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Abstract: The quality of steel strip produced in a wide strip rolling mill depends heavily on the careful selection 
of initial ground work roll profiles for each of the mill stands in the finishing train. In the past, these profiles 
were determined by human experts, based on their knowledge and experience. In this research, a Self-Organising 
Migration Algorithm (SOMA), a heuristic optimisation algorithm, has been used to find optimum profiles for a 
simulated rolling mill. The resulting strip quality produced using the profiles found by the optimisation 
algorithm and the quality produced using the original specifications are compared. The best set of profiles found 
by SOMA clearly outperformed the original set. 
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1 INTRODUCTION 
There is a worldwide overcapacity for wide steel 
strip. In such a “buyers’ market”, producers need to 
offer a high quality product at a competitive price 
in order to retain existing customers and win new 
ones. Producers are under pressure to improve their 
productivity by automating as many tasks as 
possible and by optimising process parameters to 
maximise efficiency and quality. One of the most 
critical processes is the hot rolling of the steel strip 
[1]. 
 
2 HOT ROLLING OF WIDE STRIP 
In a rolling mill a steel slab is reduced in thickness 
by rolling between two driven work rolls in a mill 
stand  (Figure 1). To a first approximation, the mass 
flow and the width can be treated as constant. The 
velocity of the outgoing strip depends on the 
amount of reduction. A typical hot rolling mill 
finishing train might have as many as 7 or 8 close-
coupled stands. 
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Figure 1 –Layout of a 4-high rolling stand. 

2.1 Mill Train 
A hot-rolling mill train transforms steel slabs into 
flat strip by reducing the thickness, from some 200 
millimetres to some two millimetres. Figure 2 
shows a typical hot strip mill train, consisting of a 
roughing mill (stands R1-R2) and finishing stands 
(F1-F7). 
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Figure 2 –Typical hot strip mill train. 

 
The roughing mill usually comprises one or more 
stands which may operate in some plants as a 
reversing mill, i.e. the slabs are reduced in 
thickness in several passes by going through the 
stand(s) in both directions. When the slab or plate 
has reached the desired thickness of approximately 
35 mm it is rolled by the “close-coupled” finishing 
stands in one pass. Strip dimensions, metallurgical 
composition, and the number of slabs to be rolled, 
together with other process dependent variables, are 
known as a rolling program or rolling schedule. 
 
Within a rolling program, the width of the strip 
changes from wide at the beginning to narrow 
towards the end, because the edges of the strip 
damage the rolls. These damaged areas must not be 



in contact with the strip and therefore, only strip 
with a reduced width can be rolled at that point. 
 
2.2 Strip Quality 
The main discriminator for steel strip from different 
manufacturers is quality, which has two aspects: 
strip profile and strip flatness. 
 
Strip profile is defined as variation in thickness 
across the width of the strip. It is usually quantified 
by a single value, the crown, defined as the 
difference in thickness between the centre line and 
a line at least 40 mm away from the edge of the 
strip (European Standard EN 10 051). Positive 
values represent convex strip profiles and negative 
values concave profiles. For satisfactory tracking 
during subsequent cold rolling a convex strip 
camber of about 0.5% - 2.5% of the final strip 
thickness is required [2]. Flatness - or the degree of 
planarity - is quantified in I-Units, smaller values of 
I-Units representing better flatness. 
 
Modern steelmaking techniques and the subsequent 
working and heat treatment of the rolled strip 
usually afford close control of the mechanical 
properties and geometrical dimensions. In selecting 
a supplier, customers rank profile and flatness as 
major quality discriminators. Tolerances on 
dimensions and profile of continuous hot-rolled un-
coated steel plate, sheet and strip are also defined in 
European Standard EN 10 051.  
 
Both the flatness and profile of outgoing strip 
depend crucially on the geometry of the loaded gap 
between top and bottom work rolls. As a 
consequence of the high forces employed, the work 
rolls bend during the rolling process, despite being 
supported by larger diameter back-up rolls [3]. 
Figure 3 shows a pair of cylindrical work rolls. In 
Figure 4 the effects of the loading can be seen. Due 
to contact with the strip at temperatures between 
800°C and 1200°C the rolls expand, despite being 
continuously cooled during the rolling operation. 
Figure 5 shows the effect of thermal expansion of 
the unloaded work rolls on the roll gap. 
 
 

 
Figure 3 –Unloaded rolls. 

 
Figure 4 –Loaded cold rolls. 

 
Figure 5 –Unloaded hot rolls. 

 
If the geometry of the roll gap does not match that 
of the in-going strip, the extra material has to flow 
towards the sides (Figure 6). If the thickness 
becomes less then about 8mm, this flow across the 
width cannot take place any longer and will result 
in partial extra strip length, and therewith in a wavy 
surface (Figure 7). 

 
Figure 6 –Mismatch between roll gap and strip 

geometry. 

 
Figure 7 –Wavy strip surface. 

The effects of bending and thermal expansion on 
the roll gaps, and the strip tension between adjacent 
mill stands, results in a non-uniform distribution of 
the internal stress over the width of the strip. This 
can produce either latent or manifest bad shape, 
depending on the magnitude of the applied tension 
and the strip thickness [4]. Bad shape, latent or 
manifest, is unacceptable to customers, because it 
can cause problems in further manufacturing 
processes. 
 
2.3 Initially Ground Work Roll Profiles 
To compensate for the predicted bending and 
thermal expansion, work rolls are ground to a 
convex or concave camber, which is usually 
sinusoidal in shape (Figure 8). 
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Figure 8 – Cambered work roll. 

 
Figure 9 shows how the initially ground camber can 
compensate for the combined effects of bending 
and expansion. 
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Figure 9 –Compensating combined effects.  

 
Due to the abrasive nature of the oxide scale on the 
strip, the rolls also wear significantly. Due to this 
roll wear, the rolls need to be periodically reground 
after a specified duty cycle (normally about four 
hours), to re-establish the specified profile. 
 
2.4 Roll Profile Specification 
The challenge is to find suitable work roll profiles - 
for each rolling program - capable of producing 
strip flatness and profile to specified tolerances. In 
a new mill, these profiles are initially specified 
individually for every single roll program. These 
are often later changed, e.g. by the rolling mill 
technical personnel in an effort to establish 
optimum profiles! This fine-tuning of the roll 
profiles is nearly always carried out empirically.   
 
Due to the lack of accurate model equations and 
auxiliary information, like derivatives of the 
transfer function of the mill train, traditional 
calculus-based optimisation methods cannot be 

applied. If a new rolling program is to be 
introduced, it is a far from straightforward task to 
select the optimum work roll profiles for each of 
the stands involved. 
 
3 OPTIMISATION OF PROFILES 
The seemingly obvious solution of experimenting 
with different profiles in an empirical way is not 
acceptable because of financial reasons  - the 
earning capacity of a modern hot strip mill is 
thousands of pounds per minute, and the mills are 
usually operated 24 hours a day. Any unscheduled 
interruption of strip production leads to 
considerable financial loss.  The use of unsuitable 
roll profiles can seriously damage the mill train. 
The approach chosen in this research is to simulate 
the mill and then apply experimental optimisation 
algorithms. Figure 10 shows the closed 
optimisation loop, containing the mill model and an 
optimisation algorithm. 
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Figure 10 –Optimisation loop. 

A finite constant volume elements model was used, 
which was developed in previous research. The 
accuracy of the model was increased by using real 
world data to train an Artificial Neural Network to 
compensate for the model error [5][6]. 
 
3.1 The Fitness Function 
In the past, a number of optimisation algorithms 
were used to find optimum profiles for a single 
steel slab [5]. However, in the real world, a 
sequence of different slabs is rolled with the same 
set of profiles (see 2.1). Therefore, the profiles need 
to be suitable for each of the different slabs in the 
same rolling program. This has been taken into 
consideration in this research by adjusting the 
fitness function used to measure the fitness of a set 
of profiles. 
 
The fitness (objective function) has been calculated 
by a combination of crown and flatness values of 
the centre-line, the edge, and the quarter-line 
(Equation 1). To avoid a division by zero, one been 
added to the denominator. The theoretical 
maximum value of this objective function is 1.0. 
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where:  
n: number of different slabs in rolling 

program 
f(x): fitness of solution x, 
Ii(x): I-Units at line i for solution x, 
caim: target crown, 
c(x): achieved crown for solution x, 
α: constant to select the relative contribution 

of flatness and camber, chosen to be 5000 
for the experiments. 

 
As it can be seen from Equation 1, the fitness for 
the rolling program is the average fitness for each 
of the different slabs rolled during the program. 
 
3.2 Optimization Algorithm Used 
In recent years, a broad class of optimisation 
algorithms has been developed for stochastic 
optimisation, i.e. for optimising systems where the 
functional relationship between the independent 
input variables x and output (objective function) y 
of a system S is not known. Using stochastic 
optimisation algorithms such as Genetic Algorithms 
(GA), Simulated Annealing (SA) and Differential 
Evolution (DE), a system is confronted with a 
random input vector and its response is measured.  
This response is then used by the optimisation 
algorithm to tune the input vector in such a way 
that the system produces the desired output or 
target value in an iterative process.  
 
The following section describes the Self-Organising 
Migration Algorithm (SOMA). SOMA is a 
stochastic optimisation algorithm that is modelled 
after the social behaviour of co-operating  
individuals [7]. It was chosen because it was proven  
that the algorithm has the ability to converge 
towards the global optimum [8]. 
 
SOMA is a stochastic optimisation algorithm that 
works on a population of candidate solutions in 
loops - so called migration loops. The population is 
initialised randomly at the beginning of the search. 
In each loop, the population is evaluated and the 
solution with the highest fitness becomes the leader 
L (Figure 11). Apart from the leader, in one 
migration loop, all individuals will traverse over the 
input space into direction of the leader (Figure 12): 
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Figure 11 – 2D example: positions of individual 

before migrating. 
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Figure 12 – 2D example: positions of individuals 

after migration loop. 

An individual will travel a certain distance (called 
Path Length) towards the leader in n steps of 
defined length. If the path length is chosen to be 
greater than one, then the individual will actually 
over shot the leader. This path is perturbed 
randomly.  
 
3.2.1 Perturbation 
Mutation, the random perturbation of individuals, is 
an important operation for evolutionary strategies 
(ES). It ensures the diversity amongst the 
individuals and it also provides the means to restore 
lost information in a population. Mutation in 
SOMA is different compared to other ES strategies. 
SOMA uses a PRT parameter to achieve 
perturbation. This parameter has the same effect for 
SOMA as mutation has for GA. It is defined in the 
range [0, 1] and is used to create a perturbation 
vector (PRTVector) as follows: 
 

paramjj njelsePRTVectorthenPRTrndif ,,1,01 K==<  (2) 
 
The novelty of this approach is that the PRTVector 
is created before an individual starts its journey 



over the search space. The PRTVector defines the 
final movement of an active individual in search 
space. 
 
The randomly generated binary perturbation vector 
controls the allowed dimensions for an individual. 
If an element of the perturbation vector is set to 
zero, then the individual is not allowed to change 
its position in the corresponding dimension. 
 
Figure 13 shows an example of a candidate solution 
Individual 1 that would make a number of steps 
towards Leader L without perturbation. With the 
perturbation vector [0,1] it is only allowed to move 
in y direction.  
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Figure 13 –Perturbation in SOMA. 

3.2.2 Generating New Candidate Solutions 
In standard ES the Crossover operator usually 
creates new individuals based on information from 
the previous generation. Geometrically speaking, 
new positions are selected from an N dimensional 
hyper-plane. In SOMA, which is based on the 
simulation of cooperative behaviour of intelligent 
beings, sequences of new positions in the N 
dimensional hyper-plane are generated. They can 
be thought of as a series of new individuals 
obtained by the special crossover operation. This 
crossover operation determines the behaviour of 
SOMA. The movement of an individual is thus 
given as follows: 
 

VectorPRTtmrr
→→→→

+= 0  
(3) 

 
where: 
 
 
 
 
 

rr :  new candidate solution 

0r
r

:  original individual 
m: difference between leader and 

start position of  individual 
t:  ∈ [0 , Path length] 
PRTVector:  control vector for perturbation 
 
It can be observed from Eq. (3) that the PRTVector 
causes an individual to move toward the leading 
individual (the one with the best fitness) in N-k 
dimensional space. If all N elements of the 
PRTVector are set to 1, then the search process is 
carried out in an N dimensional hyper-plane (i.e. on 
a N+1 fitness landscape). If some elements of the 
PRTVector are set to 0 then the second terms on the 
right hand side of equation equal 0. This means 
those parameters of an individual that are related to 
0 in the PRTVector are 'frozen', i.e. not changed 
during the search. The number of frozen parameters 
“k”  is simply the number of dimensions which are 
not taking part in the actual search process. 
Therefore, the search process takes place in a N-k 
dimensional subspace. 
 
4 EXPERIMENTAL RESULTS 
SOMA has been applied 50 times in order to find 
the optimum set of profiles. In the rolling program 
there were 14 different slabs, therefore the average 
fitness for this 14 slabs had to be calculated. 
 
The control parameter settings have been found 
empirically: 40 migration loops were carried out by 
20 individuals. The path length was chosen to be 
2.0 , the step size was 0.31 and PRT was 0.1. 
 
From Table 1 it can be seen that the average fitness 
achieved during the experiments was 0.96499526 
out of 1.0. The small standard deviation indicates 
that in most of the searches the same optimum has 
been found, i.e. the algorithm has converged 
towards the global optimum. The algorithm needed 
on average 4418 fitness evaluations until it reached 
that optimum. 
 
 Fitness Fitness 

Evaluations 
Average 
 

0.96499526 4417.7 

Standard 
Deviation 

0.000304117 164.3509498 

Table 1 – Search results. 

Table 2 shows the strip quality achieved using the 
original specification, Table 3 shows the strip 
quality achieved using the best set of profiles found 
by SOMA during the experiments. 
    
 



 Average Standard 
Deviation 

Crown error 
[mm] 

0.06363165 0.03021786 

Flatness edge 
[I-Units] 

13.23412214 14.93880901 

Flatness quarter 
[I-Units] 

32.64022143 40.98805286 

Flatness middle 
[I-Units] 

22.2865 52.16940555 

Table 2 – Strip quality with original profiles. 

 
 Average Standard 

Deviation 
Crown error 
[mm] 

0.023995157 0.026874573 

Flatness edge 
[I-Units] 

2.510596429 7.042907048 

Flatness quarter 
[I-Units] 

29.20729071 41.96476839 

Flatness middle 
[I-Units] 

26.86778571 53.90688005 

Table 3 – Strip quality with best solution found by 
SOMA.  

Table 4 shows the improvement achieved by using 
the optimised set of profiles. It can be seen that the 
average crown error was reduced dramatically by 
62.3% and the corresponding standard deviation by 
11.1%. The strip flatness at the edges was improved 
by 81.0 %, the flatness in the quarter line by 10.5%. 
Only the average flatness in the middle of the slabs 
has decreased by 20.6%. 
 
 Average [%] Standard 

Deviation [%] 
Crown error 
 

62.3 11.1 

Flatness edge  
 

81.0 52.9 

Flatness 
quarter 

10.5 -2.4 

Flatness middle 
 

-20.6 -3.3 

Table 4 –Improvement of strip quality. 

 
5 CONCUSIONS 
In this research, a Self-Organising Migration 
Algorithm (SOMA), a heuristic optimisation 
algorithm, has been used to find optimum profiles 
for a simulated rolling mill. The profiles were not 
only optimised for one particular slab, but for a 
whole rolling program, which is required for a real 
rolling mill. 
 

The resulting strip quality produced using the 
profiles found by the optimisation algorithm and 
the quality produced using the original 
specifications were compared. It was shown that 
the best set of profiles found by SOMA clearly 
outperformed that of the original set. The average 
percentage improvement for crown error and fitness 
values is 33.3% compared to the original values. 
Therefore, SOMA has been applied successfully to 
the optimisation problem described in the paper. 
 
In future work, the performance of other 
optimisation algorithms will be compared with that 
of SOMA in this problem domain. 
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