
ON-LINE DESIGN OF ROBUST FUZZY-LOGIC
CONTROL SYSTEMS BY MULTI-OBJECTIVE

EVOLUTIONARY METHODS.

P. Stewart (corresponding author) ∗ D.A. Stone ∗

P.J. Fleming ∗∗

∗ Electrical Machines and Drives Group, Department of
Electronic and Electrical Engineering, University of Sheffield.

Mappin St. Sheffield S1 3JD U.K.
e-mail:p.stewart@shef.ac.uk, tel: +44 (0)114 2225841.

∗∗ Department of Automatic Control and Systems Engineering,
University of Sheffield. Mappin St. Sheffield U.K.

Abstract: Evolutionary development of a fuzzy-logic controller is described and is
evaluated in the context of hardware in the loop. It had been found previously that
a robust speed controller could be designed for a dc motor motion control platform
via off-line fuzzy logic controller design. However to achieve the desired performance,
the controller required manual tuning on-line. This paper investigates the automatic
design of a fuzzy logic controller on-line. An optimiser which modifies the fuzzy
membership functions, rule base and defuzzification algorithms is considered. A multi-
objective evolutionary algorithm is applied to the task of controller development,
while an objective function ranks the system response to find the Pareto-optimal
set of controllers. Disturbances are introduced during each evaluation at run-time in
order to produce robust performance. The performance of the controller is compared
experimentally with the fuzzy logic controller which has been designed off-line. The
on-line optimised fuzzy controller is shown to be both robust, possessing excellent
steady-state and dynamic characteristics, demonstrating the performance possibilities
of this type of approach to controller design.

Keywords: Fuzzy systems, Evolutionary/Genetic algorithms, Methodologies, Models
and algorithms.

1. INTRODUCTION

This paper is investigates the potential of multiob-
jective control design with hardware in the loop.
Tuning of PI parameters on-line has been achieved
[17] with multiobjective genetic algorithms. Here,
the potential of parameter and controller struc-
ture tuning on-line is considered. A DC motor
dynamometer rig and a microcontroller is used
as a platform to develop and assess the control
algorithms. In particular, an off-line designed type
(fuzzy logic) is considered for performance com-
parison. An automatic method for fuzzy logic con-

trol design is considered, utilising a multiobjec-
tive evolutionary algorithm for the optimisation
process. Random disturbances with bounds which
reflect realistic parameter variations are injected
during each on-line assessment with the aim of
producing a controller which is also robust to
disturbances.

Fuzzy logic control, comprising a fuzzification in-
terface, rule base and defuzzification algorithm
[1,2], has been applied to a wide variety of mo-
tion control applications [3,4]. A vital region of
interest concerns the implementation of the fuzzy



controller. Several different approaches have been
postulated to extract the knowledge base from ex-
perts or training examples to construct the input-
output membership functions and the fuzzy rule-
base. These methods can be based on neural net-
works [5,6] or the application of fuzzy clustering
techniques to construct a fuzzy controller from
training data sets [7]. It has been observed that
the major drawback of most fuzzy controllers and
expert systems is the need to predefine member-
ship functions and fuzzy rules. In [5], a method
is proposed based on fuzzy clustering techniques
and decision tables to derive membership func-
tions and fuzzy rules from numerical data. A
natural evolution of the technique was to inte-
grate Genetic Algorithms (GAs) into the Fuzzy
logic design process [8,9,10]. The robustness of the
GA allows it to cover a multidimensional search
space while ensuring an optimal or near-optimal
solution, thus simultaneous design of membership
functions and fuzzy control rules can be achieved
[11]. The development of these techniques to de-
sign optimal fuzzy logic controllers has arisen to
satisfy the need which exists when expert heuris-
tic knowledge doesn’t exist to translate into con-
troller design.

The performance of a particular control design is
fundamentally tied to the accuracy of the model
upon which it is based. This is especially true for
iterative control design and optimisation proce-
dures. The substitution of hardware in the loop for
the software model opens up new possibilities for
design based on real world perfomance indicies.
In this paper the implementation of GA fuzzy
design will be evaluated via an on-line experi-
mental DC motor connected to a DC shunt load
motor set to introduce dynamic disturbances. The
performance of the resulting motion controller is
compared with that of a manually tuned fuzzy
controller. The results presented here demonstrate
a convenient and practical method to produce a
robust controller design on a prototype plant.

1.1 Multiobjective optimisation by evolutionary
algorithm

Evolutionary algorithms are global parallel search
and optimisation methods based around Dar-
winian principles, working on a population of po-
tential solutions to a problem (in this case the
on-line design of an optimal fuzzy logic controller
via hardware in the loop). Every individual in
the population represents a particular solution to
the problem, often expressed in binary code. The
population is evolved over a series of generations
to produce better solutions to the problem. At
every generational step, each individual of the
population is run on the hardware, and its perfor-
mance evaluated and ranked via a cost function.

Individual performance is indicated by a fitness
value, an expression of the solution’s suitability
in the solution of the problem. The relative de-
gree of the fitness value determines the level of
propagation of the individual’s genes to the next
generation. Evolution is subsequently performed
by a set of genetic operators which stochastically
manipulate the genetic code. Most genetic algo-
rithms include operators which select individuals
for mating, and produce a new generation of in-
dividuals. Crossover and Mutation are two well-
used operators. The crossover operator exchanges
genetic material between parental chromosomes
to produce offspring with new genetic code. The
mutation operator makes small random changes
to a chromosome. Further repetitions of this pro-
cess are made in the search for the strongest
genetic material. The genetic algorithm explores
the multidimensional search-space to find good
solutions to the problem. It is possible for the
GA to find several dissimilar but equally valid
solutions to a single problem due to its use of
population, and the competing nature of multiple
objectives, since real-world problems involve the
simultaneous evaluation of multiple performance
criteria. Trade-offs occur between competing ob-
jectives with the consequence that it is very rare
to find a single solution to a particular problem.
In reality a family of non-dominated solutions will
exist. These Pareto-optimal [12,13] solutions are
those for which no other solution can be found
which improves on a particular objective without
a detrimental effect on one or more competing
objectives. The designer then has the opportunity
to select an appropriate compromise solution from
the trade-off family based on a subjective engi-
neering knowledge of the required performance.
For example, in this application, it would be ex-
pected that a tradeoff will exist between energy
consumption and tracking performance. In this
case, the designer may be willing to sacrifice a
little energy efficiency to achieve a certain track-
ing metric. Individuals which represent candidate
solutions to the optimisation problem (in this case
fuzzy controller parameters such as membership
functions, rule bases etc.) are encoded as either
binary or real number strings, producing an initial
population of chromosomes by randomly generat-
ing these strings. The population of individuals
is evaluated using an objective function which
characterises the individual’s performance in the
problem domain. The experimental system is run
iteratively with each individual’s set of controller
parameters. The objective function determines
how well each individual performs based on exper-
imental data (in this case the current and velocity
tracking performance and power consumption),
and is used as the basis for selection via the
assignment of a fitness value. Individuals which
perform well are assigned a higher probability of



being selected for reproduction. Reproduction of
individuals (usually in pairs) is achieved through
the application of genetic operators, and the new
individuals overwrite their parents in the popu-
lation vector. The resulting new population con-
tains material exchanged between the parents.
Due to the stochastic nature of the GA as a
search mechanism, a complete sweep of the global
search space is achieved with more likelihood of
finding the global minimum than conventional
search methods. Whereas conventional methods
require well-behaved objective functions, GAs tol-
erate noisy, discontinuous and even time-varying
function evaluations. The motivation in this case
for combining GAs with fuzzy logic for control
is to investigate a number of factors. Firstly, the
design potential which can be gained by removing
the need for knowledge solicitation to enable the
fuzzy logic design. Secondly to reduce the design
time. Thirdly to examine a method for introduc-
ing robustness into the fuzzy design. Finally to
investigate and define an method for multiobjec-
tive controller design where an accurate system
model is either unavailable, or runs extremely
slowly, a limiting factor in the process of iterative
evolutionary design.

1.2 Hardware overview

The application consists of a brushed DC per-
manent magnet field motor fed by a four quad-
rant DC chopper drive operating at 5kHz. Fig-
ure 1 shows a schematic of the on-line control
system and hardware setup. The objective is to
perform robust closed loop speed control on this
motor. The drive motor is connected via a flex-
ible coupling to a field wound DC load motor
which itself is fed directly by a 200V DC supply.
The disturbance torque from this load motor is
independently controllable, based on the applied
armature voltage. Current control is embedded in
the INTEL 80C196KC microcontroller as is the
fuzzy logic velocity controller. The microcontroller
also hosts the velocity and current feedback sig-
nals from the motor set and chopper drive re-
spectively. The multiobjective optimisation pro-
gramme runs under Matlab [18], and resides on
a PC. Candidate controllers are downloaded from
this host to the microcontroller via the serial link
and on-line debug facility allowing direct access to
programme memory. Assessment of the candidate
controllers is performed on the PC according to
a pre-programmed performance cost function. A
National Instruments data acquisition board per-
forms signal acquisition to bring feedback signals
into the PC, to facilitate performance evaluation
via the objective function.
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Fig. 1. Online optimisation hardware setup

2. OFF-LINE FUZZY LOGIC CONTROLLER
DESIGN

A fuzzy logic velocity control scheme had been
developed for this system previously in order to in-
vestigate the implementation issues involved with
this type of control structure. Although claims
are made concerning the reduction of development
time [19], in fact the development time to pro-
duce the fuzzy controller off-line was significantly
greater than the time required to manually pro-
duce and tune a robust PID tracking controller, a
factor which is exacerbated by the complexity of
the design procedure. The designer must choose
input and output membership functions, a mean-
ingful rule base, and an effective defuzzification
strategy. In essence this requires the implementa-
tion of a controller with many degrees of freedom
in the design, and consequently a complex imple-
mentation to achieve robust design.

An iterative design approach was utilised, to in-
vestigate the effects of the various degrees of de-
sign freedom in order to design the best controller.
The most effective control structure was found to
be input membership functions for error (v(k))
and change of error (∆v(k)) at time k, where

∆v(k) = v(k) − v(k − 1) (1)

The form of the membership function is shown
in figure 2, The input functions are linked to the
controller output by a rule base of the form;

• IF error is Positive Big THEN output is
Positive Big

• IF error is Positive Small THEN output is
Positive Small

• IF error is Zero THEN output is Zero
• IF error is Negative Small THEN output is

Negative Small
• IF error is Negative Big THEN output is

Negative Big

This rule base is repeated for change of error, and
was implemented experimentally, the structure
being shown in figure 3. The error and change
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Fig. 2. Input membership functions for v and ∆v
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of error controllers were constructed as follows.
The fuzzy inference rule base is implemented using
the intersection operator. A matrix of input and
output sets included in each rule is constructed.
Assuming for example, two classical sets A and B
in a universe U , with membership functions µA

and µB , then the minimum operator intersection
can be defined as [19]

µA∩B(x) = min(µA(x), µB(x)) (2)

The overall transfer surface for the controller was
achieved by combining the matrix representation
of all the individual rules into one overall matrix
and applying the maximum operator union. This
operation exemplifies the Cartesian cross product
operator defined on n classical sets A1, ..., An as

Xn
i=1 = A1 × ... × An (3)

= ((x1, ..., xn)|x1 ∈ A1, ..., xn ∈ An)

The resulting transfer characteristic for velocity
error is shown in figure 4. A corresponding surface
consequently exists for change of velocity error.
The utilisation of the centre of area defuzzifica-
tion strategy [19] results in a controller structure
shown in (figure 5).The surface provides a nonlin-
ear relationship between velocity error, change of
velocity error, and the controller output.

2.1 Results of off-line fuzzy logic controller design

The performance of the off-line designed fuzzy
logic velocity controller is presented in figure 6
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Fig. 4. Fuzzy transfer surface for velocity error
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Fig. 5. Fuzzy controller output

for the non-disturbance case, and figure 7 for the
case with external disturbance. In this case, a
bi-directional velocity demand is supplied to the
controller. In both the disturbed and undisturbed
state, velocity tracking is comparable both in
terms of rise time and steady state accuracy to
a standard PID controller. Although it is beyond
the central remit of this paper, a substantial
amount of time was spent selecting an appropriate
defuzzification strategy and the selection of the
input-output sets in order to achieve this tracking
performance. Consequently, the investigation of
an online fuzzy logic design becomes an attractive
proposition which is described in the next section.
The development for an automatic design scheme
with hardware in the loop will be considered and
experimentally tested.

3. ON-LINE FUZZY LOGIC CONTROLLER
DESIGN

Evolutionary algorithms have been used to op-
timize various aspects of intelligent control sys-
tems. In particular, the algorithm can generate
the fuzzy rulebase, and tune the parameters of the
associated membership functions. The application
of evolutionary algorithms to fuzzy optimisation
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mance
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Fig. 7. Off-line designed fuzzy controller perfor-
mance with external disturbance

is broadly split into two general areas; namely
membership function tuning, and rulebase design
with tuning. GA has been applied [14] to the off-
line tuning of fuzzy membership functions, using
a fuzzy clustering technique a fuzzy model was
developed to describe the friction in a DC-motor
system. In this case, the GA was seeded initially
by the results obtained by fuzzy clustering. The
results were greatly improved over those obtained
by the non-tuned version. An asynchronous evo-
lutionary algorithm has been used to generate
membership functions to facilitate the rapid pro-
totyping of fuzzy controllers [15]. This approach
utilized parallel processing, being implemented on
a 512 processor CM-5 Connection Machine. The
application in question was a simulated space-
based oxygen production system. Evolutionary
methods have also been used where the derivation
of an obvious set of fuzzy rules is not immediately
apparent. In this case, the designer may either pre-
specify a number of rules, or allow the number of
rules to become an extra degree of freedom in the
design. In all cases, the computational intensive-
ness of the designed optimisation technique must

be borne in mind, particularly in the case of on-
line optimisation.

Due to the considerable computational and ex-
perimental considerations implicit in this method,
certain constraints are included in the bounds of
the decision variable vector in order to bring the
automatic design time down to a reasonable level.
A flowchart of the experimental setup is shown in
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Fig. 8. On-line Fuzzy Logic design setup

figure 8 and contains a number of elements;

• Objective function

The objective function contains the elements of
performance and design to be minimised, includ-
ing rise-time, steady-state error, power utilisation
and control complexity.

• Decision variables

The decision variable vector contains the elements
of controller design which are implemented in each
individual during the evolutionary process. The
decision variables include the number of inputs,
number of membership functions for each input
and output, number of rules in the rule base, and-
or-ignore conjugates in each rule, and finally the
defuzzification algorithm. The selected values in
the decision variables vector are passed to the
Matlab Fuzzy Logic Toolbox to be constructed
into a controller file. In order to reduce the neces-
sary execution time to converge to a satisfactory
conclusion the decision variable vector is bounded
as follows

• number of inputs: 1-2
• number of membership functions for each

input 3-5
• membership functions limited to triangular,

with 2 base and one peak co-ordinate
• number of rules: 3-5
• conjugates: and, or, none
• defuzzification: centre of maximum

In addition, a random +/ − 0.2Nm disturbance
is injected during each experimental run to in-



troduce an element of robustness into the design
procedure. For each iteration of the design, the
fuzzy controller was run on the motor rig and
its performance ranked. It was found that the
selected controller appeared early on in the proce-
dure (generation 17 in a population of 10), in an
initial run of 50 generations. The Pareto-Optimal
set of solutions included several configurations
and combinations of membership functions, in-
cluding one which was markedly similar to the so-
lution defined by the off-line fuzzy design with on-
line tuning. The solution chosen for presentation
here however, exhibits the required dynamic and
steady-state performance but is coupled with a
minimal set of membership functions (comprising
an additional objective) and rules which presents
computational advantages.

3.1 Results of on-line fuzzy logic controller design

The first results to present are those which show
the dynamic and steady state performance of the
velocity controller. The undisturbed case is shown
in figure 9, and the disturbed case in figure 10 In
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Fig. 9. On-line designed Fuzzy Logic velocity
controller performance

both cases, the velocity tracking response of the
system is comparable with earlier designs achieved
by off-line fuzzy logic control design. One differ-
ence of particular interest is the current waveform
in both cases which exhibits high frequency com-
ponents. This effect has been commented upon
[20] in the context of fuzzy logic control design,
concluding that some off-line or on-line tuning is
necessary to eliminate or effectively reduce the
harmonics. In the case of the off-line fuzzy logic
controller described earlier in this paper, the har-
monics were reduced by on-line tuning. For future
work in this case, the addition of frequency anal-
ysis to the objective function to minimise the un-
wanted harmonics would be a beneficial area of re-
search. Hardware and computational constraints

precluded the implementation of this analysis on-
line at this time, but it is intended that the in-
vestigation of this phenomenon on an upgraded
rig be performed at some future time. Although
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controller performance with disturbance

the performances of the various controllers are
very similar, the structure of the on-line and off-
line designed controllers are very different. Both
have similar rule bases, but whereas the off-line
design has inputs of both error and change-of-
error, the automatically designed controller solely
acts on error input. The membership functions
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Fig. 11. On-line designed Fuzzy Logic veloc-
ity controller input membership functions.
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which make up the input set are shown in figure
11, being the same number (5) as in the off-line
designed case, but are far more closely clustered
around the zero set. The membership functions
which make up the output set are shown in figure
12 and are linked to the input set by the rule base;

• if velocity error is negbig THEN current
demand is negbig

• if velocity error is negsmall THEN current
demand is negsmall



• if velocity error is zero THEN current de-
mand is zero

• if velocity error is posbig THEN current de-
mand is posbig

• if velocity error is possmall THEN current
demand is possmall
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Fig. 12. On-line designed Fuzzy Logic veloc-
ity controller output membership functions.
A:negbig, B:negsmall, C:zero, D:possmall,
E:posbig.

The methods attached to the fuzzy logic controller
were as follows;

• and:min
• or:max
• implication:min
• aggregation:max
• defuzzification:mom

4. CONCLUSIONS

The primary objective of this work, to assess the
feasibility of automatically designing fuzzy logic
controllers on-line with hardware in the loop has
been demonstrated. A hardware platform previ-
ously intended for fuzzy logic design, formed the
hardware in the loop since it was well charac-
terised. The design of a fuzzy logic controller by
traditional off-line methods had required man-
ual tuning on line to maximise performance, and
in particular, to reduce current harmonics intro-
duced by the control action. It has been shown
experimentally that on-line fuzzy logic controller
design is feasible, and also that excellent dynamic
and steady-state performance can be achieved.
The design was optimised without the solicitation
of knowledge because of the stochastic nature
of the evolutionary optimisation algorithm which
searches the multidimensional space of member-
ship functions and rules for combinations which
can achieve the performance specified in the ob-
jective function. Controller design based around
models and simulation is often limited by the

veracity of the model under consideration. For ex-
ample, electromagnetic actuators may be approx-
imated by relatively simple expressions. However
under certain circumstances, dynamic effects such
as eddy currents, which are extremely difficult to
model, need to be included in dynamic simulation.
In this case, the differences between actual and
simulated plant can make a significant difference
to the controller performance. It appears that the
on-line fuzzy controller design offers considerable
advantages, and is worthy of serious considera-
tion, also the possibility of injecting random dis-
turbances during the design phase resulting in a
controller capable of rejecting at least bounded
disturbances shows particular promise. This topic
together with consideration of the effects of con-
troller dynamics on the harmonic content of the
current waveforms will form part of a further
investigation.
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