked list open.
(b) Calculate the total cost from the root to the
selected node. If the cost is greater than the
Total Cost calculated by original A* algorithm in
Step 1, the selected node is discarded and
removed from the linked list open, and algorithm
moves to Step 2 else the algorithm moves to Step
2(c).
(c) Apply the original A* algorithm to the
selected node in Step 2(b) with an additional
condition that if at any step the cost goes higher
than the Total Cost the algorithm stops and the
probability value is reduced by .1 and the
corresponding node is removed from open; the
algorithm moves to Step 2 else the algorithm
continues. The subsequent nodes generated by
original A* for the selected node are stored in
linked list opentemp instead of open.
(d) Once the Step 2(c) is finished, the selected
node is removed from the linked list open
(e) If the algorithm succeeds in reaching to the
goal state, the probability is reduced by.25 and

the nodes in the linked list opentemp are shifted
to open, else opentemp is made empty and the
algorithm again starts from Step 2

Segmentl
Procedure IMA*{
Procedure OA*(node0,open){ //using linked list
// open and node0 as root
open «— node0
prnode < node0
costinit «— node0.cost
Total Cost:=0
while ((prnode != goal node) and (Total Cost
<= costinit))or (length (open) !=0) {
X «— min(open)
// x is assigned the lowest cost node available in

open
remove(x, open)
prnode «— x
costinit < totalcost(node0,prnode)
generateallthesuccessors(prnode)
for each successor {
Evaluate it, add it to open and record
its
parent
H
H
H
y «<— min(open)
Segment2

rand« random between 0 and 1
probability «<—.9 + depth/500
// probability function defined and initialized; depth
//is equal to height of tree
while rand <= probability {
prnode «— min(open)
remove(y,open)
Total Cost « totalcost(node0, prnode)
if Total Cost <= costinit{
procedure A*(prnode,opentemp)
§
if (prnode = goal node) {
add (open,opentemp)
probability «<— probability - .25
//probability function value decreased by a high
value
}
else{
probability «— probability - .1 //probability
//function decreased by a low value after each cycle

}

rand«— random between 0 and 1

}

return Total Cost

H
. Figure2. Improved A* Algorithm

In this algorithm, firstly, original A* is executed. Here,
we get the promising nodes accumulated in the linked
list open generated during the execution. With some



probability, node with the lowest cost is picked from the
list. Total cost to reach from root to that node is
calculated and if found smaller than the Total Cost as
calculated by original A*, the selected node is given a
chance to prove its capability. Original A* algorithm is
applied with the selected node as the starting node. The
probability of picking a node from open reduces in each
cycle.

IV. PROBLEM SPECIFIC PARAMETERS

The application of above mentioned algorithm for query
optimization involves specification of certain parameters
like state space, cost functions and transformation rules.

A. State Space

Each state in query optimization corresponds to an
access plan (strategy) of the query to be optimized.
Using the general rules of optimization, selection and
projections are performed first and excluding
unnecessary Cartesian products, thus reducing various
bad strategies [M. Jarke and G. Koch 1984]. The final
problem settles down to finding the best order of
relations that gives us the minimum cost. We can
represent each strategy in form of a tree known as Join
processing tree. All the Join processing trees can be
combined and shown in the form of trees; we call it a
strategy tree. The strategy tree is formed in a way such
that the leaves represent the final order of relations
(present in the query). The nodes represent the
intermediate relation order, the results from the nodes
are passed down in the tree and the edges indicate the
flow of data from top to bottom i.e. from root to leaves.
Leaves are the operations producing the final query
result. The best path found will just be a strategy or a
Join processing tree giving the optimal way to execute

rell M rel2
rellxrel2x rel3

rell X rel3
rel1 Mrel3Xrel2

3(a)

rel2 M rel l
rel2xrell i rel3

rel2 X rel3
rel2rel3Xrel2

3(b)

rel3 M rell

rel3xrell i rel2

rel3 xq rel2
rel3Xrel2 X rell

3(c)
Figure 3. Strategy Tree for Query
Involving Three Relations

the query. An example of strategy trees is shown in
figure 3.

B. Transformation Rules

Children of a node in a strategy tree are generated by
adding one more relation to the existing set of relations
present with the node; for example, if we are having the
present node as (rell =<1 rel2 =<1 rel3) then one of the
children can be (rell t==1 rel2 =<1 rel3 t=Ix), where x
can be any other relation except rell, rel2 and rel3.
Finally, when all the relations are exhausted we are able
to get all the possible combinations of relations i.e. all
the query execution plans. For example in a query
involving three relations we get the possible plans as
(rellt=<1 rel2 =<1 rel3), (rell =<1 rel3 =<1 rel2), (rel2 =<1
rell =<1 rel3), (rel2 =<1 rel3 =<1 rell) and (rel3 =<1 rell
=3 rel2), (rel3 =<1 rel2 &= rell) which are equivalent
in results (except in their costs), since following
transformation rules hold [Ramakrisnan Gehrke 2003 et.
al.].

(a)Ar<tB—> B A

(b) (A =<1 B) =<1C < A = (B =< C)

(c) (A =<1B) =<1C — (A<1C) =<1B

(d) A =<1 (B <1 C)— B = (A =<1C)

The strategy trees possible for the example are shown in
Figure. 3

C. Cost Functions

Cost means the processing time involved in moving a
downward step in a strategy tree. The cost function
which estimates the costs of nodes in the strategy tree
can be fixed as per the requirement of a database
management system. For example in a select- project-
join query the cost function can include the effects of (a)
the size of tuple (in case of projections) (b) number of
tuples to be processed. This function f(x) can be as

f(x) = f(a, b, size of a tuple, number of tuples) (1)

where a and b are some constants that can be set to some
value so as to prefer projection over selection and join
or as per the requirements. In a distributed database, the
cost function can be the time taken by data to come from
different sites [Bernstein, Goodman, Wong, Reve and
Rothnie 1981].



V. TESTING RESULTS

The following section deals with the initialization values
and parameters taken by us while simulating the
algorithms.

A. Testing Related Values

In this section, we provide with the values and
conditions provided during comparison of original A*
algorithm, exhaustive search and the improved A*
algorithm. We conducted tests for queries containing 5
to 11 relations. In real situations all the tables will
(mostly) have different number of tuples. The number of
tuples was given a random integer value from the set
[1000, 10000] for each table. For example, a query
involving four tables i.e. four relations can have the
number of tuples as (2000, 3701, 7700, 9000).

We implemented all the algorithms in
MATLAB. For simplicity, we provided the strategy tree
initially in the form of adjacency matrices. The number
of relations were varied, comparison of the cost
involved and the number of nodes required in each case
(in real situations graph will be created dynamically so
less the number of nodes required by some algorithm i.e.
less is the search space requirements; less time will be
taken by that algorithm) was recorded. We also plotted
the comparative graphs for the costs and the number of
nodes required by all the three algorithms.

B. Cost Calculation

For simplicity, we assume that the tuples in all the tables
are of same length and the tables can have any kind of
relationship. Thus, the number of output tuples of
rell=<1 rel2 can be any random number between the
number of tuples of rell and rel2. Moreover, we assume
that a join operation is implemented by nested-loop join
method, so the total processing cost of a join equals: no.
of tuples (rell) x no. of tuples (rel2), since for each
tuple in rell a relation has to scan all the tuples in rel2.

C. Probability Function

The probability function has been initialized in such a
way that the segment 2 of improved A* algorithm (in
comparison to original A¥) is executed at least once for
queries having relations larger than 6. If we find a better
path, the probability is reduced drastically so that we do
not get stuck in the segment2. Moreover, our experiment
reveals high chances of detecting the best path just after
the first execution of segment2. The probability
function used in our experiment is
p=.9+n/500 (2)

Where n is the number of relations in a query and p is
the probability to enter segment2. The detection of a
good path results in decrease of probability value by .25

p=p-.25 3)
else, we decrease probability by .1 after each cycle.

D. Other Assumptions

Other assumptions are as follows:

1. nodeO is always taken as rell i.e. the strategy tree is
always assumed to have its root as rell.

2. All joins are handled in a single way i.e. nested-loop
join method.

VI. RESULTS

For queries involving few relations i.e. less than six,
there was almost no difference in all the three
algorithms in terms of output quality and number of
nodes to be visited. The results are compared with
respect to the following attributes:

A. Output Quality

By output quality we mean the total cost of the best path
found by a certain algorithm. The output quality of the
improved A* algorithm is almost equivalent to
exhaustive search i.e. most of the times we are able to
find the shortest path (since exhaustive search is sure to
find the shortest path). When compared with original
A*, modified A* gave better performance.

B. Nodes to be Visited

In real situations, since the strategy tree will always be
generated during the execution process itself; more the
number of nodes required to be visited during execution
of a certain algorithm, greater will be the search space
and more will be the time taken to execute the
algorithm, as node creation itself is a time consuming
process. Thus, lesser number of nodes visited during
execution of an algorithm indicates smaller run time.
The results show that the improved A* algorithm
requires lesser number of nodes as compared to
exhaustive search and this gap increases tremendously
as the number of relations increases. On an average, the
total search space was reduced just to two percent in
comparison to exhaustive search. It was slightly greater
than the nodes required by original A* algorithm. With
a small increase in search space of about .001
percentages as compared to original A* algorithm, we
are able to achieve very good results in output quality.

C. Time of Execution

The execution time of improved A* algorithm was
found to be much less than the execution time of
exhaustive search and almost equivalent to that of
original A* algorithm on the higher side.

VII. EXPLANATION OF THE OBSEVED
BEHAVIORS

The output quality of the improved A* algorithm is
found to be almost equivalent to the exhaustive search.



This is because of the generation of linked list name
open containing the most promising nodes (those nodes
that were considered in the best path search but there
children were not generated) during the execution of
original A*. Original A* algorithm fails because at some
point of time it gets stuck in a local minima and deviates
from the best path, ultimately leading to a substandard
result. Improved A* algorithm utilizes this fact and the
search for better path starts from the nodes in linked list
only. Thus, without much increase in search space, in
comparison to original A* algorithm, it is able to find
results almost equivalent to exhaustive search. The
execution of improved A* is equivalent to 2-3 times
execution of original A* on trees of reduced height,
resulting in an acceptable execution time.

Moreover, we are decreasing the probability
function value (by a large value) only when we are able
to find a complete alternate path. This helps to ensure
that we are able to find the best possible path; since a
complete alternative path is acceptable only when its
total cost is lower than the cost of previously found
complete paths. However, to make sure that the
algorithm reached a definite end, we reduce the
probability function value by a small amount in each
cycle of the execution.
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IX. CONCLUSION

The algorithm can be used for all the queries involving
any number of relations. There is always a tradeoff
between the time requirements and the output quality
which can be controlled by the probability function as
per the requirements. The cost function can be modified
to incorporate the various features that may affect the
cost. Future works can be directed towards finding the
optimal probability value and the cost functions.
Original A* algorithm is suitable for a query having
number of relations up to five. Thus, the probability
value can be adjusted in a manner that for queries with
relations up to five doesn’t need to enter the segment2
of Improved A* algorithm. The algorithm can also be
tested to find the shortest path in a tree or a graph.
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