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Abstract: This paper proposes some extensions to UML for agent-based modelling and simulation, where the 
agents follow either a purely reactive or a hybrid layered approach (reactivity combined with proactivity). The 
extensions include notations for sensors, effectors and agent’s capabilities and their specification in a formal way. In 
this work, agent-based simulation is also proposed as a method to help in the evaluation of security in buildings by 
simulating their evacuation. These simulations allow us to measure evacuation time of different scenarios, to play 
with different structural properties of the building and test their influence in the building security, which can be 
useful during its design. In these simulations, people are represented by means of agents using a hybrid layered 
approach. The lower layer deals with collision avoidance and doors’ visualization, while the higher layer builds 
models of the environment (rooms’ connectivity) to help the agent find the exit. Buildings are conceptually modelled 
as graphs where vertices and edges represent rooms and doors respectively. Rooms are discretized and represented as 
two-dimensional grids, in which agents can move.  
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1. INTRODUCTION 
Computer simulation is a valuable tool in situations in 
which experimentation with the real system is dangerous, 
expensive, or non-ethical. It is useful for decision-making 
as it enables the experimentation in multiple different 
scenarios in an inexpensive way. The increasing speed of 
today’s computers is making possible the simulation of 
systems described by a large amount of interacting 
entities. For the modelling of such systems, one usually 
uses Cellular Automata or Agent-Based techniques 
[Jennings et al. 1998]. The former is more appropriate 
when individuals are simple and alike. The latter is more 
natural when individuals have more complex capabilities, 
such as sensors, effectors, internal complex states or 
reasoning abilities. Multi-Agent Systems (MAS) have 
been used in very different areas such as manufacturing, 
process control, information management and electronic 
commerce. In this paper, the concept of MAS is used for 
the modelling and simulation of a large number of 
individuals trying to escape from a building. Agents are 
modelled using a reactive layered architecture. In a 
purely reactive approach there is no symbolic reasoning, 
the agent behaviour is expressed as finite state machines 
[Brooks 1995]. In the approach of the present work, the 
behaviour is decomposed in layers dealing with reactive 
and pro-active behaviour.  
 
Although there are many languages for agent-based 
simulation programming (such as Swarm [Swarm 2003], 
or OOCSMP [Alfonseca and de Lara 2002]), there is a 
need for higher-level, graphical, intuitive notations to 

help in the modelling phase of such systems. Some 
emerging approaches use UML [Booch et al. 2002] 
extensions especially devised for the modelling of MAS 
[aUML, 2003]. These are notations suitable for the 
design of applications composed of agents, and mainly to 
specify interaction protocols for the application agents 
[Bauer at al. 2000]. In opposition, the extensions 
proposed in this paper are mainly useful for the 
modelling of Agent-Based Simulations. In particular, we 
propose extensions to model the agent sensors and 
effectors (to express the agent’s interaction with the 
environment) and the agent capabilities. The extensions 
proposed for sensors and effectors follow the line of 
[aUML, 2003], for example, in [Bauer, 2001] interfaces 
are also used for expressing communication (in the case 
of an application “interacting protocols”) between 
agents. In this paper we also propose the inclusion of the 
concept of agent and classes of agents in some of the 
standard UML diagrams, giving rise to agent diagrams 
(similar to object diagrams), agent class diagrams 
(similar to class diagrams) and agent collaboration 
diagrams (similar to collaboration diagrams). This last 
kind of diagram is proposed as a means to formalize 
some of the agent’s capabilities, in a similar way as 
[Engels et al. 2000], but for a different purpose.  
 
The extensions for agent-based modelling proposed in 
this work are illustrated by means of an example: the 
simulation of building evacuations. This paper proposes 
such agent-based simulations as an inexpensive means to 
help in the evaluation of building security. While 



designing the building, simulations can help in 
architectural decisions which may affect building 
security, such as the placement of regular and emergency 
doors, and room’s connectivity. In this case, simulation is 
the only choice, as direct experimentation (real 
evacuations) cannot be performed. For already existing 
buildings, simulations can complement evacuation 
simulations with real people, as they are less expensive 
and less annoying for the building inhabitants. 
Simulations make possible to experiment with different 
scenarios of people density in each room, with different 
environmental factors (fire, smoke, different degrees of 
visibility, etc.) or as a means to evaluate the impact of 
changing some security features in the building; for 
example, adding new emergency doors, indicators, etc. 
 
2. EXTENDING UML FOR AGENT MODELLING 
UML is becoming ever more used in the software 
community. For that reason, in this work the standard 
UML is used as much as possible, although extensions 
have been added to some of the diagrams and are 
explained in the next subsections. 
 
2.1 Agent Class Diagrams 
A class diagram is a graphical view of the static 
structural model. Here we propose to include Agent 
Classes in this kind of diagrams. These describe the kind 
of agents that exist in the system (in this paper we only 
consider reactive or hybrid agents). In standard UML, 
there is a notation for active objects (with their own 
thread of execution). Autonomous agents must have their 
own thread of execution, but they are not mere objects: 
they have a (partial) knowledge of their environment (by 
means of sensors) and may act upon it (by means of 
effectors). They have abilities and can be requested to 
perform a certain action. This is different from invoking 
a method on them, as the agent may refuse to perform the 
action. Figure 2 (Agent class Runner) shows the symbol 
we use for Agent Classes. There is a separate box for 
capabilities and another for actions. Capabilities are 
arranged in layers, separated by a dotted line. If 
capabilities or actions are not specified, the 
corresponding box can be omitted. We also provide 
symbols for the agent’s sensors and effectors (similar to 
the ones used for interfaces, but filled in black). It is 
possible to connect other (Agent) classes to these black 
dots to mean that the agent can sense or act upon that 
other class. An example of the use of these symbols is 
given in Figures 2 and 3. Most of the times, Agent 
Classes have one or more associated Statechart diagrams 
specifying the agent behaviour (see Figure 1). 
 
2.2 Agent Diagrams 
A static object diagram is an instance of a class diagram, 
where objects and their relationships may appear. It 
shows a snapshot of the state of the system at a point in 

time. Here we include Agents in this kind of diagrams. 
These are instances of Agent Classes, and are represented 
in a similar way (see Figure 3). 
 
2.3 Agent Collaboration Diagrams 
These diagrams show graphs of objects linked to each 
other, toghether with their communication patterns. Here 
we use these diagrams to specify some of the agent 
capabilities in a formal way. In order to specify a 
capability, one has to provide a number of collaboration 
diagrams; each one of them can be applied under 
different circumstances (in a similar way as graph-
grammars [Engels at al. 2000] and rule-based 
programming). Each collaboration diagram is assigned a 
priority that specifies the order in which the collaboration 
diagram will be tried. A collaboration diagram is 
applicable if it is consistent with the state of the system at 
that moment. That is, if an homomorphism between the 
system’s state and the collaboration diagram can be 
found. When the collaboration diagram is applied, the 
nodes and links tagged as new and destroyed are created 
and destroyed. Collaboration diagrams are also extended 
with the capacity to return values (as here they are used 
as a means to specify functions). An example of a 
capability specified in this way can be found in Figure 6. 
 
This approach has similarities with graph grammars. 
These are composed by rules, each having graphs in their 
left and right hand sides (LHS and RHS). If a rule makes 
a match with a certain part of an input graph (called host 
graph) the rule can be applied and the zone of the graph 
that was matched is replaced by the RHS of the rule. In 
the extensions to collaboration diagrams that we propose, 
both LHS and RHS are collapsed into a single graph, and 
the nodes and links to be created and destroyed are 
tagged with new and destroyed. We also use negative 
application conditions in collaboration diagrams, which 
is a standard notation in graph grammars in the form of 
crossed-out elements (see Figure 6). It expresses the fact 
that, in order for the rule to be applied, the crossed-out 
elements must not be present in the matched graph. A 
similar idea but applied in another context, and without 
the possibility to return a value was proposed in [Engels 
et al. 2000].  
 
An example of the use of these extensions is presented in 
the following section. 
 
3. EVALUATING BULDING SECURITY WITH 
AGENT-BASED SIMULATION 
 
3.1. Single room model 
This section deals with the simpler case, in which we 
consider evacuations of single rooms. In our model, 
rooms are discretized and represented as two-
dimensional, rectangular grids.  Each cell of the grid can 



be empty, contain up to three agents, a wall or a door. 
Doors can be made wider by concatenating several of 
them. Time is discretized, in such a way that agents can 
move to one of the eight neighbour cells at each time 
step. Agents do not communicate. Once an agent sees a 
door, its objective is to move towards it in a straight line. 
If at some moment the shortest path cannot be followed – 
because there are many agents blocking the way – the 
agent moves to the least populated neighbour cell. If the 
agent has not seen a door before, then it moves to the 
most populated neighbour cell containing at most two 
agents (that is, he will try to “follow the crowd”). The 
simulation finishes when all the agents have reached a 
door. Figure 1 is a Statechart representing this behaviour. 
Some transitions in the model invoke methods 
(lookAround() and move(where)), which should be 
considered as the agent capabilities. These capabilities 
make use of the agent’s sensors and effectors (simulated, 
as we are implementing agents in software). In the case 
of lookAround, the agent is interested in visualizing 
either a door (which sometimes may not be visible), or 
the most populated place. By means of tm(1) we specify 
that at each time step, the agent should perform a certain 
action, depending on its current state. 
 
The agent’s structure is shown in Figure 2. It shows an 
agent class (Runner), which has a sensor (iVisual) and an 
effector (iLocomotion). Special relationships (is visible 
and can move in) come from the classes that the sensors 
or effectors can act or sense. In this case, the iVisual 
sensor can sense either Doors, Walls or other Runners. 
The iLocomotion effector can act on Rooms (that is, 
agents can walk in the room). Agent capabilities move 
and lookAround are specified in the Agent class lower 
box. Attributes doorX and doorY are used to store the 
position of the door the agent is moving towards (in the 
case he has seen a door before). A Runner is situated in a 
room, and this is expressed with the relationship class 
Position. 

 

 

 

 

 

Figure 1: Behaviour of the Runner Agent. 

A UML Package delimits the environment, which 
consists of a room made of several doors and walls. 
Doors are placed in walls (relationship “has”). The 
spatial dimensions of the room are stored in attributes 
width and length. The door coordinates are stored in 

attributes px and py. The initial and final wall coordinates 
are stored in attributes xinit, yinit and xend, yend 
respectively. Only walls parallel to the X or Y axis are 
allowed in the model. The interaction between the 
environment and the agents is expressed by using the 
sensor/effector notation introduced in section 2.1. 
 
Figure 3 shows an “agent diagram” that reflects the way 
in which an agent can sense the presence of doors or 
other agents. The figure shows a situation in which an 
agent (r1) is able to see another agent (r2) and a door. 
The condition for this to happen is that no other visible 
object must be between r1 and r2 or the door. 

Figure 2: An Agent Class Diagram. 

 

 

 

 

 

 

 

Figure 3: An Agent Diagram 

The model has been programmed in C++, as efficiency in 
time and memory is needed, because thousands of agents 
will be created in the simulation. Agent programming 
languages are less efficient than programming directly in 
C++, because it allows for optimisation of the code by 
hand. On the contrary, agent languages provide higher-
level constructs that make the programming easier. The 
implementation of the movement in straight line was 
done using the Bresenham’s line drawing algorithm. To 
illustrate the usefulness of this model the following 
subsection shows some of the experiments performed. 
 



3.2. Experiments 
Two different sets of experiments were performed to 
evaluate the effect of door placement in the time it takes 
the agents to escape from the room (of size 42x42). In the 
first set, four doors were placed in the room, in different 
configurations, each one tested with different density of 
agents, from 0.125 to 3 (the maximum, as in each cell at 
most three agents can be present at the same time). Forty 
experiments were performed with each room 
configuration and for each agent density.  

 
(a) 

 
(b) 

Figure 4: Time to escape with respect to agent density 
for different door configurations: 4(a) and 8 doors(b). 

Figure 4(a) shows the results of each configuration tested 
for different agent densities. The X-axis is the agent 
density; the Y-axis is the time it took the agents to escape 
(average of the 40 experiments). The first configuration 
has a door in the middle of each wall. Setting the origin 
of coordinates at the upper left corner of the room, the 
second configuration has doors at (5, 0), (35, 41), (41, 
35) and (0, 5). The third room has doors at (20, 0), (20, 
41), (41, 35) and (0, 6). The fourth room has doors at (20, 
0), (20, 41), (41, 19), (0, 19). The first configuration 
gives the better time, as agglomerations tend to form near 
the doors, making the escape process more difficult. If 
two doors are “too near” these agglomerations are even 
bigger. An example of this is configuration 2, which 
gives the worst results, as it has very close pairs of doors 
in the room corners. The advantage of configuration 1 is 
bigger as the agent density goes up, because the effect of 
the agglomerations as the density of agents increases is 
bigger. 
 

Figure 4(b) shows the results of the second set of 
experiments, with eight doors. One of the objectives was 
to test the efficiency of 8 doors against 4 bigger doors, 
which can be produced by joining two smaller doors. The 
first configuration has two doors in each wall, each one 
placed in an equidistant position to the other door and to 
the corner of the room. For the second configuration, a 
big door (composed of two smaller doors) has been 
placed in the middle of each wall. The third configuration 
is a room with one big door in the North and in the 
South, and two smaller ones in the East and West. These 
are placed at 5 units from the end of the walls. Finally, 
configuration has two doors in each wall, at 5 units from 
the end of each wall. The best results have been obtained 
with the first configuration, for the same reason: if two 
doors are too near, agglomerations are formed. To reduce 
this effect, the simulations show that (specially if the 
room is very crowded) it is better to have numerous small 
separated doors than a few big doors. 
 
3.3 Extending the model for multiple rooms 
In this section, we consider buildings with multiple 
rooms. The agent structure must be extended with a 
“mental” representation of the rooms’ connectivity to 
guide the agent in his navigation towards the exit. We 
can experiment with two situations: in the first one the 
agent does not have any a priori knowledge of the 
building connectivity, he builds his mental map while 
navigating through the building looking for the exit. In 
the second situation, we assume that the agents have 
partial or total information about the building. In both 
cases, the mental map is used by the agent to navigate 
trough the building.  
 
Left of Figure 5 reflects this situation. Class Building has 
been introduced, composed by a number of rooms. Class 
Door has been extended with the attribute type indicating 
if the door is an exit or leads to another room. While 
inner doors are connected to other inner doors leading to 
other rooms; exit doors are not connected to other doors, 
as they lead to the outside. The mental map of the 
environment the agent builds and uses for navigation is 
shown in a separate package. A relationship of type 
“represents” expresses the fact that the agent is able to 
recognize a real room if he has been in the room before. 
The same happens with doors inside rooms. The agent 
also remembers if he has explored the door before or not. 
As the mental map is a model of the environment (an 
abstraction), the agent does not memorize room or wall 
dimensions, as they are not needed for navigation. The 
agent capabilities have been extended with the possibility 
to memorize new rooms or doors as they are discovered. 
Capabilities have been arranged in two layers. The upper 
layer capability (getDoor) is higher-level than the lower 
layer ones and is used by the agent to decide the most 
appropriate door to go to, and accesses the mental map. 



 
Figure 5: Agent Class diagram with the model for multiple rooms (left). Behaviour of the agent (right). 

  
 
 
 
 
 
 
 
 
 

Figure 6:Collaboration Diagrams for Specifying the getDoor capability 

If the agent has a priori knowledge of the building map, 
then this capability guides the agent through the shortest 
sequence of rooms towards the exit. If the agent does not 
have a priori knowledge, then his mental map may not be 
complete, and several situations can arise. In the easiest 
case, if he knows an exit door in the current room, this is 
the most appropriate door. If an exit door is not present in 
the current room, then the agent searches in his mental 
map to check if some of the neighbour rooms have an 
exit door. If this is the case, then the most appropriate 
door is the one leading to that room. In other case, the 
agent chooses the door that leads to a non-visited room, 
and if all rooms have been visited before, he chooses the 
least visited room. This complex behaviour can be 
formalized using a number of agent collaboration 
diagrams specifying the expected behaviour of the 
getDoor capability. Each collaboration diagram specifies 
a situation that, if present at run time, will cause the 

capability specification to be executed. For example, the 
first diagram in figure 6 shows the situation in which an 
agent is in a room with an exit door. In this case, the 
capability returns this door as the most appropriate. This 
diagram does not state that the agent must only know one 
room, but that this is the minimum set of elements that 
must be present in order for this situation to be valid.  
 
The second diagram specifies the situation in which the 
exit door is in a neighbour room. The third diagram 
applies when the agent does not know any exit door in 
the current or neighbour rooms (or there are not any). In 
this case the agent chooses a room not visited before. In 
the fourth diagram the situation is the same, but the agent 
does not have a complete knowledge of the environment: 
the map is not complete. If he finds a door which does 
not have any connection, the door is not explored. The 
negative application condition means that the agent must 



be in a room with a door that has not been explored. 
Finally, the last diagram shows a situation in which the 
agent chooses the least visited neighbour room. 
 
The Statechart showing the agent’s behaviour has to be 
modified to consider the navigation between rooms and 
is shown to the right of Figure 5. If the agent does not 
have a priori knowledge of the environment, then from 
the initial state he moves to the “Moving Randomly” 
state. If the agent has a priori knowledge, two situations 
may arise. In the first one, the agent knows that the exit 
door is in the current room, so the agent moves to state 
“Moving to Exit Door”. In the second one, the agent 
knows that the exit door is elsewhere, so he selects the 
most appropriate inner door to move to and moves to 
state “Moving to Inner Door”.  
 
4. CONCLUSIONS AND FUTURE WORK 
This paper has proposed some extensions to the UML for 
the modelling of reactive or hybrid agent simulations. 
The extensions introduce elements similar to interfaces to 
express agent’s sensors and effectors. Special 
relationships are introduced to express the fact that other 
agents or objects can be sensed or acted upon by these 
sensors and effectors. Instances of these relationships and 
symbols can be found in agent diagrams (a kind of 
diagram similar to object diagrams). Agent capabilities 
are declared in an extra box in the agent class box. 
Capabilities can be formally specified using a number of 
agent collaboration diagrams, in a similar way as graph 
grammars rules. Packages are used to separate the 
environment and the agent memory. The extensions 
continue the line of the ones proposed by the aUML 
community and have been used to model building 
evacuations. This kind of simulations is an inexpensive 
means to test building security, and can be a complement 
to real evacuation simulations. 
 
We are extending the model with the possibility to 
evaluate exit signals placement, experimenting with 
situations of low visibility and communication between 
agents. We want to test the model with real buildings, 
validating the simulation results with data from real 
building evacuations. We are also implementing the 
proposed UML extensions in the meta-modelling tool 
AToM3 [de Lara and Vangheluwe 2002], in such a way 
that code for some agent programming languages will be 
generated from the models. We are also constructing a 
meta-model to allow the users model different kinds of 
buildings. These models have to be translated into object 
diagrams for further processing.  
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