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Abstract: This paper describes the modelling, analysis and simulation of artificial foraging ant communities. Each 
virtual ant (vant) taking part in the simulation is modelled as an agent. The objective of each vant is to collect food 
for their community. Our aim is to study the communication flow in the community (and not to be biologically 
realistic). In this way, exchange of information can occur between colliding vants. We have used simulation and 
mathematical analysis to study different situations, such as low memory vants, forgetful vants and dying vants. 
Several statistical properties of these systems are characterized and some emergent phenomena are observed.  
 
keywords: Artificial Societies, Agent-Based Simulation, Random Walks, Emergence. 
 
1. INTRODUCTION 
 
Computer modellization of large individual communities 
is an active area of research. Several objectives can be 
pursued with this kind of simulations, such as the 
resolution and optimization of problems [Dorigo and 
Maniezzo, 1996], and the study of emergent global 
behaviour and social interactions [Alfonseca and de Lara 
2002], [Epstein and Axtell 1996]. The phenomenon of 
emergence occurs when interactions between large 
populations of objects at one level give rise to different 
types of phenomena at another level.  
 
The most common techniques for the simulation of these 
systems are cellular automata [Wolfram, 1994], and multi 
agent systems (MAS) [Jennings et al. 1998]. In this last 
methodology, the key abstraction is the autonomous 
agent. According to [Jennings et al. 1998], an agent is “a 
computer system, situated in some environment, that is 
capable of flexible autonomous action in order to meet its 
design objectives”. MAS have been used extensively in 
very different applications such as industrial 
(manufacturing, process control, etc), commercial 
(information management, electronic commerce, etc), 
and so forth. In this paper, we will focus in the use of 
MAS for the simulation of a community of virtual agents 
with characteristics similar to an ant ecosystem. 
 
We call vants (virtual ants) to the agents in our 
simulation because our aim is not to simulate realistic 
ants, but to study different aspects of knowledge flow in 
the community and the relationship of such knowledge to 
the nest’s ability to survive. In this simulation, each vant 
will be modelled as an object. Our approach differs from 
others, such as: 
 

� [Guérin et al. 1998] where agents communicate 
using the environment, by dropping pheromones, and 
very realistic simulations have been carried out. In 
our simulations, agents communicate directly. This is 
done in order to study the flow of knowledge in the 
community of agents. 

 
� [Anderson et al. 1997] where the population is low 

(100 ants) and uses a modification of the Ollason 
model [Ollason 1987] of hunting by expectation. Our 
agents have simpler foraging behaviour, but we work 
with more agents and experiment with different 
cognitive behaviour. 

 
The purpose of our model is to study different situations 
in communication exchange, such as low memory vants, 
forgetful vants, etc. In previous publications [Alfonseca 
and de Lara 2002a] [Alfonseca and de Lara 2002b] we 
have presented a model in which vants are provided with 
a genotype to control their behaviour (activity, 
talkativity, lying, etc.) In this paper, we are interested in 
characterizing properties of the underlying simplified 
model of basic agents (without genotypes or evolution) to 
better understand the dynamics of the more complex 
model. 
 
2. THE BASIC MODEL 
 
A vant community is composed of a large number of 
agents. In the basic model, vants know the position of 
their nest, and are able to remember the position of one 
food position. When two vants meet, they can exchange 
information if one of them knows where to find food. 
When a vant finds food, it takes some portion of it to its 
nest and returns again until the food comes to an end. All 
the vants start at the nest, located at (0,0) coordinates. 



Figure 1 shows a Statechart representing the vant 
behaviour. 
 
 

 

Figure 1: Behaviour of a vant. 

In the first approximation to this problem, we try to 
characterize some of the properties of the system, such 
as: 
 
� How much time does it take for a colony of vants to 

find food, in average? What is the minimum time? 
� Does this time depend on the number of vants? how? 
� How does the food knowledge propagate between 

vants? How does the communication between vants 
affect the knowledge of the community? 

 
We will answer these questions in the following sections. 
 
3. MINIMUM AND MEAN TIME TO REACH 
FOOD 
 
When the simulation begins, all the vants act as random 
walkers [Berg 1983] that at each step can move to North, 
East, West or South. Several models have been proposed 
to simulate different kind of animal movements 
[Blackwell 1997]; we have chosen this model due to its 
simplicity.  
 
Since all the vants start at the nest, at coordinates (0,0), 
with this kind of movement, it is not possible to reach an 
even cell (whose coordinates add to an even number) in 
an odd number of time steps. For the same reason, it is 
not possible for two vants to be adjacent vertically or 
horizontally. This situation disappears in section 2.3, 
where we allow let vants to be born at any time step. 
 

Suppose the position of the food is (fx, fy), a vant needs 
at least |fx|+|fy| steps to reach the food. The probability 
for a random walker of reaching that point at time 
t=|fx|+|fy| is p(|fx|+|fy|, fx,fy ) = t!/(4t |fx|! |fy|!). In 
general (for t > |fx|+|fy|), the probability for a random 
walker to be at a certain position at a given time step is 
described by a diffusion equation, with coefficients 0.25, 
giving p(t,x,y)t-0.25p(t,x,y)xx-0.25p(t,x,y)yy=0. This 
equation can be simulated with a real-valued cellular 
automaton. In the automata, the probability splits in equal 
parts to the 4 nearest neighbours cells. The behaviour of 
this automaton and a finite differences [Stri89] scheme 
(classical one, forward differences in time) is exactly the 
same, as can be seen in the following equation: 
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i.e. the value of the cell in the next time step is the 
average of the four neighbours. For the second step in the 
derivation, we have taken ∆=∆x=∆y=1. To solve this 
equation, we take as initial conditions (assuming the nest 
is located at (0,0)):  
 

p(0,x,y)=  1 if x=0 and y = 0 
  0 elsewhere 
 
The boundaries are at infinity. The exact solution of the 
previous equation for t>0 is: 

 
But in our case, it is not useful to use this solution, 
because in the problem we want to simulate, each 
position has four neighbours (the “ground” is 
discretized); whereas in the exact solution the 
contribution to each point is done by integrating in the 
surrounding circle; time is also supposed to be 
continuous. This is not the case in our simulation, in 
which the time advances in a discrete manner. From now 
on, p(t,x,y) will be solved using the solution given by the 
discrete approach (the cellular automaton or the finite 
differences scheme). 
 
If we have N vants, the probability for at least one of 
them to reach (fx,fy) at time t is 1-(1-p(t,fx,fy))N. For 
example, if the food is located at position (10,10), we 
need at least 20 time steps to reach the food, the 
probability for one vant to find the food in 20 steps is of 
the order of 10-13. When t > 20, the probability for 
position (10,10) to be occupied by one of the 100 vants 
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follows the curve in figure 2. Observe that since the sum 
of the x and y coordinates is even, the probability is zero 
for odd steps of time. It reaches its maximum at t=200 
(p(200,10,10)=0.11055). 
 
The probability of a cell being discovered for the first 
time exactly at time=t by one or more vants is: 
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Figure 2: Probability that cell (10,10) is occupied in a 
random-walk of 100 walkers starting at (0,0) 

The expected time for the cell (10,10) to be occupied for 

the first time is: [ ] ∫
∞
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Care must be taken when calculating the previous 
integral, because of the sawtooth shape of function p. 
Experimentally, with 125 simulations and 1000 vants, the 
mean time to reach the food has been found to be around 
48.48, with a standard deviation of 11,3. The theoretical 
value was 44.2. As the number of vants increases, the 
time to reach the food tends logarithmically to the 
minimum time necessary to reach the food (20), and the 
standard deviation decreases in the same way. This can 
be seen in figure 3. 
 
4. KNOWLEDGE PROPAGATION WITHOUT 
INFORMATION EXCHANGE 
 
Once food is reached, the vant remembers the position 
where it has been found, returns to the nest, and comes 
back for more food. If it collides with another vant that 

does not know the food position, this vant is told the 
position. The question that we may ask is: how many 
vants will know where the food is? Before we tackle this 
problem, we have tried a simpler case, with no 
information exchange. This model will help us to prepare 
the more complex model in section 5. 
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Figure 3: Average time to reach the food at (10,10) 
(theoretical and experimental) as the number of vants 

increases. 

Suppose that the function returning the number of vants 
that know where the food is K(t). Obviously K(0) = 0. 
The increment at each time step of this function is given 
by:  
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Where N is the total number of vants. (fx, fy) are the 
coordinates of the food position. The term in square 
brackets represents the probability of a given vant to 
reach the food exactly at time t. The curve for 
(fx,fy)=(0,10) and N=100 vants can be seen in figure 4. It 
exhibits a fast growing at the beginning, because N –K(t) 
is greater. When p(t,0,10) decreases, the slope of K(t) 
also decreases. The curve shows our experimental results 
(the average of 10 experiments, with the standard 
deviation). 
 
5. KNOWLEDGE PROPAGATION WITH 
INFORMATION EXCHANGE 
 
Next we have considered the case with information 
exchange. In this case an analytical model is too complex 
and we only show experimental results (see figure 5). 
 
The results show simulations with 100 vants, with the 
food at a distance of 10. Note how the maximum final 
number of vants that know the food position is found to 
be around 65. The curve exhibits a logarithmic behaviour 
which approaches to this value. This happens because, as 
time increases, the vants are more dispersed, and it is 
more difficult for them to reach the food location and to 



collide with one another. For this reason, the slope of the curve decreases. 
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Figure 4: Vants that know the food position, without information exchange in collisions. 
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Figure 5: Vants that know the food position, with information exchange in collisions. 

 
For distant food locations, the curve is shifted to the 
right, with less slope. Communication thus increases the 
knowledge especially in the first stages of the simulation. 
It can be observed that the curve in figure 5 is steeper at 
the beginning than the one in figure 4. 
 
For the implementation of this simulation in OOCSMP 
[Alfonseca and de Lara 2002b], each vant was 
represented as an OOCSMP object. The territory, with 
information about the food sources is represented as 
another OOCSMP object. In the main simulation loop we 
compute the number of vants that know where to find 
food. An applet with this simulation is accessible from:  
www.ii.uam.es/~jlara/investigacion/ecomm/otros/canti.html. 
 
In the next sections, we will describe some situations that 
happen when the basic model is modified. 
 
6. FORGETFUL AGENTS 
 
The first variation in the previous models is the inclusion 
of forgetful vants. We allow vants to remember the food 
location only for a number of time steps. Figure 6 shows 
a simulation for the cases where vants can remember for 

3 time steps (including the current time step), with a 
population of 200 vants. The figure shows the number of 
vants that know where to find food (to the right) together 
with each vant position (to the left). It can be noticed that 
the knowledge about the food position is not spread 
throughout the population. For the food distances chosen, 
four time steps seems to be the lower limit for a 
significant amount of vants to learn where the food is. 
For longer distances a longer memory is needed. For 
bigger communities, the required memory time is 
reduced. For example, with 500 vants, in the same 
conditions, three time steps are enough. 
 
In this situation an interesting phenomenon emerges: the 
vants remember the position of the food by moving in 
groups, when a vant of the group forgets the food 
location, it immediately collides with another vant of the 
same group, that communicates it the food location. For 
example, in a simulation with 75 vants, with the food at 
(15,0), two vant groups were formed, one with 12 vants 
and the other with 8. The number of vants in the groups 
never decreased, and increased gradually. It is clear that 
this phenomenon emerges because vants cannot manage 
in another way to remember the food location. 



Another interesting situation arises when we model 
knowledge reinforcement. Each vant encounter where 
both individuals know the same food position will result 
in a reinforcement of their knowledge (they will 
remember for one time step more). In this situation, a 
memory of two time steps (the current time step and the 
next) is enough to spread the knowledge of a food 
position to a population of 500 vants.  

Figure 6: 200 vants with memory of 3 time steps 

7. FINITE AMOUNT OF FOOD 
 
In this simulation, food runs out, but can appear 
randomly somewhere else. The amount of food is also 
random. Agents in this simulation are not forgetful. In 
this situation, the knowledge curve grows more in the 
moments when a place with a greater amount of food is 
located. An interesting phenomenon emerges, similar to 
the spread of rumours: when the food disappears from 
one place, there are still vants that believe that the food is 
there, and this knowledge can be propagated (although it 
is false). When the vants realize that the food is not there, 
the belief curve decreases quickly. 
 
8. VANTS THAT DIE AND ARE BORN 
 
In these simulations, we have introduced an extension to 
the previous situation: vants grow old, and when they 
reach a certain age (predefined individually when each 
vant is born, and chosen randomly, between certain 
limits), they die. Death can be postponed when the vant 
eats. When a vant finds food, it takes a portion, and 
carries it to the nest. Once there, it leaves half of the food 
in the nest and eats the other. The food in the nest is used 
to produce new vants. In this scenario, we can control 
several parameters, to investigate if the community will 
survive or not: 
� The number of food locations and the maximum and 

minimum amount of food per location. If these 
parameters are low the community always dies, if 
they are very high, the community always survives. 

� How many time steps a vant increases its life when it 
eats. 

� The maximum vant age. 
� A plane infinite world, or a torus world (with the 

upper and lower borders connected, as well as the 
sides). 

� The rate of vant birth. There are several strategies: 
o Employing all the available food to create new 

vants. 
o Creating vants if a food location has been found. 
o Employ a fixed percentage of food to create new 

vants at each time step. 
� Whether the “new” vants are born knowing the last 

food location found or not. In the first case, we are 
promoting the appearance of rumours. This strategy 
seems a little worse than letting the new vants 
explore randomly: in 100 experiments with the other 
control parameters at the same value, the average 
time for extinction was about 5450, while the 
random exploring strategy lifetime was about 6700. 

 

Figure 7: Simulating finite food places and dying vants 

Figure 7 shows a moment in one of the simulations, with 
the following parameters: 700 vants in the nest initially; 6 
food locations; the maximum amount of food per 
location is 150; a vant can live up to 650 time steps 
initially and 50 more time steps when it eats; Plane torus 
world with 2500 cells; 1/3 of the food in the nest is used 
to create new vants; the new vants are told where to find 
food. The upper left panel shows a large concentration of 
vants to the right. This is due to a rumour; there is a large 
line of vants that believe that there is food to the right, 
but that food location has been depleted. In the upper 
right panel, the dark grey line at the middle represents the 
community belief, the light grey at the top the amount of 
food in the environment, and the black at the bottom the 
amount of food in the nest. The lower panel shows the 



number of vants. In all the simulations with these 
parameters, the population finally decreased to zero. In 
the case in figure 7, this happened at time = 5638. 
 
 
9. CONCLUSIONS AND FUTURE WORK 
 
This paper presents several simple models that simulate 
the behaviour of virtual ant (vant) communities. Different 
situations have been simulated or analyzed, such as 
forgetful vants, finite food, dying vants, etc. Some 
characteristics of the systems have been established in an 
analytic way, such as the minimum time to reach food, 
average time to reach food, knowledge propagation, etc. 
Using simulations, some emergent behaviour has been 
identified: rumours and grouping. In the forgetful vants 
scenario, vants form groups to be able to reach the food, 
this is necessary as otherwise they forget where the food 
is. Propagation of rumours has been observed in the 
situation where food is depleted from one place, but 
some vants are still propagating the information. In the 
last experiment (dying vants), comparisons between 
several strategies are done, and emergent behaviour due 
to rumours is observed. It seems that the strategy that 
allows the population to survive for the longest time is 
the one that minimizes the rumours, because, in our 
context, following a rumour means a waste of energy for 
the vants.  
 
These simple models have helped us to better understand 
the more complex models presented in [Alfonseca and de 
Lara 2002a] and [Alfonseca and de Lara 2002b]. In those 
models we allow evolution and different vants’ 
parameters are inherited (such as parameters for being 
communicative, sceptical, fast, liar...). Natural selection 
is used to determine the better combination of individual 
parameters to confront different situations. 
 
We are working on an analytical model of knowledge 
propagation where the vants can communicate, also comparing 
and enriching our system with results obtained by means of 
other formalisms, such as cellular automata and L-Systems, 
although they have some limitations. For instance, it is difficult 
to represent individual memory. We may also use other forms 
of vant movement (such as the one proposed in [Blackwell 
1997]), because unbiased random walks provide a very 
inefficient way of displacement over long distances. 
 
Finally, this paper has an electronic and interactive version, 
where it is possible to experiment with the simulations, 
changing the number of vants, food positions, the memory 
length, etc., accessible from:  
www.ii.uam.es/~jlara/investigacion/ecomm/otros/canti.html 
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