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Abstract – An improved self-tuning mechanism of
fuzzy control by gradient descent method is presented.
The membership function parameters are tuned by
minimizing some criterion defined on the control
output using the steepest gradient descent algorithm.
The factor which controls how much the fuzzy
controller parameters are altered is adjusted
continuously using a set of fuzzy rules. This varying
factor is determined with respect to the values of the
objective function and its change. An application to
the control output optimization of a PI-type fuzzy
controller shows the superiority of the proposed self-
tuning mechanism over a previously published
approach in terms of both precision and convergence
rate.
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I. INTRODUCTION

Recently, the "fuzzy logic wave" has reached the
community of automatic control. Fuzzy logic controllers
(FLC’s) have been successfully used for a number of
complex, ill-structured industrial processes [KIR, 98; FIS,
99]. Since most of the real-world processes that require
automatic control are nonlinear in nature, FLC’s can be
designed to cope with a certain amount of process
nonlinearity and parameter variations. Therefore, more
attention has been paid to the problem of how to design a
suitable adaptive fuzzy controller for a given process.
Different types of adaptive FLC’s have been developed
and implemented for various practical applications [DRI,
96]. Adaptation mechanisms for FLC’s are classified
according to which the controller parameters are adjusted.
Adaptive controllers that adjust the fuzzy set definitions
or scaling factors are called self-tuning controllers (STC).
However, when the fuzzy rule base is altered, the
controller is called self-organizing controller (SOC).

Many works have centered on the use of mathematical
optimization techniques (see, [BOR 90]) to tune the set
definitions so that the output from the FLC matches a
suitable set of reference data as closely as possible [DRI,
96; WON, 98; HE, 93]. The basic example of this is given
by Nomura et al.. in [NOM, 91], where they use gradient
descent algorithm to tune simple membership functions.
The controller is tuned iteratively by minimizing the

square error between the FLC output and the desired
output given by the training data. This tuning method may
be very good for control systems, but its applicability is
closely related to the convergence rate of the adaptation
algorithm, especially when it is used on-line as Glorennec
did in the control of a mixer tap [GLO, 91]. The main
problem is how to adequately choose the constant which
controls how much the controller parameters are altered at
each iteration in the gradient descent algorithm. This,
however, puts an unnecessary and often inappropriate
constraint on the design. A suitable choice of the gradient
step may accelerate the convergence of the algorithm
(see, for example [SAD, 75]) and then enhance the
performance of the fuzzy control loop.

This limitation of the self-tuning mechanism of fuzzy
control suggested by Nomura et al. motivated us to
investigate techniques of improving the original algorithm
by using experts’ knowledge rather than mathematical
models or heuristics methods. In the modified version the
gradient step is adjusted continuously with the help of IF-
THEN fuzzy rules. The amount of variation of this factor
is determined with respect to the current values of the
objective function to be minimized and its change. To
check the effectiveness of the proposed approach, we
consider the problem of minimizing the matching error
affecting the input information of a fuzzy controller.

II. THE PROPOSED ADAPTATION MECHANISM

A. The fuzzy controller from Nomura et al.

The self-tuning method of fuzzy controllers developed by
Nomura et al. is a well-known gradient descent technique
to optimize both the fuzzy antecedent and crisp
consequent parts. Our objective here is to improve the
performance of the gradient descent tuning algorithm by
adapting the gradient step iteratively using a set of fuzzy
rules to achieve better precision and better convergence
rate. This method relies on having a set of input-output
data against which the controller is tuned. The FLC
consists of a set of n fuzzy rules of the form
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where mxx ,.......,1  are the controller inputs, u is the

control output variable, i is the rule number,
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m

i XX  are linguistic values of the rule-antecedent,
)(iU  is the linguistic value of the rule-consequent.
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µ , of the antecedent part

are triangles described by a peak value ija , and a support

ijb , in the defined universe of discourse. The membership

function is thus given by
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The control output membership function is a fuzzy
singleton set defined on the real number iu . Using the

max-dot composition and the Center-of-Area
defuzzification method, the global control output from the
fuzzy rule set is given by

                                 

∑

∑

=

=

µ

µ
=

n

i
i

n

i
iiu

u

1

1                                    (2)

where

                                ∏
=

µ=µ
m

j
j

i
Xi x

j
1

)( )(                            (3)

B. The modified gradient descent algorithm

If a reliable set of training data is available that describes

the desired control output, ru , for various values of the

process state, r
m

rr xxx ,....,, 21 , the fuzzy controller can be

tuned by minimizing the square error between the FLC
output and the desired output given by the reference data.
Nomura et al. have chosen to minimize the following
objective function
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Substituting (2) and (3) into (4) gives the following
objective function
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The steepest descent algorithm seeks to decrease the
value of the objective function (5) with each iteration t. In
this case, the objective function parameters we wish to
alter are the membership function parameters aij, bij and
ui. Solving this optimization problem gives the following
iterative equations of the parameter values
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The gradient step updating factor λl (l=1,2,3) is calculated
using fuzzy rules of the form

Rule k:
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where )(tJ  and )(tJ∆  are values of the performance

criterion and its variation at the iteration t, respectively.
)(

2
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1 , kk FF  are the linguistic values of the rule-

antecedent, and )(k
lG  is the linguistic value of the rule-

consequent.

The functional relationship of λl can be viewed as

                       ))(),(()( tJtJftl ∆=λ                           (9)

where f is a nonlinear function (computational algorithm)
of J and ∆J, which is described by a fuzzy rule base.

For determining the fuzzy rule base for computation of λl

we have taken into account some important
considerations related to the optimization problem, i.e.,
the current values of the objective function to be
minimized, the change-of-error and the direction of the
gradient vector of the membership function parameters.
We attempted to extract IF-THEN fuzzy rules from a
linguistic description of a general optimization procedure,
that is:

"we have to look for decreasing the value of the objective
function most rapidly in the direction of the negative
gradient vector when the current point seems to be
significantly far from the desired solution; to slow down
the procedure if the current point is close to the solution.
If the optimum point is reached the optimization is
complete".

It is very important to note that the rule base for
computation of the gradient step will not be dependent on
the choice of the rule base for the controller.
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C. The Tuning procedure

Once a set of reliable controller input-output data has
been collected, a possible optimization procedure is as
follows:

Step 1: the rules are fired on the input data ( r
m

rr xxx ,....,, 21 )

to obtain the antecedent value µi for each rule and the
real-valued control output u.

Step 2: gradient step values λl are updated using (9).

Step 3: parameters iu  are updated using (8).

Step 4: rule firing is repeated using the new values of iu .

Step 5: parameters aij and bij are updated by (6) and (7),
using the values of iu , µi and u.

Step 6:  inference error ( )2)(
2

1
)( rututD −=  is

calculated.

Step 7: if the change-of-error )1()( −− tDtD  is suitably

small, the optimization is complete; otherwise it is
repeated from step 1.

III. APPLICATION TO THE CONTROL OUTPUT
OPTIMIZATION OF THE PI-TYPE FUZZY

CONTROLLER

In order to demonstrate the performances of the proposed
tuning algorithm, we consider here the optimization
problem of a PI-type fuzzy controller. This control
problem is solved using both the tuning mechanism
suggested by Nomura et al. and the modified version
proposed in this paper. The control output of the PI-type
FLC is given by

Fig 1. Fuzzy set definition for the input/output variables of
the PI-type fuzzy controller
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Fig. 3. The matching error for selected values of σ :
σ = 025 (dash) ; σ = 1 (solid)  ; σ = 3 (dash-dot)

Fig. 2. The control surface of the PI-type fuzzy controller
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where k is the sampling instance and ∆u(k) is the
incremental change in controller output. We emphasize
here that this accumulation (10) of controller output takes
place outside the FLC and is not reflected in the rules
themselves. All membership functions for controller
inputs, i.e., error (e) and change of error (∆e) and
incremental change in controller output (∆u) are
triangular-shape partitions uniformly distributed on the
common interval [–1.5, 1.5] with three fuzzy set terms: N
(negative); Z (zero); P (positive) as depicted in Fig. 1.
The PI-type control surface is shown in Fig. 2.

The noise affecting the controller inputs is modeled as an
additive random Gaussian variable with a zero mean and
standard deviation σ, namely N(0,σ). Fuzzy partitions are
exposed to controller inputs (e) and (∆e) as well as their
noisy versions (e’) and (∆e’). Thus, in fact, the noisy
version of (e) induces:

                          )(),(),( eee PZN ′µ′µ′µ                        (9)

instead of the original one:

                          ).(),(),( eee PZN µµµ                       (11)

The matching error is expressed in terms of the overall
sum of the absolute differences and is given by

)()()()()()()( eeeeeeer PPZZNN ′µ−µ+′µ−µ+′µ−µ=    (12)

The results in terms of r(e) are plotted in Fig. 3. for
selected values of σ. The robustness of the control
algorithm for which the input fuzzy partition plays the
role of an interface is closely related to the input
information. Then, any change of the input error, if not

absorbed by the fuzzy partition, may have a meaningful
effect on the processing error. The difference between the
control value (u) obtained for exact input information (e
and ∆e) and that (u’) generated by the controller for the
noisy version of the input is illustrated by the contour-plot
of the change in the control-output in Fig. 4. In general,
this error is viewed as a suitable indicator of fault-
tolerance for the fuzzy controller [PED, 93]. In order to
optimize the dynamic behavior of the FLC, we propose to
use the modified self-tuning mechanism. We choose to
only tune the rule-consequent membership functions, via
equation (8). The factor which controls how much the
crisp consequent values are altered is updated iteratively
using equation (9). The centers and the widths of the
triangular input fuzzy sets are maintained constant.

A. Performance analysis of the proposed adaptation
mechanism

The performances of the proposed tuning mechanism are
compared with those obtained by using the original
version suggested by Nomura et al. For a clear
comparison, we have used some performance measures
such as, the final value of the objective function J, and the
number of iterations I. This may give a good idea on the
precision and the convergence rate of the algorithm with
respect to the initial parameters. It can be noticed from
table (1) that the proposed tuning mechanism gives the
best results in all the cases considered in the simulation
study. For example, with a required precision, η, of 10-10 ,
the problem is solved in only 7 iterations using the
proposed mechanism; hence it makes 79 iterations with
the Nomura’s algorithm. In this case, our modified
version is some 70 times faster than the simple gradient
descent method. In the last simulation case (for 50 =λ ),

the Nomura’s method seems to be inappropriate. The
optimization procedure proceeds out of the searching
space leading to the divergence of the algorithm.
However, the proposed tuning algorithm is much more
effective because of the constraints imposed linguistically
on the evolution of the gradient step. Using an appropriate
architecture (see [GLO, 91]), it will be interesting to
implement this mechanism on-line to form an adaptive
fuzzy knowledge-based controller.

TABLE I
PERFORMANCE ANALYSIS OF THE MODIFIED TUNING

ALGORITHM
Initial

parameters
Nomura’s method The proposed method

0λ η Criterion (J) Iterations Criterion (J)
Iteratio

ns
10-4 9,8079. 10-5 25 4,3429. 10-5 02
10-6 9,3436. 10-7 43 3,8836. 10-8 030.25
10-10 8,4799. 10-11 79 6,6947. 10-11 07
10-4 4,5316. 10-5 08 2,2765. 10-5 02
10-6 4,9237. 10-7 13 2,0357. 10-8 030.75
10-10 5,8124. 10-11 23 6,2062. 10-11 07
10-4 8,2465. 10-5 05 1,4914. 10-5 02
10-6 4,0776. 10-6 09 1,3337. 10-8 031.00
10-10 3,7596. 10-11 17 4,8688. 10-11 07
10-4 Divergence 1,0216. 10-7 03
10-6 Divergence 1,0216. 10-7 035.00
10-10 Divergence 9,1359. 10-11 04
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Fig. 4. Contour-plot of the change in the control-output of the
PI-type fuzzy controller for σ = 1



IV. CONCLUSION

The problem of designing an adaptive fuzzy controller
using gradient descent method has been tackled by
proposing an improved self-tuning mechanism. The main
contribution of this paper consists of using the
approximate reasoning for modeling the optimization
strategy with the help of IF-THEN fuzzy rules. The
proposed fuzzy rule base is used for the computation of
the gradient step which is adjusted continuously with
respect to the amount of variation of the performance
criterion and the direction of the gradient vector of the
fuzzy controller parameters. It has been demonstrated by
simulation that the proposed self-tuning mechanism gives
more interesting results than a previously published
approach. The modified tuning procedure can be used on-
line to form an adaptive FLC, if suitable reference data
can be generated by considering an appropriate
architecture.
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