
MODELLING AGENTS WITH UML:
AN EXAMPLE IN BUILDING SECURITY EVALUTION

JUAN DE LARA

Dept. Ingeniería Informática, Universidad Autónoma de Madrid

Ctra. De Colmenar, km. 15, 28049 Madrid, Spain
e-mail: Juan.Lara@ii.uam.es

Abstract: This paper proposes some extensions to UML for agent-based modelling and simulation, where the
agents follow either a purely reactive or a hybrid layered approach (reactivity combined with proactivity). The
extensions include notations for sensors, effectors and agent’s capabilities and their specification in a formal way. In
this work, agent-based simulation is also proposed as a method to help in the evaluation of security in buildings by
simulating their evacuation. These simulations allow us to measure evacuation time of different scenarios, to play
with different structural properties of the building and test their influence in the building security, which can be
useful during its design. In these simulations, people are represented by means of agents using a hybrid layered
approach. The lower layer deals with collision avoidance and doors’ visualization, while the higher layer builds
models of the environment (rooms’ connectivity) to help the agent find the exit. Buildings are conceptually modelled
as graphs where vertices and edges represent rooms and doors respectively. Rooms are discretized and represented as
two-dimensional grids, in which agents can move.

keywords: Agent-Based Simulation, Hybrid Agents, UML, Building Safety, Crowd Simulation.

1. INTRODUCTION
Computer simulation is a valuable tool in situations in
which experimentation with the real system is dangerous,
expensive, or non-ethical. It is useful for decision-making
as it enables the experimentation in multiple different
scenarios in an inexpensive way. The increasing speed of
today’s computers is making possible the simulation of
systems described by a large amount of interacting
entities. For the modelling of such systems, one usually
uses Cellular Automata or Agent-Based techniques
[Jennings et al. 1998]. The former is more appropriate
when individuals are simple and alike. The latter is more
natural when individuals have more complex capabilities,
such as sensors, effectors, internal complex states or
reasoning abilities. Multi-Agent Systems (MAS) have
been used in very different areas such as manufacturing,
process control, information management and electronic
commerce. In this paper, the concept of MAS is used for
the modelling and simulation of a large number of
individuals trying to escape from a building. Agents are
modelled using a reactive layered architecture. In a
purely reactive approach there is no symbolic reasoning,
the agent behaviour is expressed as finite state machines
[Brooks 1995]. In the approach of the present work, the
behaviour is decomposed in layers dealing with reactive
and pro-active behaviour.

Although there are many languages for agent-based
simulation programming (such as Swarm [Swarm 2003],
or OOCSMP [Alfonseca and de Lara 2002]), there is a
need for higher-level, graphical, intuitive notations to

help in the modelling phase of such systems. Some
emerging approaches use UML [Booch et al. 2002]
extensions especially devised for the modelling of MAS
[aUML, 2003]. These are notations suitable for the
design of applications composed of agents, and mainly to
specify interaction protocols for the application agents
[Bauer at al. 2000]. In opposition, the extensions
proposed in this paper are mainly useful for the
modelling of Agent-Based Simulations. In particular, we
propose extensions to model the agent sensors and
effectors (to express the agent’s interaction with the
environment) and the agent capabilities. The extensions
proposed for sensors and effectors follow the line of
[aUML, 2003], for example, in [Bauer, 2001] interfaces
are also used for expressing communication (in the case
of an application “interacting protocols”) between
agents. In this paper we also propose the inclusion of the
concept of agent and classes of agents in some of the
standard UML diagrams, giving rise to agent diagrams
(similar to object diagrams), agent class diagrams
(similar to class diagrams) and agent collaboration
diagrams (similar to collaboration diagrams). This last
kind of diagram is proposed as a means to formalize
some of the agent’s capabilities, in a similar way as
[Engels et al. 2000], but for a different purpose.

The extensions for agent-based modelling proposed in
this work are illustrated by means of an example: the
simulation of building evacuations. This paper proposes
such agent-based simulations as an inexpensive means to
help in the evaluation of building security. While

designing the building, simulations can help in
architectural decisions which may affect building
security, such as the placement of regular and emergency
doors, and room’s connectivity. In this case, simulation is
the only choice, as direct experimentation (real
evacuations) cannot be performed. For already existing
buildings, simulations can complement evacuation
simulations with real people, as they are less expensive
and less annoying for the building inhabitants.
Simulations make possible to experiment with different
scenarios of people density in each room, with different
environmental factors (fire, smoke, different degrees of
visibility, etc.) or as a means to evaluate the impact of
changing some security features in the building; for
example, adding new emergency doors, indicators, etc.

2. EXTENDING UML FOR AGENT MODELLING
UML is becoming ever more used in the software
community. For that reason, in this work the standard
UML is used as much as possible, although extensions
have been added to some of the diagrams and are
explained in the next subsections.

2.1 Agent Class Diagrams
A class diagram is a graphical view of the static
structural model. Here we propose to include Agent
Classes in this kind of diagrams. These describe the kind
of agents that exist in the system (in this paper we only
consider reactive or hybrid agents). In standard UML,
there is a notation for active objects (with their own
thread of execution). Autonomous agents must have their
own thread of execution, but they are not mere objects:
they have a (partial) knowledge of their environment (by
means of sensors) and may act upon it (by means of
effectors). They have abilities and can be requested to
perform a certain action. This is different from invoking
a method on them, as the agent may refuse to perform the
action. Figure 2 (Agent class Runner) shows the symbol
we use for Agent Classes. There is a separate box for
capabilities and another for actions. Capabilities are
arranged in layers, separated by a dotted line. If
capabilities or actions are not specified, the
corresponding box can be omitted. We also provide
symbols for the agent’s sensors and effectors (similar to
the ones used for interfaces, but filled in black). It is
possible to connect other (Agent) classes to these black
dots to mean that the agent can sense or act upon that
other class. An example of the use of these symbols is
given in Figures 2 and 3. Most of the times, Agent
Classes have one or more associated Statechart diagrams
specifying the agent behaviour (see Figure 1).

2.2 Agent Diagrams
A static object diagram is an instance of a class diagram,
where objects and their relationships may appear. It
shows a snapshot of the state of the system at a point in

time. Here we include Agents in this kind of diagrams.
These are instances of Agent Classes, and are represented
in a similar way (see Figure 3).

2.3 Agent Collaboration Diagrams
These diagrams show graphs of objects linked to each
other, toghether with their communication patterns. Here
we use these diagrams to specify some of the agent
capabilities in a formal way. In order to specify a
capability, one has to provide a number of collaboration
diagrams; each one of them can be applied under
different circumstances (in a similar way as graph-
grammars [Engels at al. 2000] and rule-based
programming). Each collaboration diagram is assigned a
priority that specifies the order in which the collaboration
diagram will be tried. A collaboration diagram is
applicable if it is consistent with the state of the system at
that moment. That is, if an homomorphism between the
system’s state and the collaboration diagram can be
found. When the collaboration diagram is applied, the
nodes and links tagged as new and destroyed are created
and destroyed. Collaboration diagrams are also extended
with the capacity to return values (as here they are used
as a means to specify functions). An example of a
capability specified in this way can be found in Figure 6.

This approach has similarities with graph grammars.
These are composed by rules, each having graphs in their
left and right hand sides (LHS and RHS). If a rule makes
a match with a certain part of an input graph (called host
graph) the rule can be applied and the zone of the graph
that was matched is replaced by the RHS of the rule. In
the extensions to collaboration diagrams that we propose,
both LHS and RHS are collapsed into a single graph, and
the nodes and links to be created and destroyed are
tagged with new and destroyed. We also use negative
application conditions in collaboration diagrams, which
is a standard notation in graph grammars in the form of
crossed-out elements (see Figure 6). It expresses the fact
that, in order for the rule to be applied, the crossed-out
elements must not be present in the matched graph. A
similar idea but applied in another context, and without
the possibility to return a value was proposed in [Engels
et al. 2000].

An example of the use of these extensions is presented in
the following section.

3. EVALUATING BULDING SECURITY WITH
AGENT-BASED SIMULATION

3.1. Single room model
This section deals with the simpler case, in which we
consider evacuations of single rooms. In our model,
rooms are discretized and represented as two-
dimensional, rectangular grids. Each cell of the grid can

be empty, contain up to three agents, a wall or a door.
Doors can be made wider by concatenating several of
them. Time is discretized, in such a way that agents can
move to one of the eight neighbour cells at each time
step. Agents do not communicate. Once an agent sees a
door, its objective is to move towards it in a straight line.
If at some moment the shortest path cannot be followed –
because there are many agents blocking the way – the
agent moves to the least populated neighbour cell. If the
agent has not seen a door before, then it moves to the
most populated neighbour cell containing at most two
agents (that is, he will try to “follow the crowd”). The
simulation finishes when all the agents have reached a
door. Figure 1 is a Statechart representing this behaviour.
Some transitions in the model invoke methods
(lookAround() and move(where)), which should be
considered as the agent capabilities. These capabilities
make use of the agent’s sensors and effectors (simulated,
as we are implementing agents in software). In the case
of lookAround, the agent is interested in visualizing
either a door (which sometimes may not be visible), or
the most populated place. By means of tm(1) we specify
that at each time step, the agent should perform a certain
action, depending on its current state.

The agent’s structure is shown in Figure 2. It shows an
agent class (Runner), which has a sensor (iVisual) and an
effector (iLocomotion). Special relationships (is visible
and can move in) come from the classes that the sensors
or effectors can act or sense. In this case, the iVisual
sensor can sense either Doors, Walls or other Runners.
The iLocomotion effector can act on Rooms (that is,
agents can walk in the room). Agent capabilities move
and lookAround are specified in the Agent class lower
box. Attributes doorX and doorY are used to store the
position of the door the agent is moving towards (in the
case he has seen a door before). A Runner is situated in a
room, and this is expressed with the relationship class
Position.

Figure 1: Behaviour of the Runner Agent.

A UML Package delimits the environment, which
consists of a room made of several doors and walls.
Doors are placed in walls (relationship “has”). The
spatial dimensions of the room are stored in attributes
width and length. The door coordinates are stored in

attributes px and py. The initial and final wall coordinates
are stored in attributes xinit, yinit and xend, yend
respectively. Only walls parallel to the X or Y axis are
allowed in the model. The interaction between the
environment and the agents is expressed by using the
sensor/effector notation introduced in section 2.1.

Figure 3 shows an “agent diagram” that reflects the way
in which an agent can sense the presence of doors or
other agents. The figure shows a situation in which an
agent (r1) is able to see another agent (r2) and a door.
The condition for this to happen is that no other visible
object must be between r1 and r2 or the door.

Figure 2: An Agent Class Diagram.

Figure 3: An Agent Diagram

The model has been programmed in C++, as efficiency in
time and memory is needed, because thousands of agents
will be created in the simulation. Agent programming
languages are less efficient than programming directly in
C++, because it allows for optimisation of the code by
hand. On the contrary, agent languages provide higher-
level constructs that make the programming easier. The
implementation of the movement in straight line was
done using the Bresenham’s line drawing algorithm. To
illustrate the usefulness of this model the following
subsection shows some of the experiments performed.

3.2. Experiments
Two different sets of experiments were performed to
evaluate the effect of door placement in the time it takes
the agents to escape from the room (of size 42x42). In the
first set, four doors were placed in the room, in different
configurations, each one tested with different density of
agents, from 0.125 to 3 (the maximum, as in each cell at
most three agents can be present at the same time). Forty
experiments were performed with each room
configuration and for each agent density.

(a)

(b)

Figure 4: Time to escape with respect to agent density
for different door configurations: 4(a) and 8 doors(b).

Figure 4(a) shows the results of each configuration tested
for different agent densities. The X-axis is the agent
density; the Y-axis is the time it took the agents to escape
(average of the 40 experiments). The first configuration
has a door in the middle of each wall. Setting the origin
of coordinates at the upper left corner of the room, the
second configuration has doors at (5, 0), (35, 41), (41,
35) and (0, 5). The third room has doors at (20, 0), (20,
41), (41, 35) and (0, 6). The fourth room has doors at (20,
0), (20, 41), (41, 19), (0, 19). The first configuration
gives the better time, as agglomerations tend to form near
the doors, making the escape process more difficult. If
two doors are “too near” these agglomerations are even
bigger. An example of this is configuration 2, which
gives the worst results, as it has very close pairs of doors
in the room corners. The advantage of configuration 1 is
bigger as the agent density goes up, because the effect of
the agglomerations as the density of agents increases is
bigger.

Figure 4(b) shows the results of the second set of
experiments, with eight doors. One of the objectives was
to test the efficiency of 8 doors against 4 bigger doors,
which can be produced by joining two smaller doors. The
first configuration has two doors in each wall, each one
placed in an equidistant position to the other door and to
the corner of the room. For the second configuration, a
big door (composed of two smaller doors) has been
placed in the middle of each wall. The third configuration
is a room with one big door in the North and in the
South, and two smaller ones in the East and West. These
are placed at 5 units from the end of the walls. Finally,
configuration has two doors in each wall, at 5 units from
the end of each wall. The best results have been obtained
with the first configuration, for the same reason: if two
doors are too near, agglomerations are formed. To reduce
this effect, the simulations show that (specially if the
room is very crowded) it is better to have numerous small
separated doors than a few big doors.

3.3 Extending the model for multiple rooms
In this section, we consider buildings with multiple
rooms. The agent structure must be extended with a
“mental” representation of the rooms’ connectivity to
guide the agent in his navigation towards the exit. We
can experiment with two situations: in the first one the
agent does not have any a priori knowledge of the
building connectivity, he builds his mental map while
navigating through the building looking for the exit. In
the second situation, we assume that the agents have
partial or total information about the building. In both
cases, the mental map is used by the agent to navigate
trough the building.

Left of Figure 5 reflects this situation. Class Building has
been introduced, composed by a number of rooms. Class
Door has been extended with the attribute type indicating
if the door is an exit or leads to another room. While
inner doors are connected to other inner doors leading to
other rooms; exit doors are not connected to other doors,
as they lead to the outside. The mental map of the
environment the agent builds and uses for navigation is
shown in a separate package. A relationship of type
“represents” expresses the fact that the agent is able to
recognize a real room if he has been in the room before.
The same happens with doors inside rooms. The agent
also remembers if he has explored the door before or not.
As the mental map is a model of the environment (an
abstraction), the agent does not memorize room or wall
dimensions, as they are not needed for navigation. The
agent capabilities have been extended with the possibility
to memorize new rooms or doors as they are discovered.
Capabilities have been arranged in two layers. The upper
layer capability (getDoor) is higher-level than the lower
layer ones and is used by the agent to decide the most
appropriate door to go to, and accesses the mental map.

Figure 5: Agent Class diagram with the model for multiple rooms (left). Behaviour of the agent (right).

Figure 6:Collaboration Diagrams for Specifying the getDoor capability

If the agent has a priori knowledge of the building map,
then this capability guides the agent through the shortest
sequence of rooms towards the exit. If the agent does not
have a priori knowledge, then his mental map may not be
complete, and several situations can arise. In the easiest
case, if he knows an exit door in the current room, this is
the most appropriate door. If an exit door is not present in
the current room, then the agent searches in his mental
map to check if some of the neighbour rooms have an
exit door. If this is the case, then the most appropriate
door is the one leading to that room. In other case, the
agent chooses the door that leads to a non-visited room,
and if all rooms have been visited before, he chooses the
least visited room. This complex behaviour can be
formalized using a number of agent collaboration
diagrams specifying the expected behaviour of the
getDoor capability. Each collaboration diagram specifies
a situation that, if present at run time, will cause the

capability specification to be executed. For example, the
first diagram in figure 6 shows the situation in which an
agent is in a room with an exit door. In this case, the
capability returns this door as the most appropriate. This
diagram does not state that the agent must only know one
room, but that this is the minimum set of elements that
must be present in order for this situation to be valid.

The second diagram specifies the situation in which the
exit door is in a neighbour room. The third diagram
applies when the agent does not know any exit door in
the current or neighbour rooms (or there are not any). In
this case the agent chooses a room not visited before. In
the fourth diagram the situation is the same, but the agent
does not have a complete knowledge of the environment:
the map is not complete. If he finds a door which does
not have any connection, the door is not explored. The
negative application condition means that the agent must

be in a room with a door that has not been explored.
Finally, the last diagram shows a situation in which the
agent chooses the least visited neighbour room.

The Statechart showing the agent’s behaviour has to be
modified to consider the navigation between rooms and
is shown to the right of Figure 5. If the agent does not
have a priori knowledge of the environment, then from
the initial state he moves to the “Moving Randomly”
state. If the agent has a priori knowledge, two situations
may arise. In the first one, the agent knows that the exit
door is in the current room, so the agent moves to state
“Moving to Exit Door”. In the second one, the agent
knows that the exit door is elsewhere, so he selects the
most appropriate inner door to move to and moves to
state “Moving to Inner Door”.

4. CONCLUSIONS AND FUTURE WORK
This paper has proposed some extensions to the UML for
the modelling of reactive or hybrid agent simulations.
The extensions introduce elements similar to interfaces to
express agent’s sensors and effectors. Special
relationships are introduced to express the fact that other
agents or objects can be sensed or acted upon by these
sensors and effectors. Instances of these relationships and
symbols can be found in agent diagrams (a kind of
diagram similar to object diagrams). Agent capabilities
are declared in an extra box in the agent class box.
Capabilities can be formally specified using a number of
agent collaboration diagrams, in a similar way as graph
grammars rules. Packages are used to separate the
environment and the agent memory. The extensions
continue the line of the ones proposed by the aUML
community and have been used to model building
evacuations. This kind of simulations is an inexpensive
means to test building security, and can be a complement
to real evacuation simulations.

We are extending the model with the possibility to
evaluate exit signals placement, experimenting with
situations of low visibility and communication between
agents. We want to test the model with real buildings,
validating the simulation results with data from real
building evacuations. We are also implementing the
proposed UML extensions in the meta-modelling tool
AToM3 [de Lara and Vangheluwe 2002], in such a way
that code for some agent programming languages will be
generated from the models. We are also constructing a
meta-model to allow the users model different kinds of
buildings. These models have to be translated into object
diagrams for further processing.

Acknowledgement: This paper has been sponsored by
the Spanish Ministry of Science and Technology
(TIC2002-01948).

REFERENCES
Agent UML (aUML) home page: http://www.aUML.org

Alfonseca, M., de Lara, J. 2002. “Two level evolution of
foraging agent communities”. BioSystems Vol 66, Issues 1-2,
pp.: 21-30.

Bauer, B., Müller, J., Odell, J. 2000. “Agent UML: A
Formalism for Specifying Multiagent Interaction”. In Proc. of
Agent-Oriented Software Engineering 2000, Springer. pp.: 91-
103.

Bauer, B. 2001. “UML Class Diagrams Revisited in the Context
of Agent-Based Systems”. In Proc. of Agent-Oriented Software
Engineering (AOSE) 2001, Agents 2001, Montreal. pp.: 1-8.

Booch, G., Rumbaugh, J., Jacobson, I. 1999. “The Unified
Modeling Language User Guide”. Addison-Wesley.

Brooks, R. 1995. “Intelligence without reason”. In The
Artificial Life Route to Artificial Intelligence. Building
Embodied, Situated Agents. Lawrence Erlabaum Associates.

de Lara, J., Vangheluwe, H. 2002. “AToM3: A Tool for Multi-
Formalism Modelling and Meta-Modelling”. LNCS 2306, p.:
174-188. Springer. AToM3 home page:
http://atom3.cs.mcgill.ca

Engels, G., Hausmann, J. H., Heckel, R., Sauer, S. 2000.
“Dynamic Meta Modeling: A graphical Approach to the
Operational Semantics of Behavioral Diagrams in UML”.
LNCS 1930, pp.: 323-337. Springer.

Ehrig, H., Engels, G., Kreowski, H.-J., and Rozenberg, G.
1999. “Handbook of Graph Grammars and Computing by
Graph Transformation”. Vols.1 and 2. World Scientific.

Jennings, N.R., Sycara, K., Wooldridge, M. 1998. “A Roadmap
of Agent Research and Development”. Autonomous Agents and
Multi-Agent Systems, 1, 7-38 (1998). Kluwer.

Swarm development group home page: http://www.swarm.org

BIOGRAPHY

Juan de Lara is an an assistant professor at
the Computer Science Department of the
Universidad Autónoma in Madrid, where
he teaches Software Engineering. He is a
PhD in Computer Science, and works in
Web based Simulation, Agent based
Simulation and Multi-Paradigm Modelling.

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

